IEOR 4106, HMWK 3, Professor Sigman

1. Each of the following transition matrices is for a Markov chain. For each, find the communication classes for breaking down the state space, $S = C_1 \cup C_2 \cup \cdots$ and for each class C_k tell if it is recurrent or transient.

(a)

$$P = \begin{pmatrix} 1/4 & 1/8 & 1/8 & 1/2 \\ 7/8 & 1/8 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1/7 & 0 & 6/7 \end{pmatrix}.$$
(b)

$$P = \begin{pmatrix} 2/3 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1/10 & 3/10 & 2/10 & 4/10 \\ 0 & 6/11 & 0 & 5/11 \end{pmatrix}.$$
(c)

$$P = \begin{pmatrix} 0 & 0 & 1/3 & 2/3 \\ 0 & 0 & 1/4 & 3/4 \\ 0 & 0 & 1/3 & 2/3 \\ 0 & 0 & 1/2 & 1/2 \end{pmatrix}.$$
(d)

$$P = \begin{pmatrix} 1/7 & 0 & 2/7 & 0 & 4/7 \\ 0 & 3/4 & 0 & 1/4 & 0 \\ 1/5 & 0 & 1/5 & 0 & 3/5 \\ 0 & 1/3 & 0 & 2/3 & 0 \\ 1/2 & 0 & 1/4 & 0 & 1/4 \end{pmatrix}.$$
(e)

$$P = \begin{pmatrix} 1/9 & 2/9 & 1/9 & 1/9 & 4/9 \\ 1/2 & 1/2 & 0 & 0 & 0 \\ 6/7 & 0 & 0 & 1/7 & 0 \\ 0 & 1/3 & 0 & 2/3 & 0 \\ 2/11 & 0 & 5/11 & 0 & 4/11 \end{pmatrix}.$$

 $\mathcal{S} = \{0, 1, 2, 3, 4\}.$

SOLUTION:

(a) This MC is irreducible, all states communicate; $C = \{0, 1, 2, 3\}$ (recurrent)

.

- (b) There are 3 communication classes, $C_1 = \{0\}(transient), C_2 = \{1, 3\}(recurrent), C_3 = \{2\}(transient)$
- (c) There are 3 communication classes, $C_1 = \{0\}(transient), C_2 = \{1\}(transient), C_3 = \{2,3\}(recurrent)$
- (d) There are 2 communication classes, $C_1 = \{0, 2, 4\}$ (recurrent), $C_2 = \{1, 3\}$ (recurrent)
- (e) This MC is irreducible, $C = \{0, 1, 2, 3, 4\}$ (recurrent)
- 2. Consider a Markov chain on $S = \mathbb{Z} = \{\ldots -2, -1, 0, 1, 2, \ldots\}$ with transitions as follows: For $0 fixed, <math>P_{i,i+3} = p$, $P_{i,i-3} = 1 p$, $i \in \mathbb{Z}$. This is a random walk with jumps of size ± 3 (instead of ± 1). Give the communications classes and tell if they are recurrent or transient when $p \neq 1/2$, and for p = 1/2.

SOLUTION:

Observe that this is a random walk $\{R_n\}$ in which the jumps are of size ± 3 instead of ± 1 . This means that if $R_0 = 0$ then the only states that can be visited are $C_1 = \{\pm 3k : k \ge 0\}$, if $R_0 = 1$, then the only states that can be visited are $C_2 = \{1 \pm 3k : k \ge 0\}$, and finally if $R_0 = 2$, then the only states that can be visited are $C_3 = \{2 \pm 3k : k \ge 0\}$. Each of the three C_i is a communication class and $\mathcal{S} = \mathbb{Z} = C_1 \cup C_2 \cup C_3$.

Similar to the ± 1 case, $R_n \to +\infty$ when p > 1/2, $R_n \to -\infty$ when p < 1/2 (via the Strong Law of Large Numbers). Thus in these cases, each C_i is transient. When p = 1/2, each C_i is recurrent.

