
IEOR 4106, HMWK 6, Professor Sigman

1. Printer with jams: Jobs arrive to a computer printer according to a Poisson process at
rate λ. Jobs are printed one at a time requiring iid printing times that are exponentially
distributed with rate µ. Jobs wait in a FIFO queue before entering service.

Additionally, independently, the printer jams at times that form a Poisson process at rate
γ. Whenever a jam occurs the job being printed (if any) is removed (and lost), and the
printer continues printing the remaining jobs. If the printer has no jobs, then the jam has
no effect (e.g., the printer instantly resets). Let X(t) denote the number of jobs at the
printer at time t.

(a) Suppose that right now a job is in the midst of being processed. Let T denote how
long it will be (from now) until either the job is complete or lost (if so). Argue that
T ∼ exp(µ+ γ).

SOLUTION: By the memoryless property of the exponential service times and
interjam times, T = min{S, J}, where S ∼ exp(µ) and J ∼ exp(γ) and they are
independent. Thus T ∼ exp(µ+ γ).

(b) Argue that {X(t)} is a Birth and Death process; give the birth rates {λi} and the
death rates {µi}. SOLUTION: By the memoryless property of service times (S),
interarrival times (A), and interjam times (J), we have (at most) at any given time t
3 rvs competing to be the minimum to determine what happens next: S, J,A. When
X(t) = 0 only A is next, when X(t) ≥ 1 we have all 3, and independent of the past
in all cases. So we do have a CTMC. And since either there is an arrival (birth) or a
departure (death, due to either service completion or jam), it is a Birth and Death
process.

(c) Give the holding time rates {ai : i ≥ 0}, and the transition probabilities Pi,j for the
embedded discrete-time Markov chain.

SOLUTION: a0 = λ, ai = λ+ µ+ γ, i ≥ 1.

P0,1 = 1 and otherwise Pi,i+1 = λ/(λ+ µ+ γ), Pi,i−1 = (µ+ γ)/(λ+ µ+ γ), i ≥ 1.

(d) Explain how in fact this chain is the same as for a regular FIFO M/M/1 (but with
modified service rate given as....).

SOLUTION: The Birth and Death balance equations are:

λPj = (µ+ γ)Pj+1, j ≥ 0.

If we define µ = µ+ γ, then we can re-write as

λPj = µPj+1, j ≥ 0.

This is exactly the same as for a M/M/1 queue with arrival rate λ and service rate µ
so we must have λ < µ = µ+γ for the solution to exist in which case it is geometric:
Letting ρ = λ/µ,

Pj = ρj(1− ρ), j ≥ 0.

(e) What is the long-run proportion of jam times that are effective (e.g., remove a job).

SOLUTION: A jam time removes a job if and only if it finds the system non-empty.
By PASTA, the long-run proportion of jam times that find the system non-empty is
the same as the long-run proportion of time that the system is non-empty, 1−P0 = ρ.

1



2. Consider 5 iPhones, each independently having a battery lifetime that is exponentially
distributed with mean 2 years. Once a battery breaks down, the iPhone immediately goes
to a facility to have the battery replaced. The replacing facility handles only the above 5
phones (no others), but can only work at most on 2 phones at a time (the others wait in
queue (line); the replacing facility is a 2− server in parallel system; like a FIFO G/M/2
queue but in which the arrivals are the down machines “arriving” for repair). Replacing
times are exponentially distributed with mean 0.3 year (hence rate λ = 10/3.). Let X(t)
denote the number of iPhones at time t that have working batteries.

(a) Argue that {X(t)} forms a continuous-time Markov chain. Give the holding time
rates a0, a1, a2, a3, a4, a5, and the transition probabilities Pi,j for the embedded discrete-
time Markov chain.

SOLUTION: a0 = 2λ, a1 = 2λ+µ, a2 = 2λ+2µ, a3 = 2λ+3µ, a4 = λ+4µ, a5 =
5µ.

P0,1 = 1

P1,2 = 2λ/(2λ+ µ)

P1,0 = µ/(2λ+ µ)

P2,3 = 2λ/(2λ+ 2µ)

P2,1 = 2µ/(2λ+ 2µ)

P3,4 = 2λ/(2λ+ 3µ)

P3,2 = 3µ/(2λ+ 3µ)

P4,5 = λ/(λ+ 4µ)

P4,3 = 4µ/(λ+ 4µ)

P5,4 = 1.

(b) Draw the rate diagram.

SOLUTION:

(c) Explain why {X(t)} is a Birth and Death process, and give the birth and death
rates.

SOLUTION: Only jumps of size ±1 occur; a battery breaks down (−1), a battery
is repaired (+1).
λ0 = 2λ, λ1 = 2λ, λ2 = 2λ, λ3 = 2λ λ4 = λ, (λ5 = 0 since there are only 5
batteries.).
µ0 = 0, µ1 = µ, µ2 = 2µ, µ3 = 3µ, µ4 = 4µ, µ5 = 5µ.
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(d) Solve for the limiting (stationary) distribution (P0, . . . , P5). SOLUTION:

2λP0 = µP1 (1)

2λP1 = 2µP2 (2)

2λP2 = 3µP3 (3)

2λP3 = 4µP4 (4)

λP4 = 5µP5 (5)

With λ = 10/3, µ = 2 and
∑5

j=0 Pj = 1, we get the solution as follows:

P0 =
729

16709
= 0.00028

P1 =
2430

16709
= 0.00373

P2 =
4050

16709
= 0.02489

P3 =
4500

16709
= 0.11063

P4 =
3750

16709
= 0.36877

P5 =
1250

16709
= 0.49169

(e) Compute the average number of iPhones with working batteries.

