IEOR 4106, HMWK 4, Professor Sigman

1. Recall how we proved (in lecture) that the simple symmetric random walk is $\left\{R_{n}\right\}$ is null recurrent as opposed to positive recurrent (we already proved earlier that it is recurrent as opposed to transient). We proved it in two ways. Here you will prove it by yet a third method. Again we already know and assume that the simple symmetric random walk is recurrent in what follows (e.g., when $p=1 / 2$ it is not transient.)
Recall that by irreducibility, $\left\{R_{n}\right\}$ is positive recurrent if and only if there exists a probability solution to the set of equations $\pi=\pi P$. (Probability solution by definition means that $\pi_{j}>0, j \in \mathbb{Z}$ and $\sum_{j \in \mathbb{Z}} \pi_{j}=1$. So: Derive the equations $\pi=\pi P$ and show that they reduce to $\pi_{j+1}=\pi_{j}, j \in \mathbb{Z}$, and explain why this results in a contradiction that π is a probability solution; hence $\left\{R_{n}\right\}$ must be null recurrent.
SOLUTION: $\pi=\pi P$ in words is "rate out of state j equals rate into state j " for all states $j \in \mathbb{Z}$. For any $0<p<1$, the equations are

$$
\pi_{j}=p \pi_{j-1}+q \pi_{j+1}
$$

If we focus just on the $j \geq 0$ on the left and sum, we get

$$
\sum_{j=0}^{\infty} \pi_{j}=p \pi_{-1}-q \pi_{0}+p \sum_{j=0}^{\infty} \pi_{j}+q \sum_{j=0}^{\infty} \pi_{j} .
$$

Since $p+q=1$ this yields

$$
\sum_{j=0}^{\infty} \pi_{j}=p \pi_{-1}-q \pi_{0}+\sum_{j=0}^{\infty} \pi_{j} .
$$

When $p=q=1 / 2$ we thus must have $\pi_{-1}=\pi_{0}$. Plugging that into the equation $\pi_{0}=(1 / 2) \pi_{-1}+(1 / 2) \pi_{1}$ yields $\pi_{1}=\pi_{0}$. Then plugging this into $\pi_{1}=(1 / 2) \pi_{0}+$ $(1 / 2) \pi_{2}$ yields $\pi_{2}=\pi_{0}$. By induction we get $\pi_{j}=\pi_{0}, j \geq 0$. (One similarly will get $\pi_{j}=\pi_{0}, j \leq-1$, but that is not needed in what follows.) Thus if positive recurrent then for some $c>0, \pi_{j}=c, j \geq 0$. But then

$$
\sum_{j=0}^{\infty} \pi_{j}=\sum_{j=0}^{\infty} c=\infty
$$

which is not possible for positive recurrence; null recurrence follows.
An even easier way is to simply observe that since (for any $0<p<1$) the chain only moves ± 1 it follows that the "rate up from state j to $j+1$ equals the rate down from state $j+1$ to j " for all states $j \in \mathbb{Z}$.
Writing that out yields
$p \pi_{j}=q \pi_{j+1}$ which when $p=1 / 2$ yields $\pi_{j}=\pi_{j+1}, j \in \mathbb{Z}$.
2. Given a stochastic process $\left\{X_{n}: n \geq 0\right\}$, with discrete state space $\mathcal{S}=\{0,1\}$, Which of the following random time T are stopping times with respect to $\left\{X_{n}\right\}$ and which are not:
(a) Let $T_{1}=\min \left\{n \geq 0: X_{n}=0\right\}$ then define

$$
T=\min \left\{n>T_{1}: X_{n}=0\right\} .
$$

T denotes the second time that $\left\{X_{n}\right\}$ visits state 0 .
SOLUTION:
Yes: if $T=n$, then we know that $X_{n}=0$, and $X_{k}=0$ for exactly one $0 \leq k<n$; all of this only depends on $\left\{X_{0}, \ldots, X_{n}\right\}$.
(b) $T=\min \left\{n \geq 1: X_{n-1}=0, X_{n}=1\right\}$.

