
IEOR 4106, HMWK 3, Professor Sigman

1. Each of the following transition matrices is for a Markov chain. For each, find the
communication classes for breaking down the state space, S = C1 ∪ C2 ∪ · · · and
for each class Ck tell if it is recurrent or transient.

(a)

P =


1/4 1/8 1/8 1/2
7/8 1/8 0 0
0 0 0 1
0 1/7 0 6/7

 .

S = {0, 1, 2, 3}.
(b)

P =


2/3 1/3 0 0
0 0 0 1

1/10 3/10 2/10 4/10
0 6/11 0 5/11

 .

S = {0, 1, 2, 3}.
(c)

P =


0 0 1/3 2/3
0 0 1/4 3/4
0 0 1/3 2/3
0 0 1/2 1/2

 .

S = {0, 1, 2, 3}.
(d)

P =


1/7 0 2/7 0 4/7
0 3/4 0 1/4 0

1/5 0 1/5 0 3/5
0 1/3 0 2/3 0

1/2 0 1/4 0 1/4

 .

S = {0, 1, 2, 3, 4}.
(e)

P =


1/9 2/9 1/9 1/9 4/9
1/2 1/2 0 0 0
6/7 0 0 1/7 0
0 1/3 0 2/3 0

2/11 0 5/11 0 4/11

 .

S = {0, 1, 2, 3, 4}.

SOLUTION:

(a) This MC is irreducible, all states communicate; C = {0, 1, 2, 3}(recurrent)
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(b) There are 3 communication classes, C1 = {0}(transient), C2 = {1, 3}(recurrent), C3 =
{2}(transient)

(c) There are 3 communication classes, C1 = {0}(transient), C2 = {1}(transient), C3 =
{2, 3}(recurrent)

(d) There are 2 communication classes, C1 = {0, 2, 4}(recurrent), C2 = {1, 3}(recurrent)
(e) This MC is irreducible, C = {0, 1, 2, 3, 4}(recurrent)

2. Consider a Markov chain on S = Z = {. . . − 2,−1, 0, 1, 2, . . .} with transitions as
follows: For 0 < p < 1 fixed, Pi,i+3 = p, Pi,i−3 = 1 − p, i ∈ Z. This is a random
walk with jumps of size ±3 (instead of ±1). Give the communications classes and
tell if they are recurrent or transient when p 6= 1/2, and for p = 1/2.

SOLUTION:

Observe that this is a random walk {Rn} in which the jumps are of size ±3 instead
of ±1. This means that if R0 = 0 then the only states that can be visited are
C1 = {±3k : k ≥ 0}, if R0 = 1, then the only states that can be visited are
C2 = {1 ± 3k : k ≥ 0}, and finally if R0 = 2, then the only states that can be
visited are C3 = {2 ± 3k : k ≥ 0}. Each of the three Ci is a communication class
and S = Z = C1 ∪ C2 ∪ C3.

Similar to the ±1 case, Rn → +∞ when p > 1/2, Rn → −∞ when p < 1/2 (via the
Strong Law of Large Numbers). Thus in these cases, each Ci is transient. When
p = 1/2, each Ci is recurrent.

3. Consider a Markov chain {Xn : n ≥ 0} with S = {0, 1, 2}, and transition matrix

P =

 1/2 1/3 1/6
0 1/5 4/5

1/3 0 2/3

 .

(a) Suppose that (independently) X0 is chosen randomly with
P (X0 = 0) = P (X0 = 1) = 1/8, P (X0 = 2) = 3/4. Compute E(X3).

SOLUTION: We will use the law of total probability:

E(X3) =
2∑
i=0

E(X3 | X0 = i)P (X0 = i).

Noting that P (X3 = j |X0 = i) = P
(3)
i,j , we have by definition,

E(X3 |X0 = i) =
2∑
j=0

jP
(3)
i,j ,

the mean of the ith row of P (3) = P 3.
Thus we first must compute

P 3 =

 331/1080 401/2700 109/200
82/225 109/1125 202/375
13/36 41/270 263/540

 .
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Then we get:

m0 = E(X3 |X0 = 0) =
2∑
j=0

jP
(3)
0,j = 836/675, (1)

m1 = E(X3 |X0 = 1) =
2∑
j=0

jP
(3)
1,j = 1321/1125, (2)

m2 = E(X3 |X0 = 2) =
2∑
j=0

jP
(3)
2,j = 152/135. (3)

Finally we get

E(X3) =
3∑
i=0

miP (X0 = i) = 30943/27000 = 1.146.

(b) Show that the chain is irreducible and solve for the limiting distribution: Solve
π = πP for the limiting distribution π = (π0, π1, π2), where πj > 0, j ∈ S,
and

∑
j∈S πj = 1.

