IEOR 4106, HMWK 8, Professor Sigman

- 1. The price of a commodity moves according to a BM, X(t) = 1 + 2B(t) + 5t, $t \ge 0$.
 - (a) What is the mean and variance of the price at time t = 4?
 - (b) What is the probability that at time t = 4, the price is > 14?
 - (c) Given that the price is 5.5 at time t = 6, what is the probability that the price is > 8 at time t = 7?
 - (d) What is the probability the price goes up to 4 before down to 1/4?
- 2. Let Z denote a standard unit normal random variable. Let $X(t) = \sqrt{t}Z$, $t \ge 0$. Carefully explain your answers below.
 - (a) Does $\{X(t) : t \ge 0\}$ have continuous sample paths?
 - (b) Does $X(t_2) X(t_1)$ have a normal distribution for all $0 \le t_1 < t_2$?
 - (c) Is $\{X(t) : t \ge 0\}$ a standard BM?
- 3. (a) Let $\{B(t) : t \ge 0\}$ denote standard BM. Show that $\{-B(t) : t \ge 0\}$ is also a standard BM, by arguing that it satisfies the Properties of Definition 1.1 in your Lecture Notes on Brownian Motion. (e.g., it has continuous sample paths, stationary and independent increments, etc.)
 - (b) Continuation: If $X_1(t) = \sigma_1 B_1(t) + \mu_1 t$ and $X_2(t) = \sigma_2 B_2(t) + \mu_2 t$ are independent BM's, then argue that $X(t) \stackrel{\text{def}}{=} X_1(t) X_2(t)$ is also a BM with $\sigma =$? and $\mu =$?
 - (c) Let $\{B(t) : t \ge 0\}$ denote standard BM. What is the probability that $\{B(t)\}$ hits -6 before hitting 8?
 - (d) Continuation: Suppose that B(2) = 4. What is the probability that $\{B(2+t) : t \ge 0\}$ hits -6 before hitting 8?
 - (e) Suppose a stock price per share moves as $S(t) = e^{B(t)}$, $t \ge 0$. What is the probability that $\{S(t)\}$ goes up to 3 before down to 1/3?
 - (f) If $X_1(t) = 2B_1(t) + 5t$ with $X_1(0) = 4$ is a BM, and independently $X_2(t) = 3B_2(t) + 3t$ with $X_2(0) = 0$ is another BM, compute the probability that in the future the two processes meet (e.g., that eventually $X_1(t) = X_2(t)$ for some t.) HINT: Use (b) above.
- 4. With $n \ge 2$ fixed, let X_1, \ldots, X_n be iid rvs distributed as $F(x) = P(X \le x), x \ge 0$, and assume that $F^{-1}(y), y \in [0, 1]$, is known in closed form. Suppose that we want to generate a rv distributed as $M = \max\{X_1, X_2, \ldots, X_n\}$. We could simply generate $X_i = F^{-1}(U_i)$ for n iid uniforms and set $M = \max\{X_1, X_2, \ldots, X_n\}$. That would require n iid uniforms to generate one copy of M. But let us explore another method:
 - (a) Give an algorithm for generating a rv $M = \max\{X_1, X_2, \ldots, X_n\}$ that uses only ONE uniform U.
 - (b) Give the algorithm in the special case when $F(x) = 1 e^{-\lambda x}$, $x \ge 0$, the exponential distribution at rate λ
- 5. Consider two independent geometric Brownian motions:

$$S_1(t) = 3e^{4B_1(t)+2t}, \ S_2(t) = 4e^{2B_2(t)+5t}, \ t \ge 0.$$

- (a) What is the probability that $S_1(2) \ge 5$?
- (b) What is the probability that $S_1(t)$ will ever have its price $\geq 2S_2(t)$ at some time in the future?