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1 Notes on Brownian Motion

We present an introduction to Brownian motion, an important continuous-time stochastic pro-
cess that serves as a continuous-time analog to the simple symmetric random walk on the one
hand, and shares fundamental properties with the Poisson counting process on the other hand.

Throughout, we use the following notation for the real numbers, the non-negative real
numbers, the integers, and the non-negative integers respectively:

IR
def
= (−∞,∞) (1)

IR+
def
= [0,∞) (2)

ZZ
def
= {· · · ,−2,−1, 0, 1, 2, · · · } (3)

IN
def
= {0, 1, 2, · · · }. (4)

Before our study of Brownian motion, we must review the normal distribution, and its
importance due to the central limit theorem. We do so next.

1.1 Normal distribution

Of particular importance in our study is the normal distribution, N(µ, σ2), with mean
−∞ < µ <∞ and variance 0 < σ2 <∞; the probability density function and cdf are given by

f(x) =
1

σ
√

2π
e
−(x−µ)2

2σ2 , x ∈ IR, (5)

F (x) =
1

σ
√

2π

∫ x

−∞
e
−(y−µ)2

2σ2 dy, x ∈ IR. (6)

The normal distribution is also called the Gaussian distribution after the famous German
mathematician and physicist Carl Friedrich Gauss (1777 - 1855). The description “bell curve”
is given to the shape of the density function y = f(x), x ∈ IR when graphed in the x− y plane:
It looks like a bell centered symmetrically about the mean value µ.

When µ = 0 and σ2 = 1 we obtain the standard (or unit) normal distribution, N(0, 1), and
the density and cdf reduce to

φ(x)
def
=

1√
2π
e
−x2
2 , (7)

Φ(x)
def
=

1√
2π

∫ x

−∞
e
−y2
2 dy. (8)

We usually denote a N(0, 1) rv by Z and write Z ∼ N(0, 1); Φ(x) = P (Z ≤ x), x ∈ IR.

That φ(x) really is a density function, that is, that
∫∞
−∞ φ(x)dx = 1:

φ(x) ≥ 0 (non-negativity holds), so we must only prove that C =
∫∞
−∞ e

−x2/2dx =
√

2π; that

the normalizing factor is
√

2π.
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To do so, we will show that C2 = 2π by using a change into polar coordinates x =
r cos (θ), y = r sin (θ), with θ ∈ (0, 2π], and r2 = x2 + y2 with r ∈ IR+, and dxdy = rdrdθ in
what follows:

C2 =

(∫ ∞
−∞

e−x
2/2dx

)(∫ ∞
−∞

e−y
2/2dy

)
(9)

=

∫ ∞
−∞

∫ ∞
−∞

e
−x2+y2

2 dxdy (10)

=

∫ 2π

0

∫ ∞
0

re−r
2/2drdθ, (Polar coordinates) (11)

=

∫ ∞
0

∫ 2π

0
re−r

2/2dθdr, (Fubini’s Theorem (Tonelli’s version)) (12)

= 2π

∫ ∞
0

re−r
2/2dr (13)

= 2π

∫ ∞
0

e−udu, (u = r2/2 change of variables) (14)

= 2π × 1 (15)

= 2π (16)

As we shall see over and over again in our study of Brownian motion, one of its nice
features is that many computations involving it are based on evaluating Φ(x), and hence are
computationally elementary.

It is easily seen that

1. If Z ∼ N(0, 1), then X = σZ + µ has the N(µ, σ2) distribution.

2. Conversely, if X ∼ N(µ, σ2), then Z = (X − µ)/σ has the standard normal distribution.

For example if X = σZ+µ, then F (x) = P (X ≤ x) = P (σZ+µ ≤ x) = P (Z ≤ (x−µ)/σ) =
Φ((x−µ)/σ), differentiating and using (7), Φ′((x−µ)/σ) = φ((x−µ)/σ)(1/σ) = f(x). In other
words X has the N(µ, σ2) density given in (5).

Another important (and easy to derive) fact is that

if X ∼ N(µ, σ2), then −X ∼ N(−µ, σ2), and in particular −Z remains a unit
normal; it has the same distribution as Z. (This is due to symmetry about the
origin 0.)

