
IEOR 4106, HMWK 4, Professor Sigman

1. Recall how we proved (in lecture) that the simple symmetric random walk is {Rn}
is null recurrent as opposed to positive recurrent (we already proved earlier that
it is recurrent as opposed to transient). We proved it in two ways. Here you will
prove it by yet a third method. Again we already know and assume that the simple
symmetric random walk is recurrent in what follows (e.g., when p = 1/2 it is not
transient.)

Recall that by irreducibility, {Rn} is positive recurrent if and only if there exists
a probability solution to the set of equations π = πP . (Probability solution by
definition means that πj > 0, j ∈ Z and

∑
j ∈Z πj = 1. So: Derive the equations

π = πP and show that they reduce to πj+1 = πj, j ∈ Z, and explain why this
results in a contradiction that π is a probability solution; hence {Rn} must be null
recurrent.

SOLUTION: π = πP in words is “rate out of state j equals rate into state j” for
all states j ∈ Z. For any 0 < p < 1, the equations are

πj = pπj−1 + qπj+1.

If we focus just on the j ≥ 0 on the left and sum, we get

∞∑
j=0

πj = pπ−1 − qπ0 + p
∞∑
j=0

πj + q
∞∑
j=0

πj.

Since p+ q = 1 this yields

∞∑
j=0

πj = pπ−1 − qπ0 +
∞∑
j=0

πj.

When p = q = 1/2 we thus must have π−1 = π0. Plugging that into the equation
π0 = (1/2)π−1 + (1/2)π1 yields π1 = π0. Then plugging this into π1 = (1/2)π0 +
(1/2)π2 yields π2 = π0. By induction we get πj = π0, j ≥ 0. (One similarly will
get πj = π0, j ≤ −1, but that is not needed in what follows.) Thus if positive
recurrent then for some c > 0, πj = c, j ≥ 0. But then

∞∑
j=0

πj =
∞∑
j=0

c =∞,

which is not possible for positive recurrence; null recurrence follows.

An even easier way is to simply observe that since (for any 0 < p < 1) the chain
only moves ±1 it follows that the “rate up from state j to j + 1 equals the rate
down from state j + 1 to j” for all states j ∈ Z.

Writing that out yields
pπj = qπj+1 which when p = 1/2 yields πj = πj+1, j ∈ Z.

1



2. Given a stochastic process {Xn : n ≥ 0}, with discrete state space S = {0, 1},
Which of the following random time T are stopping times with respect to {Xn}
and which are not:

(a) Let T1 = min{n ≥ 0 : Xn = 0} then define

T = min{n > T1 : Xn = 0}.

T denotes the second time that {Xn} visits state 0.
SOLUTION:
Yes: if T = n, then we know that Xn = 0, and Xk = 0 for exactly one
0 ≤ k < n; all of this only depends on {X0, . . . , Xn}.

(b) T = min{n ≥ 1 : Xn−1 = 0, Xn = 1}.
SOLUTION:
Yes: if T = 1 then we know that (X0, X1) = (0, 0) and this depends only on
{X0, X1}. If T = n > 1, then (Xn−1, Xn) = (0, 0), and (Xk−1, Xk) 6= (0, 0) for
any 1 ≤ k < n; all of this only depends on {X0, . . . , Xn}.

(c) Independent of {Xn : n ≥ 0}, let the sequence {Un : n ≥ 0} be iid continuous
uniform rvs over the interval (0, 1). T = min{n ≥ 0 : Un > 1/3}.
SOLUTION:
Yes: We already know that independent (of {Xn}) random times are always
stopping times.

(d) Continuation: T = min{n ≥ 0 : Xn = 0 and Un > 1/3}.
SOLUTION:
Yes: {T = n} = {Xn = 0 and Un > 1/3} which depends at most on
{X0, . . . , Xn} from the {Xn} sequence; and stopping times are allowed to
depend (also) on an entirely independent sequence {Un : n ≥ 0}.

3. Consider an insurance company that receives claims against it each week, n ≥ 1,
of iid sizes Cn, where the Cn are distributed as a Poisson distribution,

P (C = k) = e−α
αk

k!
, k ≥ 0,

where α = 20, 000 (dollars).

Let T = min{n ≥ 1 : Cn = 0}. Compute

E
( T∑
n=1

Cn

)
.

SOLUTION:

E(C) = α = 20, 000 and since P (C = 0) = e−α, we have P (T = n) = (1 −
e−α)n−1e−α, n ≥ 1 a geometric distribution with E(T ) = eα = e20,000 < ∞. Thus
from Wald’s equation we obtain the answer as E(T )E(C) = e20,000 × 20, 000.
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4. Consider the Gambler’s ruin problem (Markov chain) {Xn} with p = 0.40, and
N = 10. Suppose X0 = i = 6. Let T = min{n ≥ 1 : Xn ∈ {0, 10}} the time that
the gambler stops gambling. Recall that Pi(N) = the probability that the chain
hits N before 0 given that X0 = i. Recall that we have exact formulas for these
probabilities.

(a) Compute E(XT ).
SOLUTION:
P (XT = N) = Pi(N), P (XT = 0) = (1 − Pi(N)); thus E(XT ) = NPi(N),
where with q/p = 3/2, i = 6 and N = 10,

Pi(N) =
1− (3/2)6

1− (3/2)10
= 0.1834.

Thus
E(XT ) = 1.834.

(b) Use (a) together with Wald’s equation to find E(T ), the expected time until
the game ends.
SOLUTION:
XT = 6 +

∑T
n=1 ∆n, where the {∆n} are iid with E|∆| = 1 <∞ and E(∆) =

p− q = −0.2. From Wald’s equation we thus obtain E(XT ) = 6 +E(T )E(∆)
and hence

E(T ) =
E(XT )− 6

E(∆)
= 20.83.

Proving in advance that E(T ) < ∞ follows easily from finite state space
Markov chain theory. For example E(T ) =

∑9
j=1 S6,j <∞ from our transient

state analysis (S = (I − PT )−1.)
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