
IEOR 4106, HMWK 7, Professor Sigman

1. For generations, a family (and their descendants) keep a Galapagos tortoise in their yard
as a pet. As soon as it dies, they immediately get a new just born one. Suppose that the

average lifetime of such a tortoise is 250 years, and the standard deviation is σ =
√
σ2 = 30.

Suppose (way out in the infinite future) you visit the family. What is the expected total
lifetime of the tortoise you find (e.g., sum of age plus remaining lifetime)? Is the inspection
paradox holding here?

SOLUTION:

We need to compute average spread;

E(X2)

E(X)
.

We compute as follows: We are told that E(X) = 250. Also, E(X2) = σ2 + E2(X) =
302 + (250)2 = 63400. Thus

E(X2)

E(X)
= 253.6

Notice how the inspection paradox is here: 253.6 > 250 = E(X).

2. Printer with disasters: Jobs arrive to a computer printer according to a Poisson process at
rate λ. Jobs are printed one at a time requiring iid printing times that are exponentially
distributed with rate µ. Jobs wait in a FIFO queue before entering service.

Additionally, independently, disasters occur according to a Poisson process at rate γ.
Whenever a disaster occurs all jobs are removed and lost (both any in line and the one
in service). If the printer has no jobs, then the disaster has no effect (e.g., the printer
instantly resets, waiting for new arrivals). Let X(t) denote the number of jobs at the
printer at time t.

(a) {X(t)} is not a Birth and Death process (why?). But it is an irreducible CTMC.
Draw the rate diagram. We will show below that the chain is always positive recur-
rent.

SOLUTION:

No, it is not a B&D process, because the state jumps to 0 (at rate γ) from any state
j ≥ 1 when a disaster occurs.

(b) Set up the balance equations, with the first one as

λP0 = µP1 + γ(1− P0).

Explain why this indeed is the first equation: “Rate out of state 0 equals rate into
state 0”. (You are not expected to solve these equations.......very difficult.....)

SOLUTION:

Only a birth (arrival) can take the process out of state 0. To get into state 0 there
are two ways: either from a disaster which, at rate γ takes the process there from
any state j > 0, plus if the process is in state j = 1 and a death (service completion)
occurs, rate µ. 1−P0 =

∑∞
j=1 Pj = the proportion of time the system is non-empty,

e.g., for which X(t) > 0. This gives us the first equation.
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The other equations are given by

(λ+ µ+ γ)Pj = λPj−1 + µPj+1, j ≥ 1.

If X(t) = j ≥ 1, all 3 possibilities (birth, death, disaster) can occur to take the
process out of state j, hence the holding time rate aj = λ+µ+ γ. Getting back into
state j ≥ 1 can only come from a birth or a death as in a standard M/M/1 queue.

(c) Explain why E(T0,0) ≤ 1/γ <∞, hence the chain is always positive recurrent.

SOLUTION: Since the chain is irreducible, all states together are either positive
reccurrent, null recurrent or transient. To show positive recurrence, it thus suffices to
show that state 0 is positive recurrent. The chain can become empty in two possible
ways: (1) from any disaster, and (2) from a service completion if X(t) = 1. Thus the
time until the chain re-enters state 0 if X(0) = 0 is ≤ the time until the next disaster,
which we will denote that by tD ∼ expo(γ). (Even if TD is a remaining disaster time,
it is still exp(γ) by the memoryless property.) Thus E(T0,0) ≤ E(TD) ≤ 1/γ <∞.

3. Consider the M/M/1 queue (arrival rate λ service time rate µ) with impatient customers:
Each customer independently will get impatient after an amount of time that is exponen-
tially distributed at rate γ while waiting in line (queue) and leave before ever entering
service, and without ever returning. A customer who does enter service completes service
(e.g., customers are only impatient while waiting in the line, not when in service.)

(a) Set up the birth and death balance equations but do not try to solve in general.

SOLUTION:

λPj = (µ+ jγ)Pj+1, j ≥ 0.

The jγ on the right hand side represents the rate at which, when X(t) = j + 1, the
chain has a death due to impatience: all j waiting in the line (queue) are competing to
cause the next death; e.g., the minimum of j iid exponentials at rate γ is exponential
at rate jγ. Only the customer in service can cause a death at rate µ.

(b) Show that in the special case when γ = µ, you can solve the birth and death balance
equations that you set up in (a); solve them. What famous other CTMC model has
these same birth and death balance equations?