1.2 Simulating from the normal distribution

As pointed out already, once we have a copy of Z ∼ N(0, 1) we can transform it into an
X ∼ N(µ, σ2) via setting X = σZ + µ. Thus it suffices to have a simulation algorithm for
generating iid copies of Z ∼ N(0, 1). The inverse transform method can’t be used because we
do not have an explicit form of the CDF Φ(x) = P (Z ≤ x) in (8) let alone its inverse. One
might first try to approximate Φ−1(y) by an explicit tractable function so as to use the inverse
transform method to obtain approximate copies of Z, and that is an approach sometimes used
in practice. However, we can actually exactly simulate copies of Z using a clever different
approach called the polar method. What is interesting about this method is that it requires the
use of 2 iid Unif(0, 1) rvs and in return hands you back 2 iid copies of Z, X = Z1, Y = Z2.
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Polar Method

Suppose that X and X are iid copies of N(0, 1). If we graph the vector (X,Y ) in the Cartesian
x− y plane and then transform into polar coordinates,
R2 = X2 + Y 2 ∈ IR+,Θ = arctan (Y/X) ∈ [0, 2π) then from classical multi-dimensional cal-
culus (compute the joint density of (R2,Θ) by using the Jacobian matrix/determinant of the
transformation (x, y) −→ (x2 + y2, arctan (y/x))) , it can be shown that

1. R2 has an exponential distribution with mean 2 (hence rate 1/2).

2. Θ has a continuous uniform distribution over the interval [0, 2π).

3. R2 and Θ are independent random variables.

In other words, the joint density of (R2,Θ) denote by f(u, θ) is given by a product

f(u, θ) =
1

2
e−u/2

1

2π
, u ≥ 0, θ ∈ [0, 2π).

Using the above facts in reverse we conclude that if R2 has an exponential distribution with
mean 2, and independently Θ has a continuous uniform distribution over the interval [0, 2π),

then (converting back into Cartesian coordinates), with radius R =
√
R2, we have that the

following 2 rvs X,Y are iid N(0, 1):

X = R cos Θ

Y = R sin Θ

Letting U1, U2 be iid Unif(0, 1), we can generate our exponential via R2 = −2 ln (U1) and
our uniform via Θ = 2πU2 leading to

Polar Algorithm

1. Generate U1, U2.

2. Set R2 = −2 ln (U1), Θ = 2πU2 and set R =
√
R2.

3. Set

X = R cos Θ

Y = R sin Θ.

4. Stop. Output X, Y .

1.3 Moment generating function of a normal distribution

In general, for a random variable X, the moment generating function (MGF) MX(s), s ∈ IR of
X (or of its distribution) is defined by

MX(s)
def
= E(esX), s ∈ IR.

It is a function of s ∈ IR. If X has probability density function g(x), then

MX(s) = E(esX) =

∫ ∞
−∞

esxg(x)dx.
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For some rvs, the MGF might be infinite for some or all values of s 6= 0. For example, if X has
an exponential distribution at rate λ, then (easily derived):

MX(s) =
λ

λ− s
, s < λ,

and MX(s) = ∞ for s ≥ λ. Other examples typically yield an interval of the form (−ε, ε) for
which MX(s) < ∞, s ∈ (−ε, ε), for a sufficiently small ε > 0, and infinite for other values.
Some distributions, however, such as the normal distribution, have a finite MGF for all s ∈ IR;
we will explicitly derive its MGF next.

Letting X ∼ N(µ, σ2), the moment generating function (MGF) of the normal distribution
can be derived explicitly and the result is

MX(s) = E(esX)

=

∫ ∞
−∞

esxf(x)dx

= esµ+s
2σ2/2, −∞ < s <∞. (17)

Deriving (17): First we derive MZ(s) = es
2/2, that is, the case when X = Z is the unit

normal.

MZ(s) = E(esZ)

=
1√
2π

∫ ∞
−∞

esxe
−x2
2 dx

=
1√
2π

∫ ∞
−∞

e
−(x2−2sx)

2 dx

=
1√
2π

∫ ∞
−∞

es
2/2e

−(x−s)2
2 dx

= es
2/2 1√

2π

∫ ∞
−∞

e
−(x−s)2

2 dx

= es
2/2 1√

2π

∫ ∞
−∞

e
−u2
2 du, (u = x− s change of variables)

= es
2/2

∫ ∞
−∞

φ(u)du

= es
2/2 × 1, (φ(u) is a density function hence sums to 1)

= es
2/2.

To obtain the general form in (17): If X ∼ N(µ, σ2), then it can be expressed as X = σZ+µ,
and thus
MX(s) = E(esX) = esµE(eσsZ)
= esµMZ(σs)

= esµe(σs)
2/2

= esµ+s
2σ2/2; we have derived (17).