3. Consider a Markov chain $\{X_n : n \ge 0\}$ with $\mathcal{S} = \{0, 1, 2\}$, and transition matrix

$$P = \left(\begin{array}{rrr} 1/2 & 1/3 & 1/6 \\ 0 & 1/5 & 4/5 \\ 1/3 & 0 & 2/3 \end{array}\right).$$

(a) Suppose that (independently) X_0 is chosen randomly with $P(X_0 = 0) = P(X_0 = 1) = 1/8$, $P(X_0 = 2) = 3/4$. Compute $E(X_3)$.

SOLUTION: We will use the law of total probability:

$$E(X_3) = \sum_{i=0}^{2} E(X_3 \mid X_0 = i) P(X_0 = i).$$

Noting that $P(X_3 = j | X_0 = i) = P_{i,j}^{(3)}$, we have by definition,

$$E(X_3 | X_0 = i) = \sum_{j=0}^{2} j P_{i,j}^{(3)},$$

the mean of the i^{th} row of $P^{(3)} = P^3$. Thus we first must compute

$$P^{3} = \begin{pmatrix} 331/1080 & 401/2700 & 109/200 \\ 82/225 & 109/1125 & 202/375 \\ 13/36 & 41/270 & 263/540 \end{pmatrix}.$$

Then we get:

$$m_0 = E(X_3 | X_0 = 0) = \sum_{j=0}^2 j P_{0,j}^{(3)} = 836/675,$$
 (1)

$$m_1 = E(X_3 \mid X_0 = 1) = \sum_{j=0}^2 j P_{1,j}^{(3)} = 1321/1125,$$
 (2)

$$m_2 = E(X_3 \mid X_0 = 2) = \sum_{j=0}^2 j P_{2,j}^{(3)} = 152/135.$$
 (3)

Finally we get

$$E(X_3) = \sum_{i=0}^{3} m_i P(X_0 = i) = 30943/27000 = 1.146.$$

(b) Show that the chain is irreducible and solve for the limiting distribution: Solve $\pi = \pi P$ for the limiting distribution $\pi = (\pi_0, \pi_1, \pi_2)$, where $\pi_j > 0, j \in S$, and $\sum_{j \in S} \pi_j = 1$. **SOLUTION:** Irreducibility follows since $0 \to 1 \to 2 \to 0$ with probability $P_{0,1}P_{1,2}P_{2,0} = (1/3)(4/5)(1/3) > 0$.

The $\pi = \pi P$ equations:

$$\begin{aligned} \pi_0 &= (1/2)\pi_0 + (1/3)\pi_2 \\ \pi_1 &= (1/3)\pi_0 + (1/5)\pi_1 \\ \pi_2 &= (1/6)\pi_0 + (4/5)\pi_1 + (2/3)\pi_2 \end{aligned}$$

(And we can also use $\pi_0 + \pi_1 + \pi_2 = 1$.) Solving we get

$$\begin{array}{rcl} \pi_0 &=& 12/35,\\ \pi_1 &=& 1/7,\\ \pi_2 &=& 18/35. \end{array}$$

(c) Compute the variance, given by

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} X_n^2 - \left[\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} X_n\right]^2$$

SOLUTION: Time average = mean of stationary distribution, the first 2 moments are: N = 2

$$m_1 = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} X_n = \sum_{j=0}^{2} j\pi_j = 41/35.$$

$$m_2 = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} X_n^2 = \sum_{j=0}^{2} j^2 \pi_j = 11/5.$$

The answer is thus $m_2 - m_1^2 = 1014/1225 = 0.8278$.

