IEOR 4106, HMWK 5, Professor Sigman

1. Trucks arrive to the GW bridge according to a Poisson process at rate $\lambda_{T}=100$ per hour. Independently, cars arrive to the GW bridge according to a Poisson process at rate $\lambda_{C}=300$ per hour.
(a) What is the probability that exactly 75 Trucks arrive during the hour from 1-2PM?
(b) What is the probability that exactly 75 Trucks arrive during the hour from 1-2PM given that 102 Trucks already arrived during the earlier hour of 10-11AM?
(c) What is the probability that both 75 Trucks arrive during the hour from 1-2PM and 320 Cars arrive during the hour from 10-11AM?
(d) You go to the GW Bridge at time 12 noon to observe. What is the probability that you observe a Truck arrive before a Car?
(e) Let Vehicles denote Trucks and Cars together (superposition). What is the probability that exactly 1 Vehicle arrives during a given minute of time ($1 / 60$ of an hour)?
2. Phone calls come in to your phone according to a Poisson process $\psi=\left\{t_{n}: n \geq 1\right\}$ at rate $\lambda=5$ per hour. The counting process is given by $\{N(t): t \geq 0\}$.
(a) Conditional on $N(1)=7$, what is the probability that exactly 2 of these 7 arrived in the first 15 minutes of the hour (e.g., during the first $1 / 4$ of the hour)?
(b) Explain why the above answer would remain the same if $N(1)$ is replace by $N(9)-$ $N(8)$.
(c) Suppose that the Poisson process $\psi=\left\{t_{n}: n \geq 1\right\}$ is actually the independent superposition of two Poisson processes: $\psi_{1}=\left\{t_{n}(1): n \geq 1\right\}$, a Poisson process at rate $\lambda_{1}=3$, with counting process $\left\{N_{1}(t): t \geq 0\right\}$ (DOMESTIC CALLS), and $\psi_{2}=\left\{t_{n}(2): n \geq 1\right\}$, a Poisson process at rate $\lambda_{2}=2$, with counting process $\left\{N_{2}(t): t \geq 0\right\}$ (FOREIGN CALLS).
i. What is the probability that the first 4 calls you get are all Domestic?
ii. Let $K=$ the number of calls until you get the first Foreign call. Find $E(K)$.
iii. Conditional on $N(1)=7$, what is the probability that exactly 2 of these 7 are Foreign and 5 are Domestic?
3. According to a Poisson process at rate $\lambda=20$ per day, a company buys units (100 share blocks) of stock A and holds on to each unit, independently of other units, for H days, where H has an exponential distribution with $E(H)=60$ (days).
Assume that initially ($\operatorname{time} t=0$) no units of stock A are held.
(a) Compute the expected number of units held at times $t=20, t=50$ and $t=90$ days.
(b) Repeat (a), (b) when H has a uniform distribution on $(0,120)$.
(c) Repeat (a), (b) when H has a uniform distribution on $(40,80)$.
(d) As $t \rightarrow \infty$, what is the limiting probability distribution for the number of units held? Does it depend on which of the 3 distributions above are used for holding times?