1.3.1 Application of moment generating functions to moments of the lognormal
distribution

The moment generating results of the previous section will be used crucially when we study
geometric Brownian motion later on. To prepare for that, let us introduce the lognormal
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distribution: Y is said to have a lognormal distribution if it is of the form Y = eX where
X ∼ N(µ, σ2). The point is that by taking the natural logarithm of Y , we get back the normal
distribution; X = ln (Y ). More generally, Y = ceX for any constant c > 0 yields a lognormal
distribution; ln (ceX) = ln(c) +X ∼ N(ln(c) + µ, σ2).

We can now use formula (17) to compute the expected value of a lognormal rv Y = ceX :

E(Y ) = cE(eX) = cMX(1) = ceµ+σ
2/2.

The point here is that by letting s = 1 in formula (17), we obtain our desired expected value.
summarizing:

Proposition 1.1 If Y = ceX is lognormal (with c > 0 and X ∼ N(µ, σ2)), then

E(Y ) = ceµ+σ
2/2.

Further note that higher moments of Y can easily be derived in the same manner. For
example, since Y 2 = c2e2X , we have

E(Y 2) = c2E(e2X) = c2MX(2) = c2e2µ+2σ2
;

we use value s = 2 in formula (17). This, for example, then allows us to compute the variance
of Y :

V ar(Y ) = E(Y 2)− E2(Y ) = c2e2µ+2σ2 − c2e2µ+σ2
= c2e2µ+σ

2
(eσ

2 − 1).

In general, for the nth moment, E(Y n) = cnMX(n) = cnenµ+n
2σ2/2.

1.3.2 Central limit theorem (CLT)

Theorem 1.1 If {Xi : i ≥ 1} are iid with finite mean E(X) = µ ∈ IR and finite non-zero
variance σ2 = V ar(X), then

Zn
def
=

1

σ
√
n

( n∑
i=1

Xi − nµ
)

=⇒ N(0, 1), n→∞, in distribution;

limn→∞ P (Zn ≤ x) = Φ(x), x ∈ IR.

If µ = 0 and σ2 = 1, then the CLT becomes

1√
n

n∑
i=1

Xi =⇒ N(0, 1).

Moreover, for any constant c 6= 0, since cZ ∼ N(0, c2), we obtain:
If µ = 0 and σ2 = 1, then the CLT becomes for any constant c 6= 0

c
1√
n

n∑
i=1

Xi =⇒ N(0, c2). (18)
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Remark 1.1 By defining the empirical average via

X(n) =
1

n

n∑
i=1

Xi,

the Zn can be re-written alternatively as

Zn =

√
n

σ

(
X(n)− µ

)
,

and the CLT is commonly written as
√
n

σ

(
X(n)− µ

)
=⇒ N(0, 1), n→∞, in distribution.

The Strong Law of Large Numbers (SLLN) ensures that, wp1, X(n)→ µ,
and hence (X(n)−µ)→ 0. Thus this alternative way of writing the CLT expresses the fact that
by scaling (X(n)− µ) by something tending to ∞, we get a proper limit; the correct scaling is√
n.

1.4 Construction of Brownian motion from the simple symmetric random
walk

Recall the simple symmetric random walk, R0 = 0,

Rn = ∆1 + · · ·+ ∆n =
n∑
i=1

∆i, n ≥ 1,

where the ∆i are iid with P (∆ = −1) = P (∆ = 1) = 0.5. Thus E(∆) = 0 and V ar(∆) =
E(∆2) = 1.

We view time n in minutes, and Rn as the position at time n of a particle, moving on the time
line IR, which every minute takes a step, of size 1, equally likley to be forwards or backwards.
Because E(∆) = 0 and V ar(∆) = 1, it follows that E(Rn) = 0 and V ar(Rn) = n, n ≥ 0.

Choosing a large integer k > 1, if we instead make the particle still start at the origin but
instead take a step every 1/k minutes and make the step size 1/

√
k, then by time t the particle

will have taken a large number, n = tk, of steps and its position will be

Bk(t) =
1√
k

tk∑
i=1

∆i t ≥ 0, (19)

with Bk(0) = 0. (By convention if tk is not an integer then we replace it by the largest integer
less than or equal to it; denoted by [tk].) This leads to the particle taking many many iid steps,
but each of small magnitude, in any given interval of time. We expect that as k → ∞, these
small steps become a continuum and the process {Bk(t) : t ≥ 0} should converge to a process
{B(t) : t ≥ 0} with continuous sample paths. We call this process Brownian motion (BM) after
the Scottish botanist Robert Brown.1 Its properties will be derived next. First note that since
Bk(0) = 0 for any k ≥ 1, we must end up with B(0) = 0 too.