SOLUTION: We get
λPj = (j + 1)µPj+1, j ≥ 0,

which are the same equations as for the M/M/∞ model; the solution is thus Poisson
with mean ρ = λ/µ:

Pj = e−ρ
ρj

j!
, j ≥ 0.

4. Consider c (identical) ATM machines working in parallel with one FIFO line (queue).
Customers arrive at an existing rate λ < ∞, and service times {Sn} have an existing
average of 1/µ < ∞. (Assume that λ < cµ.) Letting the “system” be just the set of c
servers, give an expression for the long-run average number of busy servers: If Y (t) = the
number of busy servers at time t, we want

lim
t→∞

1

t

∫ t

0
Y (s)ds.
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SOLUTION:

l = λw applied to the set of c servers as our “system”. Here, sojourn times Wj = Sj , are
the service times; l = λ(1/µ) = ρ.

5. Consider a renewal process with iid interarrival times {Xn} with finite (and non-zero)
moments E(X), E(X2), E(X3). Let A(t) denote the forward recurrence time, A(t) =
tN(t)+1 − t, t ≥ 0.

(a) Graph {A2(t) : t ≥ 0}.
SOLUTION: Recalling the right triangles that one gets by graphing {A(t) : t ≥ 0},
we now get the square of each: The first “cycle” is given by {A2(s) : 0 ≤ s < X1} =
{(X1− s)2 : 0 ≤ s < X1}, then is followed by iid such similar cycles over X2, X3, . . ..

(b) Compute (wp1):

lim
t→∞

1

t

∫ t

0
A2(s)ds.

SOLUTION:

We can use the Renewal Reward Theorem to express the answer as

E(R)

E(X)
,

where we let A2(s) denote the rate at which money is earned at time s. The reward
over the first cycle is thus

R = R1 =

∫ X1

0
A2(s)ds =

∫ X1

0
(X1 − s)2ds =

∫ X1

0
s2ds =

X3
1

3
.

E(R)

E(X)
=
E(X3)

3E(X)
.

6. Recall the Inventory Model that you previously modeled as a CTMC in HMWK 8: A
retailer sells headphones one at a time according to demand which forms a Poisson process
at rate λ: At Poisson arrival time tn (nth demand request), the inventory drops by 1 if
the inventory is non-empty. If the inventory is empty at a request time, then nothing
happens, that demand request is “lost”. The amount in inventory starts off as B ≥ 2. As
soon as the Inventory drops down to 0, it will be re-stocked up to B after an exponential
amount of time L (lead time) at rate γ, independent of the past. Again: during those L
time units, all demand is lost. Let X(t) denote the inventory level at time t. The state
space is thus {0, 1, . . . , B}.
Here we will use the Renewal Reward Theorem to re-derive the limiting probabilities
{Pi : 0 ≤ i ≤ B} and even allow for a general distribution of lead time L (does not have
to be exponentially distributed.)

(a) With X(0) = B, let s1 = time until the inventory returns back to level B for the
first time, let s2 = the time until the inventory returns back to level B for the second
time, and in general, let sn = the time until the inventory returns back to level B for
the nth time, n ≥ 1. Note that s1 = tB +L. Argue that {sn : n ≥ 1} forms a renewal
point process, that is, letting the cycle lengths be denoted by Xn = sn−sn−1, n ≥ 1

(with s0
def
= 0), they are iid distributed as X = X1 = s1 = tB + L.
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SOLUTION:

Whenever the inventory enters state B at one of the times sn, the Poisson process
starts over again and is independent of its past via the memoryless property and
is independent of the past iid lead times. Thus Xn+1 = sn+1 − sn has the same
distribution as Xn and is independent of X1, . . . , Xn. Thus indeed the {Xn} are iid.

The expected cycle length is E(X) = E(tB + L) = B/λ+ 1/γ.

(b) Let

Pi = lim
t→∞

1

t

∫ t

0
I{X(s) = i}ds,

denote the long-run proportion of time that the inventory is at level i, 0 ≤ i ≤ B.
(These were computed by solving the balance equations in HMWK 8; we will compute
differently now.) Letting for a given fixed i

R = R1 =

∫ X1

0
I{X(s) = i}ds,

(the total amount of time spent in state i during the first cycle) denote the “reward
over the first cycle”, argue that E(R) = 1/λ, 1 ≤ i ≤ B and E(R) = 1/γ, i = 0.
(The point is that we can imagine that rewards are collected continuously at rate 1
whenever X(t) = i and at rate 0 otherwise.) More generally, argue that for j ≥ 1

Rj =

∫ sj

sj−1

I{X(s) = i},

are iid rewards over the jth cycle, and that {(Xj , Rj)} are iid.