SOLUTION:

Yes: if $T=1$ then we know that $\left(X_{0}, X_{1}\right)=(0,0)$ and this depends only on $\left\{X_{0}, X_{1}\right\}$. If $T=n>1$, then $\left(X_{n-1}, X_{n}\right)=(0,0)$, and $\left(X_{k-1}, X_{k}\right) \neq(0,0)$ for any $1 \leq k<n$; all of this only depends on $\left\{X_{0}, \ldots, X_{n}\right\}$.
(c) Independent of $\left\{X_{n}: n \geq 0\right\}$, let the sequence $\left\{U_{n}: n \geq 0\right\}$ be iid continuous uniform rvs over the interval $(0,1) . T=\min \left\{n \geq 0: U_{n}>1 / 3\right\}$.
SOLUTION:
Yes: We already know that independent (of $\left\{X_{n}\right\}$) random times are always stopping times.
(d) Continuation: $T=\min \left\{n \geq 0: X_{n}=0\right.$ and $\left.U_{n}>1 / 3\right\}$.

SOLUTION:
Yes: $\{T=n\}=\left\{X_{n}=0\right.$ and $\left.U_{n}>1 / 3\right\}$ which depends at most on $\left\{X_{0}, \ldots, X_{n}\right\}$ from the $\left\{X_{n}\right\}$ sequence; and stopping times are allowed to depend (also) on an entirely independent sequence $\left\{U_{n}: n \geq 0\right\}$.
3. Consider an insurance company that receives claims against it each week, $n \geq 1$, of iid sizes C_{n}, where the C_{n} are distributed as a Poisson distribution,

$$
P(C=k)=e^{-\alpha} \frac{\alpha^{k}}{k!}, k \geq 0
$$

where $\alpha=20,000$ (dollars).
Let $T=\min \left\{n \geq 1: C_{n}=0\right\}$. Compute

$$
E\left(\sum_{n=1}^{T} C_{n}\right)
$$

SOLUTION:

$E(C)=\alpha=20,000$ and since $P(C=0)=e^{-\alpha}$, we have $P(T=n)=(1-$ $\left.e^{-\alpha}\right)^{n-1} e^{-\alpha}, n \geq 1$ a geometric distribution with $E(T)=e^{\alpha}=e^{20,000}<\infty$. Thus from Wald's equation we obtain the answer as $E(T) E(C)=e^{20,000} \times 20,000$.
4. Consider the Gambler's ruin problem (Markov chain) $\left\{X_{n}\right\}$ with $p=0.40$, and $N=10$. Suppose $X_{0}=i=6$. Let $T=\min \left\{n \geq 1: X_{n} \in\{0,10\}\right\}$ the time that the gambler stops gambling. Recall that $P_{i}(N)=$ the probability that the chain hits N before 0 given that $X_{0}=i$. Recall that we have exact formulas for these probabilities.
(a) Compute $E\left(X_{T}\right)$.

SOLUTION:

$P\left(X_{T}=N\right)=P_{i}(N), P\left(X_{T}=0\right)=\left(1-P_{i}(N)\right) ;$ thus $E\left(X_{T}\right)=N P_{i}(N)$, where with $q / p=3 / 2, i=6$ and $N=10$,

$$
P_{i}(N)=\frac{1-(3 / 2)^{6}}{1-(3 / 2)^{10}}=0.1834 .
$$

Thus

$$
E\left(X_{T}\right)=1.834
$$

(b) Use (a) together with Wald's equation to find $E(T)$, the expected time until the game ends.
SOLUTION:
$X_{T}=6+\sum_{n=1}^{T} \Delta_{n}$, where the $\left\{\Delta_{n}\right\}$ are iid with $E|\Delta|=1<\infty$ and $E(\Delta)=$ $p-q=-0.2$. From Wald's equation we thus obtain $E\left(X_{T}\right)=6+E(T) E(\Delta)$ and hence

$$
E(T)=\frac{E\left(X_{T}\right)-6}{E(\Delta)}=20.83
$$

Proving in advance that $E(T)<\infty$ follows easily from finite state space Markov chain theory. For example $E(T)=\sum_{j=1}^{9} S_{6, j}<\infty$ from our transient state analysis $\left(S=\left(I-P_{T}\right)^{-1}\right.$.)