1Brown himself noticed in 1827, while carrying out some experiments, the unusual “motion” of particles within
pollen grains suspended in water, under his microscope. The physical cause of such motion (bombardment of the
particles by water molecules undergoing thermal motion) was not formalized via kinetic theory until Einstein in
1905. The rigorous mathematical construction of a stochastic process as a model for such motion is due to the
mathematician Norbert Weiner; that is why it is sometimes called a Weiner process.
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Notice that for fixed k, any increment

Bk(t)−Bk(s) =
1√
k

tk∑
i=sk+1

∆i, 0 ≤ s < t,

has a distribution that only depends on the length, t − s, of the time interval (s, t] because it
only depends on the number, k(t − s), of iid ∆i making up its construction. Thus we deduce
that the limiting process (as k → ∞) will possess stationary increments: The distribution of
any increment B(t)−B(s) has a distribution that only depends on the length of the time interval
t− s. In particular, B(t)−B(s) has the same distribution as does B(t− s) = B(t− s)−B(0)
(since B(0) = 0).

Notice further that given two non-overlapping time intervals, (t1, t2] and (t3, t4], 0 ≤ t1 <
t2 < t3 < t4, the corresponding increments

Bk(t4)−Bk(t3) =
1√
k

t4k∑
i=t3k+1

∆i, (20)

Bk(t2)−Bk(t1) =
1√
k

t2k∑
i=t1k+1

∆i, (21)

are independent because they are constructed from different ∆i. Thus we deduce that the
limiting process (as k →∞) will also possess independent increments: For any non-overlapping
time intervals, (t1, t2] and (t3, t4], the increment rvs I1 = B(t2)−B(t1) and I2 = B(t4)−B(t3)
are independent.

Observing that E(Bk(t)) = 0 and V ar(Bk(t)) = [tk]/k → t, k → ∞, we infer that the
limiting process will satisfy E(B(t)) = 0, V ar(B(t)) = t just like the simple symmetric random
walk {Rn} does in discrete-time n (E(Rn) = 0, V ar(Rn) = n).

Finally, a direct application of the CLT (using (18)) yields (via setting n = tk, µ = 0, σ2 =
1, c =

√
t)

Bk(t) =
√
t
( 1√

kt

tk∑
i=1

∆i

)
=⇒ N(0, t), k →∞, in distribution,

and we conclude that for each fixed t > 0, B(t) has a normal distribution with mean 0 and
variance t. Similarly, using the stationary and independent increments property, we conclude
that B(t)−B(s) has a normal distribution with mean 0 and variance t− s, and more generally:

the limiting BM process is a process with continuous sample paths that has both
stationary and independent normally distributed (Gaussian) increments: If t0 =
0 < t1 < t2 < · · · < tn, then the rvs. B(ti)−B(ti−1), i ∈ {1, . . . n}, are independent
with B(ti)−B(ti−1) ∼ N(0, ti − ti−1).

If, for a given fixed σ > 0, µ ∈ IR, we define X(t) = σB(t) + µt, then X(t) ∼ N(µt, σ2t),
and we obtain, by such scaling and translation, more generally, a process with stationary and
independent increments in which X(t) − X(s) has a normal distribution with mean µ(t − s)
and variance σ2(t− s).

When σ2 = 1 and µ = 0 (as in our construction) the process is called standard Brownian
motion, and denoted by {B(t) : t ≥ 0}. Otherwise, it is called Brownian motion with variance
term σ2 and drift µ.
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Definition 1.1 A stochastic process B = {B(t) : t ≥ 0} possessing (wp1) continuous sample
paths is called standard Brownian motion if

1. B(0) = 0.

2. B has both stationary and independent increments.

3. B(t)−B(s) has a normal distribution with mean 0 and variance t− s, 0 ≤ s < t.

For Brownian motion with variance σ2 and drift µ, X(t) = σB(t) + µt, the definition is the
same except that 3 must be modified to

3′. X(t)−X(s) has a normal distribution with mean µ(t−s) and variance σ2(t−s).

Remark 1.2 It can in fact be proved that Condition 3 above is redundant: a stochastic process
with stationary and independent increments that possesses (wp1) continuous sample paths must
be Brownian motion, that is, the increments must be normally distributed. This is analogous
to the Poisson counting process which is the unique simple counting process that has both
stationary and independent increments: the stationary and independent increments property
forces the increments to be Poisson distributed. (Simple means that the arrival times of the
underlying point process are strictly increasing; no batches.)