SOLUTION: For 1 ≤ i ≤ B, R1 =
∫ X1

0 I{X(s) = i}ds = the amount of time
during a cycle that the inventory remains in state i before dropping to i − 1. That
time is an interarrival time T from the Poisson process of demands, and hence
E(R) = E(T ) = 1/λ, after the amount T , the inventory drops to level i− 1.

For i = 0, the amount of time spent in state 0 during a cycle is a lead time L, and
hence E(R) = E(L) = 1/γ. After L, the inventory is up at B again.

Since the cycles are iid, so are the {(Xj , Rj)}.
(c) Letting

R(t) =

∫ t

0
I{X(s) = i}ds,

denote the total reward collected up until time t, derive an explicit expression for
each Pj , using renewal reward, Pj = limt→∞R(t)/t = E(R)/E(X). (You should get
exactly the same answer as when you solved the balance equations in HMWK 8.)

SOLUTION:

We have the answer as E(R)/E(X), where E(X) = E(tB + L) = B/λ + 1/γ, and
E(R) = 1/λ when i 6= 0 and E(R) = 1/γ when i = 0. Thus

P1 = . . . = PB = (1/λ)/(B/λ+1/γ), and P0 = (1/γ)/(B/λ+1/γ). Multiplying both
the numerator and denominator of each by γ yields the same form of the solution as
from HMWK 8: P0 = (1/(1 +B(γ/λ)), Pj = (γ/λ)P0, 1 ≤ j ≤ B.

(d) Suppose that we change the model to allow the iid lead times L > 0 to have a general
distribution G(x) = P (L ≤ x), x ≥ 0, with E(L) = 1/γ < ∞. In other words we
do not assume they are exponentially distributed anymore. Explain why (in general
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now) {X(t) : t ≥ 0} is no longer a CTMC, but that the {Pj} defined above still exist
and are exactly the same value as when the L are exponentially distributed.
SOLUTION: The memoryless property that we had for lead times L is now no
longer there; if for example X(t) = 0, then we can not say that the remaining lead
time is independent of the past, nor would we even know its distribution; it would
depend on the time t as well as the past.
But: {(Xj , Rj)} are still iid and the values E(X) and E(R) are the same as before,
so the renewal reward theorem yields the same answer as before.
SIDE NOTE: We could also obtain

B∑
j=0

jPj =
B∑
j=1

jPj =
1

B + λ
γ

((B)(B + 1)/2) ,

directly by using l = λw: The rate at which items arrive to the inventory is given
by B items every E(X) amount of time, hence by renewal reward, the rate is

λ =
B

E(X)
=

B
B
λ + 1

γ

.

Meanwhile, the average sojourn time w of an item is derived as follows:
Of the B items that arrive all at once at the beginning of a cycle, letting Ti denote
iid exponential λ interarrival times of demand, the first waits W1 = T1, the second
waits W2 = T1 +T2, and so on, finally the Bth waits WB = T1 +T2 + · · ·+TB. Thus,
on average, the ith one waits E(Wi) = E(T1 + · · · + Ti) = iE(T ) = i/λ, and so the
sum of all B sojourn times has average

E

(
B∑
i=1

Wi

)
=

1

λ

B∑
i=1

i =
1

λ

B(B + 1)

2
.

Consequently, diving by B to obtain w:

w = E

(
1

B

B∑
i=1

Wi

)
=
B + 1

2λ
.

Finally,

l = λw =

(
B

B
λ + 1

γ

)
B + 1

2λ
=

1

B + λ
γ

((B)(B + 1)/2) .

(e) Suppose there are some costs incorporated: Each delivery cost of restocking back to
B headphones is $K, while there is also an inventory holding cost of $ci per unit
time that X(t) = i ≥ 1 items are in the inventory. Letting C(t) denote the total
cumulative cost incurred up to time t; obtain an expression for the long-run cost rate
limt→∞C(t)/t using renewal reward.
SOLUTION:
X = tB + L; E(X) = B/λ+ 1/γ.
Letting {Tn} denote iid exponential demand interarrival times,
R = (cBT1 + c(B − 1)T2 + · · ·+ cTB) +K, and hence
E(R) = cE(T )(1 + 2 + · · ·+B) +K = c/λ((B(B + 1))/2 +K.

g(B) =
E(R)

E(X)
=
c/λ((B(B + 1))/2 +K

B/λ+ 1/γ
.
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(f) Using c = λ = γ = 1 and K = 50, find the optimal value of B (the one that
minimizes cost).
SOLUTION:

g(B) =
((B(B + 1))/2 +K

B + 1
=
B

2
+

K

B + 1
.