SOLUTION: Irreducibility follows since 0 → 1 → 2 → 0 with probability
P0,1P1,2P2,0 = (1/3)(4/5)(1/3) > 0.
The π = πP equations:

π0 = (1/2)π0 + (1/3)π2
π1 = (1/3)π0 + (1/5)π1
π2 = (1/6)π0 + (4/5)π1 + (2/3)π2

(And we can also use π0 + π1 + π2 = 1.)
Solving we get

π0 = 12/35,
π1 = 1/7,
π2 = 18/35.

(c) Compute the variance, given by

lim
N→∞

1

N

N∑
n=1

X2
n −

[
lim
N→∞

1

N

N∑
n=1

Xn

]2
SOLUTION: Time average = mean of stationary distribution, the first 2
moments are:

m1 = lim
N→∞

1

N

N∑
n=1

Xn =
2∑
j=0

jπj = 41/35.
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m2 = lim
N→∞

1

N

N∑
n=1

X2
n =

2∑
j=0

j2πj = 11/5.

The answer is thus m2 −m2
1 = 1014/1225 = 0.8278.

(d) Given that the chain is now in state 2, what is the expected amount of time
until the chain returns to state 2?
SOLUTION: E(τ2,2) = 1

π2
= 35/18.

4. Consider a simple random walk with 0 < p < 1. But now we restrict it to be
non-negative in the following way: P0,1 = 1, and Pi,0 = q = 1− p, i ≥ 1; otherwise
Pi,i+1 = p, i ≥ 1 and Pi,i−1 = 0, i ≥ 2. Thus the state space is still infinite but
non-negative; S = {0, 1, 2, . . .}. Imagine that this Markov chain Xn represents the
total fortune of a gambler after his nth gamble, where whenever he goes broke, he
is given a dollar by a friend so that he can keep gambling. Also note that with
probability q, he might go broke after only one gamble no matter what his total
fortune is.

(a) Show that this chain is irreducible.

SOLUTION: P0,1 = 1 and for any j > i ≥ 1, P
(j−i)
i,j = pj−i > 0. If 1 < j < i,

then the chain goes via state 0: i → 0 → j: P
(1+j)
i,j = qpj−1 > 0. Thus all

states communicate.

(b) Show (via solving π = πP ) that it is positive recurrent (for all 0 < p < 1).
HINT: Make sure to use the equation

∑∞
j=0 πj = 1.

SOLUTION: Note that the first equation is very simple and gives us imme-
diately the value of π0:

π0 = 0π0 + qπ1 + · · ·+ = q(
∞∑
j=1

πj) = q(1− π0),

since we must have
∑∞

j=0 πj = 1 yielding
∑∞

j=1 πj = 1 − π0. Thus we get

π0(1 + q) = q yielding π0 = q/(1 + q).
The next equation is simply π1 = π0, and all the others are πn+1 = pπn, n ≥ 1.
Thus we get πn = pn−1π0 = pn−1(q/(1 + q)), n ≥ 1.

(c) What is the long-run proportion of time (gambles) that the gambler goes
broke?
SOLUTION: As we already showed, π0 = q/(1 + q).

(d) Suppose that p = 0.70. Given that the gambler has exactly $5 now, on average
how many gambles will it be until he has $5 again?
SOLUTION:
E(T5,5) = 1/π5
= 1/[p4(q/(1 + q))] = 1/[(.7)4(.3/(1 + .3))] = 18.048

5. Consider the simple random walk {Rn} with 0 < p < 1 and in which p 6= q. We
know that this Markov chain is irreducible and transient (all states are transient).
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Thus for each state i ∈ Z, fi < 1 where fi = the probability that the chain will
ever return back to state i given that R0 = i. The objective of this problem is to
exactly compute fi. Note that fi is the same for all i. So it suffices to derive f0.
So we assume that R0 = 0.

(a) Letting M = maxn≥0Rn, and m = minn≥0Rn, argue that

f0 = pP (m ≤ −1) + qP (M ≥ 1).

SOLUTION:
Condition on R1 = ∆1 = ±1: If R1 = 1 (probability p) then the only way
the chain can revisit state 0 is if it goes down by at least 1; equivalently if
m ≤ −1. If R1 = −1 (probability q), then the only way the chain can revisit
state 0 is if it goes up by at least 1; equivalently if M ≥ 1.

(b) From (a), solve for f0 for the two cases p < q and p > q.
SOLUTION: p < q. In this case we know that P (M ≥ a) = (p/q)a, a ≥ 0,
and P (m ≤ −b) = 1, b ≥ 0. Thus we get

f0 = pP (m ≤ −1) + qP (M ≥ 1) = p× 1 + q(p/q)1 = 2p.

Similarly, if q < p, then P (M ≥ a) = 1, a ≥ 0 and P (m ≤ −b) = (q/p)b, b ≥
0. We get

f0 = p(q/p)1 + q × 1 = 2q.
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