Donsker’s theorem

Our construction of Brownian motion as a limit is in fact a rigorous one, but requires more
advanced mathematical tools (beyond the scope of these lecture notes) in order to state it
precisely and to prove it. We have (due to the CLT) proved that fixed increments of Bk(t)
converge to a normal rv, but more generally it can be proved that the stochastic process
{Bk(t) : t ≥ 0} as defined by (19) converges in distribution (weak convergence in path (function)
space), as k → ∞, to Brownian motion {B(t) : t ≥ 0}. This is known as Donsker’s theorem
or the functional central limit theorem. The point is that it is a generalization of the central
limit theorem, because it involves an entire stochastic process (with all its multi-dimensional
joint distributions, for example) as opposed to just a one-dimensional limit (such as for fixed
t > 0, Bk(t)→ N(0, t) in distribution). Donsker’s theorem implies, for example, that the vector
(Bk(t1), . . . , Bk(tn)) converges (jointly) in distribution to the vector (B(t1), . . . , B(tn)): for any
time points 0 ≤ t1 < t2 < · · · < tn and xi ∈ IR, 1 ≤ i ≤ n, it holds that (as k →∞)

P (Bk(t1) ≤ x1, . . . , Bk(tn) ≤ xn)→ P (B(t1) ≤ x1, . . . , B(tn) ≤ xn).

1.5 Hitting times for standard BM

Consider two values a > 0, b > 0 and the two-point set {a,−b}. Let

τ = min{t ≥ 0 : B(t) ∈ {a,−b)}},

the first time that BM hits either a or −b. (The continuity of sample paths implies that B(t)
either hits a or hits −b (e.g, there is no overshoot/jumps).)

Proposition 1.2 For standard BM, the probability that a is first hit before −b is given by

pa =
b

a+ b
, a > 0, b > 0.
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We offer a sketch of the proof (a more rigorous proof is provided by martingale theory):
Recall from the gambler’s ruin problem that for the simple symmetric random walk {Rn},
pa = b

a+b , where a > 0, b > 0 (integers), and pa denotes the probability that the random walk
starting at R0 = 0 first hits a before hitting −b.
Thus pa denotes the probability that Rn goes up a steps before going down b steps.

For the process {Bk(t) : t ≥ 0} to hit a before −b would require the random walk

R(k)
n =

1√
k

n∑
i=1

∆i, n ≥ 0

to hit a before −b. This would require (approximately) that the original random walk,

Rn =

n∑
i=1

∆i, n ≥ 0,

hits a
√
k before −b

√
k; yielding the same answer

pa =
b
√
k

a
√
k + b

√
k

=
b

a+ b
.

We thus deduce (via letting k →∞) that the same holds for standard BM (where a and b
need not be integers now).

One can also derive:

Proposition 1.3 For standard BM, if τ = min{t ≥ 0 : B(t) ∈ {a,−b}|B(0) = 0}, the first
time that BM hits either a or −b, then

E(τ) = ab.

Note that if a variance term is introduced, σB(t), σ > 0, then σB(t) ∈ {a,−b} if and only if
B(t) ∈ {a/σ,−b/σ} yielding E(τ) = ab

σ2 .
(In a later section, we will learn the corresponding (more complicated) formulas for BM

with drift µ and variance parameter σ2.)

Examples

1. A particle moves on a line according to a standard BM, B(t). What is its expected
position at time t = 6? What is the variance of its position at time t = 6?

SOLUTION: B(t) has a normal distribution with mean E(B(t)) = 0 and variance
V ar(B(t)) = t, hence the answers are 0 and 6.

2. Continuation:

If the particle is at position 1.7 at time t = 2, what is its expected position at time t = 4?

SOLUTION: B(4) = B(2) +B(4)−B(2) = (B(2)−B(0)) + (B(4)−B(2)), where the
two increments are independent; B(2) is independent of (B(4)−B(2)).

E(B(4)|B(2) = 1.7) = 1.7 + E(B(4)−B(2)|B(2) = 1.7)
= 1.7 + E(B(4)−B(2)) (independent increments)
= 1.7 + 0 = 1.7, since all increments have mean 0, E(B(t)−B(s)) = 0.
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3. Continuation:

What is the probability that the particle hits level 10 before level −2? What is the
expected length of time until either 10 or −2 are hit?