SOLUTION:

5∑
j=0

jPj = 0.00373 + 2× 0.00373 + 3× 0.11063 + 4× 0.36877 + 5× 0.49169 = 4.27661

3. Inventory model I: A retailer sells headphones one at a time according to demand which
forms a Poisson process at rate λ: At Poisson arrival time tn (nth demand request), the
inventory drops by 1 if the inventory is non-empty. If the inventory is empty at a request
time, then nothing happens, that demand request is “lost”. The amount in inventory
starts off as B ≥ 2. As soon as the Inventory drops down to 0, it will be re-stocked up to
B after an exponential amount of time L (lead time) at rate γ, independent of the past.
Again: during those L time units, all demand is lost. Let X(t) denote the inventory level
at time t. The state space is thus {0, 1, . . . , B}.

(a) Argue that {X(t)} forms a CTMC, and find both the holding time rates aj and the
embedded MC transition matrix P = (Pi,j).

SOLUTION:

Given that X(t) = i > 0, then the chain will after an exponential λ amount of time,
independent of the past (via memoryless property of the Poisson process), change to
state i− 1. Given that X(t) = 0, then the chain will after an exponential γ amount
of time, independent of the past (via memoryless property of the exponential lead
time), and independent of the future Poisson process of demand, change to state B.
Thus, {X(t) : t ≥ 0} forms a CTMC.

a0 = γ, while aj = λ, 1 ≤ j ≤ B. P0,B = 1, while Pi,i−1 = 1, 1 ≤ i ≤ B.
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(b) Explain why it is not a birth and death process. Draw the rate diagram.

SOLUTION: P0,B = 1 where B ≥ 2, so a jump of size B > 1 happens next
whenever the system empties instead of only jumps of size 1 as is required to be a
birth and death process.

(c) Set up the balance equations: “rate out of state j equals rate into state j” for all
j ∈ S.

SOLUTION:

γP0 = λP1 (6)

λP1 = λP2 (7)

... (8)

λPB−1 = λPB (9)

λPB = γP0. (10)

(d) Solve the balance equations.

SOLUTION:

It is immediate that P1 = (γ/λ)P0 and that

P1 = P2 = · · · = PB,

hence
P1 = P2 = · · · = PB = (γ/λ)P0.

Thus using
B∑
j=0

Pj = 1,

yields that
P0(1 +B(γ/λ)) = 1,

or
P0 = (1 +B(γ/λ))−1,

and
P1 = P2 = · · · = PB = (γ/λ)(1 +B(γ/λ))−1.

(e) Find the long-run average amount of inventory that the retailer has.

SOLUTION:
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B∑
j=0

jPj =
B∑
j=1

jPj = (γ/λ)(1 +B(γ/λ))−1
B∑
j=1

j

= (γ/λ)(1 +B(γ/λ))−1 ((B)(B + 1)/2)

=
1

B + λ
γ

((B)(B + 1)/2) .

(f) What is the long-run proportion of demand requests that are lost?

SOLUTION:

This is the same as the long-run proportion of demand requests that find the inven-
tory empty. From PASTA, this is equal to the long-run proportion of time that the
inventory is empty: P0 = (1 +B(γ/λ))−1.

(g) If each headphone set costs the retailer $c, but sells for $2c,then what is the long-run
rate at which the retailer earns money? (e.g., how much money per unit time).

SOLUTION:

λ is the rate at which requests come in, and each time they do so a profit of $c is
earned as long as the inventory is not empty when the request comes in; hence we
want

cλ(1− πa0),

where πa0 denotes the proportion (fraction) of (the Poisson) request times that find
the inventory empty. From PASTA, πa0 = P0 and hence we want

cλ(1− P0) = cλ(1− (1 +B(γ/λ))−1).

4. For the rat in the closed maze, with (general) holding time rates ai > 0, 1 ≤ i ≤ 4, draw
the rate diagram, and set up the balance equations.

SOLUTION:

Balance Equations for general values of the ai:

a1P1 = a2P2(1/2) + a3P3(1/2) (11)

a2P2 = a1P1(1/2) + a4P4(1/2) (12)

a3P3 = a1P1(1/2) + a4P4(1/2) (13)

a4P4 = a2P2(1/2) + a3P3(1/2). (14)

(a) Show that a1P1 = a2P2 = a3P3 = a4P4.

SOLUTION: Fom the above balance equations, the right hand side of equations
1 and 4 are identical hence a1P1 = a4P4, similarly for rows 2 and 3 yielding
a2P2 = a3P3. Now replacing a3P3 by a2P2 in equation 1 yields a1P1 = a2P2(1/2) +
a2P2(1/2) = a2P2. Thus a1P1 = a2P2 = a3P3 = a4P4.

(b) Solve the balance equations.

SOLUTION: Using P1 +P2 +P3 +P4 = 1 together with (a), Solve P1(1+(a1/a2)+
(a1/a3) + (a1/a4)) = 1 for P1:

P1 = (1 + (a1/a2) + (a1/a3) + (a1/a4))
−1.
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P2 = (a1/a2)P1 (15)

P3 = (a1/a3)P1 (16)

P4 = (a1/a4)P1. (17)
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