Setting g′(B) = 0 yields (B+1)2 = 2K, with solution B =
√

2K−1 =
√

100−1 = 9.
(g′′(B) > 0 hence indeed we have a minimum.)

7. Consider a renewal process {tn} with iid interarrival times {Xn} distributed as having
probability density function

f(x) = 2x, x ∈ (0, 1).

Imagine that they are the interarrival times of buses going downtown from the West 116th
Street stop, here in NYC. You randomly way out in the future go to the stop to catch
the next bus. Time is in hours.

(a) On average, what is your waiting time?
SOLUTION:

E(X2)

2E(X)
=

3

8
,

where we compute

E(X) =

∫ 1

0
xf(x) =

∫ 1

0
2x2dx =

2

3

E(X2) =

∫ 1

0
x2f(x) =

∫ 1

0
2x3dx =

1

2

(b) On average, what is the length of the interarrival time you landed in?
SOLUTION: (Average spread.)

E(X2)

E(X)
=

3

4
,

twice the answer from (a).

(c) What is the probability that you must wait longer that 15 minutes (1/4 hour)?
SOLUTION:
We want (for x = 1/4) the tail of the equilibrium distribution

F e(x) = λ

∫ ∞
x

P (X > y)dy.

λ = 1/E(X) = 3/2 and for y ∈ (0, 1),

P (X > y) =

∫ 1

y
2xdx = 1− y2;

F e(x) = (3/2)

∫ 1

x
(1− y2)dy =

2− 3x+ x3

2
,

F e(1/4) =
81

128
.
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8. Train dispatching problem; different model: Passengers arrive to a train platform according
to a Poisson process at rate µ. A train departs every T time units, taking all passengers
who arrived during the T time units. (T > 0 is a constant.) Suppose further that the
train company incurs a cost at the constant rate of $nc per unit time whenever exactly
n passengers are waiting, and also incurs a fixed cost of $K each time a train departs.
This process continues over and over. Our objective in what follows is to compute (using
Renewal Reward) the long-run cost rate for the train company. Observe that the cycle
lengths are deterministic of length T ; Xn = T, n ≥ 0.

(a) On average, how many passengers get on a train?

SOLUTION:

Letting {N(t)} denote the Poisson counting process, we want E(N(T )) = µT .

(b) On average, what is the waiting time of a passenger? (Hint: Condition on how many
Poisson arrivals occur by time T ; recall the use of order statistics, etc.)

SOLUTION: T/2 as argued as follows:

Given that N(T ) = n ≥ 1, the n arrival times are the order statistics V(1) < V(2) <
· · · < V(n) of n iid uniform rvs over (0, T ) denoted by V1, . . . , Vn. The waiting time

of the ith passenger is Wi = t− V(i), and we note that

A =
1

n

n∑
i=1

(T − V(i)) =
1

n

n∑
i=1

(T − Vi),

hence the expected values are the same; E(A) = E(T −V ) = T −E(V ) = T/2. This
is true for any n ≥ 1 hence is the answer in question.

(c) What is the expected waiting cost per cycle per passenger? What is thus E(R)?

SOLUTION: From (b) above, we know that the average waiting time of each
passenger is T/2, hence the expected waiting cost per passenger is cT/2. There are
N(T ) passengers total and hence E(N(T ) = µT passengers on average, and hence
over a cycle the total expected waiting cost over all customers is µT (cT/2) = µcT 2/2.

Finally adding in the cost K per cycle we get
E(R) = µcT 2/2 +K.

(d) Now compute E(R)/E(X) = the long-run cost rate for the train company.

SOLUTION:

g(T ) = E(R)/E(X) =
µcT 2/2 +K

T
= µcT/2 +

K

T
.

(e) Find the optimal value of T ; the one that minimizes cost.

SOLUTION: Letting g(T ) = cµT/2 + K/T , we must solve g′(T ) = 0: g′(T ) =

cµ/2−K/T 2 = 0, T =
√

2K/µc. It is a minimum since g′′(T ) > 0.
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