SOLUTION: a = 10, and b = 2 in the formula for pa = b/(a + b) = 1/6, and E(τ) =
ab = 20.

4. The price of a commodity moves according to a BM, X(t) = σB(t) + µt, with variance
term σ2 = 4 and drift µ = −5. Given that the price is 4 at time t = 8, what is the
probability that the price is below 1 at time t = 9?

SOLUTION:

P (X(9) < 1|X(8) = 4) = P (X(9) − X(8) < −3|X(8) = 4) = P (X(9) − X(8) < −3)
(independent increments, X(9)−X(8) is independent of X(8)−X(0) = X(8))
= P (X(1) < −3) (stationary increments)
= P (2Z − 5 < −3) (since X(1) ∼ N(−5, 4) can be represented in terms of a unit normal,
Z, as 2Z − 5)
= P (Z < 1) = Θ(1) = 0.8413 (via a Table for the standard normal distribution, as found
in any statistics textbook for example).

5. A stock price per share moves according to geometric BM,

S(t) = S0e
B(t), t ≥ 0.

Suppose that S0 = 4, S(t) = 4eB(t). What is the probability that the stock price will
reach a high of 7 before a low of 2?

SOLUTION:

Taking natural logarithms, we can convert the problem into What is the probability that
ln(4) +B(t) hits a high of ln(7) before a low of ln(2)?

Because ln 7− ln 4 = ln(7/4), this is equivalent to

What is the probability that B(t) hits a high of ln(7/4) before a low of ln(1/2)?

Noting that ln(1/2) = − ln(2) we can set a = ln(7/4) and b = ln(2) in the formula
pa = b/(a+ b) = ln(2)/(ln(7/2)).

1.6 BM as a Gaussian process

We observe that the vector (B(t1), . . . , B(tn)) has a multivariate normal distribution because
the event

{B(t1) = x1, . . . , B(tn) = xn}
can be re-written in terms of independent increment events

{B(t1) = x1, B(t2)−B(t1) = x2 − x1, . . . , B(tn)−B(tn−1) = xn − xn−1},

yielding the joint density of (B(t1), . . . , B(tn)) as

f(x1, . . . , xn) = ft1(x1)ft2−t1(x2 − x1) · · · ftn−tn−1(xn − xn−1),

where

ft(x) =
1√
2πt

e
−x2
2t
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is the density for the N(0, t) distribution.
The finite dimensional distributions of BM are thus multivariate normal, or Gaussian, and

BM is an example of a Gaussian process, that is, a process with continuous sample paths
in which the finite dimensional distributions are multivariate normal, that is, for any fixed
choice of n time points 0 ≤ t1 < t2 < · · · < tn, n ≥ 1, the joint distribution of the vector
(X(t1), . . . , X(tn)) is multivariate normal.

Since a multivariate normal distribution is completely determined by its mean and covari-
ance parameters, we conclude that a Gaussian process is completely determined by its mean

and covariance function m(t)
def
= E(X(t)), a(s, t)

def
= cov(X(s), X(t)), 0 ≤ s ≤ t.

For standard BM, m(t) = 0 and a(s, t) = s:

cov(B(s), B(t)) = cov(B(s), B(s) +B(t)−B(s))

= cov(B(s), B(s)) + cov(B(s), B(t)−B(s))

= var(B(s)) + 0 (via independent increments)

= s.

Thus standard BM is the unique Gaussian process with m(t) = 0 and a(s, t) = min{s, t}.
Similarly, BM with variance σ2 and drift µ, X(t) = σB(t) + µt, is the unique Gaussian process
with m(t) = µt and a(s, t) = σ2 min{s, t}.

1.7 BM as a Markov Processes

If B is standard BM, then the independent increments property implies that B(s+ t) = B(s) +
(B(s + t) − B(s)), in which B(s) and (B(s + t) − B(s)) are independent. The independent
increments property implies further that (B(s + t) − B(s)) is also independent of the past
before time s, {B(u) : 0 ≤ u < s}.

Thus the future, B(s+t), given the present state, B(s), only depends on a rv, B(s+t)−B(s),
that is independent of the past. Thus we conclude that BM satisfies the Markov property. Since
the increments are also stationary, we conclude that BM is a time-homogenous Markov process.