- (d) Given that the chain is now in state 2, what is the expected amount of time until the chain returns to state 2? SOLUTION: $E(\tau_{2,2}) = \frac{1}{\pi_2} = 35/18.$
- 4. Consider a simple random walk with 0 . But now we restrict it to be $non-negative in the following way: <math>P_{0,1} = 1$, and $P_{i,0} = q = 1 - p$, $i \ge 1$; otherwise $P_{i,i+1} = p$, $i \ge 1$ and $P_{i,i-1} = 0$, $i \ge 2$. Thus the state space is still infinite but non-negative; $S = \{0, 1, 2, \ldots\}$. Imagine that this Markov chain X_n represents the total fortune of a gambler after his n^{th} gamble, where whenever he goes broke, he is given a dollar by a friend so that he can keep gambling. Also note that with probability q, he might go broke after only one gamble no matter what his total fortune is.
 - (a) Show that this chain is irreducible.

SOLUTION: $P_{0,1} = 1$ and for any $j > i \ge 1$, $P_{i,j}^{(j-i)} = p^{j-i} > 0$. If 1 < j < i, then the chain goes via state 0: $i \to 0 \to j$: $P_{i,j}^{(1+j)} = qp^{j-1} > 0$. Thus all states communicate.

(b) Show (via solving $\pi = \pi P$) that it is positive recurrent (for all 0). $HINT: Make sure to use the equation <math>\sum_{j=0}^{\infty} \pi_j = 1$.

SOLUTION: Note that the first equation is very simple and gives us immediately the value of π_0 :

$$\pi_0 = 0\pi_0 + q\pi_1 + \dots + = q(\sum_{j=1}^{\infty} \pi_j) = q(1 - \pi_0),$$

since we must have $\sum_{j=0}^{\infty} \pi_j = 1$ yielding $\sum_{j=1}^{\infty} \pi_j = 1 - \pi_0$. Thus we get $\pi_0(1+q) = q$ yielding $\pi_0 = q/(1+q)$.

The next equation is simply $\pi_1 = \pi_0$, and all the others are $\pi_{n+1} = p\pi_n$, $n \ge 1$. Thus we get $\pi_n = p^{n-1}\pi_0 = p^{n-1}(q/(1+q))$, $n \ge 1$.

(c) What is the long-run proportion of time (gambles) that the gambler goes broke?

SOLUTION: As we already showed, $\pi_0 = q/(1+q)$.

- (d) Suppose that p = 0.70. Given that the gambler has exactly \$5 now, on average how many gambles will it be until he has \$5 again? **SOLUTION:** $E(T_{5,5}) = 1/\pi_5$ $= 1/[p^4(q/(1+q))] = 1/[(.7)^4(.3/(1+.3))] = 18.048$
- 5. Consider the simple random walk $\{R_n\}$ with $0 and in which <math>p \neq q$. We know that this Markov chain is irreducible and transient (all states are transient).

Thus for each state $i \in \mathbb{Z}$, $f_i < 1$ where f_i = the probability that the chain will ever return back to state *i* given that $R_0 = i$. The objective of this problem is to exactly compute f_i . Note that f_i is the same for all *i*. So it suffices to derive f_0 . So we assume that $R_0 = 0$.

(a) Letting $M = \max_{n \ge 0} R_n$, and $m = \min_{n \ge 0} R_n$, argue that

$$f_0 = pP(m \le -1) + qP(M \ge 1).$$

SOLUTION:

Condition on $R_1 = \Delta_1 = \pm 1$: If $R_1 = 1$ (probability p) then the only way the chain can revisit state 0 is if it goes down by at least 1; equivalently if $m \leq -1$. If $R_1 = -1$ (probability q), then the only way the chain can revisit state 0 is if it goes up by at least 1; equivalently if $M \geq 1$.

(b) From (a), solve for f_0 for the two cases p < q and p > q. **SOLUTION:** p < q. In this case we know that $P(M \ge a) = (p/q)^a$, $a \ge 0$, and $P(m \le -b) = 1$, $b \ge 0$. Thus we get

$$f_0 = pP(m \le -1) + qP(M \ge 1) = p \times 1 + q(p/q)^1 = 2p.$$

Similarly, if q < p, then $P(M \ge a) = 1$, $a \ge 0$ and $P(m \le -b) = (q/p)^b$, $b \ge 0$. We get

$$f_0 = p(q/p)^1 + q \times 1 = 2q.$$