Letting p(x, t, y) denote the probability density function for B(s+t) = y given B(s) = x, we
see, from B(s+ t) = x+ (B(s+ t)−B(s)), that p(x, t, y) is the density for x+B(s+ t)−B(s).
But x+B(s+ t)−B(s) = y if and only if (B(s+ t)−B(s)) = y − x, yielding

p(x, t, y) = ft(y − x) =
1√
2πt

e
−(y−x)2

2t . (22)

More generally, X(t) = σB(t) + µt is a Markov process with

p(x, t, y) =
1

σ
√

2πt
e
−((y−x−µt)2

2σ2t . (23)

1.8 BM as a martingale

Standard BM is a martingale:

E(B(t+ s)|B(u) : 0 ≤ u ≤ s) = B(s), t ≥ 0, s ≥ 0,

which asserts that the conditional expectation of BM at any time in the future after time s
equals the original value at time s. This of course follows from the independent increments
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property and using B(s+ t) = B(s) + (B(s+ t)−B(s)):

E(B(t+ s)|B(u) : 0 ≤ u ≤ s) = E(B(t+ s)|B(s)), via the Markov property

= E(B(s) + (B(s+ t)−B(s))|B(s))

= B(s) + E(B(s+ t)−B(s)|B(s))

= B(s) + E(B(s+ t)−B(s)), via independent increments

= B(s) + 0

= B(s).

A martingale captures the notion of a fair game, in that regardless of your current and past
fortunes, your expected fortune at any time in the future is the same as your current fortune:
on average, you neither win nor lose any money.

The simple symetric random walk is a martingale (and a Markov chain) in discrete time;

E(Rn+k|Rn, . . . , R0) = E(Rn+k|Rn) = Rn, k ≥ 0, n ≥ 0,

because

Rn+k = Rn +

k∑
i=1

∆n+i,

and
∑k

i=1 ∆n+i is independent of Rn (and the past before time n) and has mean 0.

1.9 Further results on hitting times

Let
Tx = min{t ≥ 0 : B(t) = x | B(0) = 0},

the hitting time to x > 0. From our study of the simple symmetric random walk, we expect
P (Tx < ∞) = 1, but E(Tx) = ∞: although any level x will be hit with certainty, the mean
length of time required is infinite. We will prove this directly and derive the cdf P (Tx ≤ t), t ≥ 0
along the way.

The key to our analysis is based on a simple observation involving the symmetry of standard
BM: If Tx < t, then B(s) = x for some s < t. Thus the value of B(t) is determined by
where the BM went in the remaining t − s units of time after hitting x. But BM, having
stationary and independent Gaussian increments, will continue having them after hitting x
(strong Markov property). So by symmetry (about x), the path of BM during the time interval
(s, t] with B(s) = x is just as likely to lead to B(t) > x as to B(t) < x. So the events
{B(t) > x| Tx ≤ t} and {B(t) < x| Tx ≤ t} are equally likely; both have probability 1/2.
(P (B(t) = x) = 0 since B(t) has a continuous distribution.) To be precise, if Tx = s < t, then
B(t) = x + B(t) − B(s) which has the N(x, t − s) distribution (which is symmetric about x).
Thus P (B(t) > x | Tx ≤ t) = 1/2. On the other hand P (B(t) > x | Tx > t) = 0 because
BM (having continuous sample paths) can not be above x at time t if it never hit x prior to t.
Summarizing yields

P (B(t) > x) = P (B(t) > x | Tx ≤ t)P (Tx ≤ t) + P (B(t) > x | Tx > t)P (Tx > t)

= P (B(t) > x | Tx ≤ t)P (Tx ≤ t) + 0

=
1

2
P (Tx ≤ t),

12



or

P (Tx ≤ t) = 2P (B(t) > x) =
2√
2πt

∫ ∞
x

e
−y2
2t dy,

because B(t) ∼ N(0, t). Changing variables u = y/
√
t then yields

Proposition 1.4 For standard BM, for any fixed x 6= 0

P (Tx ≤ t) = 2P (B(t) > x) =
2√
2π

∫ ∞
x√
t

e
−y2
2 dy = 2(1− Φ(x/

√
t)), t ≥ 0.

In particular Tx is a proper random variable; P (Tx <∞) = 1.

P (Tx <∞) = 1 because taking the limit as t→∞ yields P (Tx <∞) =
2(1− Φ(0)) = 2(1− 0.5) = 1.

Corollary 1.1 For standard BM, for any fixed x 6= 0, E(Tx) =∞.

Proof : We shall proceed by computing E(Tx) =∞ by integrating the tail P (Tx > t);

E(Tx) =

∫ ∞
0

P (Tx > t)dt.

To this end, P (Tx > t) = 1−P (Tx ≤ t) = 2√
2π

∫ x√
t

0 e
−y2
2 dy. Since the constant factor 2√

2π
plays

no role in wether the integrated tail is infinite or finite, we leave it out for simplicity. It thus
suffices to show that ∫ ∞

0

∫ x√
t

0
e
−y2
2 dydt =∞.

Changing the order of integration, we re-write as

∫ ∞
0

∫ x2

y2

0
e
−y2
2 dtdy = x2

∫ ∞
0

1

y2
e
−y2
2 dy

≥ x2
∫ 1

0

1

y2
e
−y2
2 dy

≥ x2e−1/2
∫ 1

0

1

y2
dy

= ∞.

The second inequality is due to the fact that the decreasing function e
−y2
2 is minimized over

the interval (0, 1] at the end point y = 1.

Let Mt
def
= max0≤s≤tB(t) denote the maximum value of BM up to time t. Noting that

Mt ≥ x if and only if Tx ≤ t, we conclude that P (Mt ≥ x) = P (Tx ≤ t) yielding (from
Proposition 1.4) a formula for the distribution of Mt:

Corollary 1.2 For standard BM, for any fixed t ≥ 0,

P (Mt > x) =
2√
2π

∫ ∞
x√
t

e
−y2
2 dy = 2(1− Φ(x/

√
t)), x ≥ 0.

13



1.10 Hitting times for BM with drift

For X(t) = σB(t) + µt, let’s assume that µ < 0 so that the BM has negative drift. This is
analogous to the simple random walk with negative drift, that is, {Rn} when the increments
have distribution P (∆ = 1) = p, P (∆ = −1) = q = 1− p and q > p. Recall from the gambler’s
ruin problem that in this case

pa =
1− (p/q)b

(p/q)−a − (p/q)b
,

and thus by letting b → ∞ we obtain the probability that the random walk will ever reach at
least as high as level a;

P (max
n≥0

Rn ≥ a) = lim
b→∞

pb = (p/q)a.

We conclude that the maximum of the random walk has a geometric distribution with “success”
probability 1−p/q. The point is that the negative drift random walk will eventually drift off to
−∞, but before it does there is a positive probability, (p/q)a, that it will first reach a (finite)
level ≥ a > 0.

X(t) is similar. We let M = maxt≥0X(t) denote the maximum of the BM:

Proposition 1.5 For BM with negative drift, X(t) = σB(t) + µt, µ < 0,

pa =
1− e−αb

eαa − e−αb
,

where α = 2|µ|/σ2; thus (letting b→∞)

P (M > a) = e−αa, a ≥ 0,

and we conclude that M has an exponential distribution with mean α−1 = σ2/2|µ|.

In general, µ > 0 or µ < 0, the formula for pa is

pa =
1− e(2µ/σ2)b

e(−2µ/σ2)a − e(2µ/σ2)b
.

Proof :
Here we use an exponential martingale of the form

eλX(t)−(λµ+ 1
2
λ2σ2)t.

This is a MG for any value of λ. Choosing λ = α = −2µ/σ2 , so that the second term in the
exponent vanishes, we have the MG

U(t) = eαX(t).

Then for τ = min{t ≥ 0 : X(t) ∈ {a,−b}|X(0) = 0}, we use optional sampling to obtain
E(Y (τ)) = 1 or eαapa + e−αb(1 − pa); solving for pa yields the result. (U(t ∧ τ) is bounded
hence UI.)

We also have (proof left out):
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Proposition 1.6 For BM with drift, X(t) = σB(t) + µt, µ 6= 0, if τ = min{t ≥ 0 : X(t) ∈
{a,−b}|X(0) = 0}, then

E(τ) =
a(1− e

2µb

σ2 ) + b(1− e
−2µa

σ2 )

µ(e
−2µa

σ2 − e
2µb

σ2 )
.

What about Tx? If the drift is negative, then we already know that for x > 0, the BM
might not ever hit x; P (Tx = ∞) = P (M < x) > 0. But if the drift is positive, x will be hit
with certainty (because this is so even when µ = 0; Proposition 1.4). In this case the mean is
finite (proof not given here) :

Proposition 1.7 For BM with positive drift,X(t) = σB(t) + µt, µ > 0, if Tx = min{t ≥ 0 :
X(t) = x|X(0) = 0}, then

E(Tx) =
x

µ
, x > 0.

Note how, as µ → 0, E(Tx) → ∞, and this agrees with our previous calculation (Corol-
lary 1.1) that E(Tx) =∞ when µ = 0 (even though P (Tx <∞) = 1).
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