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1 Gambler’s Ruin Problem

Let N > 2 be an integer and let 1 < ¢ < N — 1. Consider a gambler who starts with an initial
fortune of $i and then on each successive gamble either wins $1 or loses $1 independent of the
past with probabilities p and ¢ = 1 — p respectively. Let X,, denote the total fortune after the
nt" gamble. The gambler’s objective is to keep successively gambling so as to reach a total
fortune of $N, without first getting ruined (running out of money). If the gambler succeeds,
then the gambler is said to win the game. In any case, the gambler stops playing after winning
or getting ruined, whichever happens first.

In essence, we can view each successive gamble as an independent coin flip which lands
heads (H) with probability p and lands tails (T) with probability ¢ = 1 — p. Each time the coin
is flipped, the gambler wins 1 dollar if it lands H and loses 1 dollar if it lands T. As soon as
total earnings hits IV or 0, the gambler stops flipping; the game ends. While the game proceeds
before stopping, {X,, : n > 0} forms a simple random walk

Xn:i+A1+"'+Ana nzla onia

where {A,} forms an independent and identically distributed (i.i.d.) sequence of r.v.s. dis-
tributed as P(A = 1) = p, P(A = —1) = ¢ = 1 — p, and represents the earnings on the
successive gambles. E(A) =p—q = 2p— 1. If p > 1/2, equivalently p > ¢, then E(A) > 0;
while if p < 1/2, equivalently p < ¢, then E(A) < 0. Finally, if p = 1/2, equivalently p = ¢,
then F(A) = 0. Thus, when p > 1/2, the gambling is (on average) in favor of the gambler,
when p < 1/2, the gambling is (on average) in favor of the casino. Only when p = 1/2 is the
game “fair”.
Recursively, this can be re-written as

Xn+1 = Xn + An+1, n > 0.
Since the game stops when either X,, =0 or X,, = N, let
7, =min{n > 0: X, € {0, N}|Xo =i},

denote the time at which the game stops when Xy = ¢; that is the time until either 0 or N
are hit (for the first time). If X, = N, then the gambler wins, if X = 0, then the gambler is
ruined.

Let P;(N) = P(X,, = N) denote the probability that the gambler wins when Xy = i.

P;(N) denotes the probability that the gambler, starting initially with $i, reaches a
total fortune of N before ruin; 1 — P;(N) is thus the corresponding probably of ruin

Clearly Py(/N) =0 and Py(N) = 1 by definition, and we next proceed to compute P;(N), 1 <
1< N —1.

Proposition 1.1 (Gambler’s Ruin Problem Solution)
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Proof : For our derivation, we let P; = P;(N), that is, we suppress the dependence on N for
ease of notation. The key idea is to condition on the outcome of the first gamble, Ay = 1 or
Ay = —1, yielding

P, =pP;y1 +qP_1. (2)

The derivation of this recursion is as follows: If Ay = 1, then the gambler’s total fortune
increases to X1 = i + 1 and what happens after this is independent of the past; the gambler
will now win with probability P;yi. Similarly, if A; = —1, then the gambler’s fortune decreases
to X1 = ¢ — 1 and so the gambler will now win with probability P;_;. The probabilities
corresponding to the two outcomes are p and ¢ yielding (2). Since p + ¢ = 1, (2) can be
re-written as pP; + qFP; = pFP;+1 + qP;—1, yielding

P11 —F = ];(Pz —Piy).

In particular, P» — Py = (¢/p)(P1 — Po) = (¢/p)P1 (since Py = 0), so that
P3 — Py = (q/p)(P» — P1) = (¢/p)*P1, and more generally

P = B=() A, 0<i <N,

Thus
i
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(Here we are using the “geometric series” equation Z;:O a = 171 -, for any number a # 1

and any integer i > 1, and of course 2! _1" =1+ 1i.)
Choosing i = N — 1 and using the fact that Py = 1 yields
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from which we conclude that
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thus obtaining from (3) (after algebra) the solution
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Remark 1.1 {X,, : n > 0} yields a Markov chain (MC) on the state space S = {0,1,...,N}.

The transition probabilities, P; ; def P(Xp41 =7 | Xy =1), are given by P41 =p, Pii—1 =

¢, 0 < i< N, and both 0 and N are absorbing states, Pyo = Pyy = 1.1
For example, when N = 4 the transition matrix P = (P; ;) is given by

1 0000
q 0 p 0O
P=|0qg 0 »p O
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1.1 Becoming infinitely rich or getting ruined

In the formula (1), it is of interest to see what happens as N — oo; denote this by P;(co) =
limy_,00 P;(IV). This limiting quantity denotes the probability that the gambler starting off
initially with ¢ > 1, and allowed to play forever unless ruined, will in fact never get ruined and
instead will obtain an infinitely large fortune.

Proposition 1.2 Define P;j(o0) = limy_00 P;(N). If p > 0.5, then

Pyoc) =1 (%)Z’ > 0. (5)
If p < 0.50, then
P(00) = 0. (6)

Thus, unless the gambles are strictly better than fair (p > 0.5), ruin is certain.

Proof : If p > 0.5, then 1 < 1; hence in the denominator of (1), (%)N — 0 yielding the result. If
p < 0.50, then 1 > 1; hence in the denominator of (1), (%)N — oo yielding the result. Finally,
if p = 0.5, then p;(N) =1i/N — 0. [ ]
Examples

1. John starts with $2, and p = 0.6: What is the probability that John obtains a fortune of
N = 4 without going broke?

SOLUTION i =2, N=4and ¢g=1—p=0.4, so ¢/p=2/3, and we want
123
S 1—(2/3)%

!There are three communication classes: C1 = {0}, Co = {1,...,N—1}, C3 = {N}. C1 and Cj3 are recurrent
whereas Cs is transient.

Py(4) 0.69




2. What is the probability that John will become infinitely rich?
SOLUTION
Py(00) =1—(2/3)2 =5/9 = 0.56

3. If John instead started with i = $1, what is the probability that he would go broke?
SOLUTION

The probability he becomes infinitely rich is Pj(c0) = 1 — (¢/p) = 1/3, so the probability
of ruin is 1 — Pj(00) = 2/3.

1.2 Applications
Risk insurance business

Consider an insurance company that earns $1 per day (from interest), but on each day, inde-
pendent of the past, might suffer a claim against it for the amount $2 with probability ¢ = 1—p,
for a given fixed 0 < p < 1. (With probability p there is no claim.) Whenever such a claim
is suffered, $2 is removed from its reserve of money. Thus on the n* day, the net income for
that day is exactly A, as in the gamblers’ ruin problem: 1 with probability p, —1 = 1 — 2 with
probability ¢ =1 —p; P(A, =1)=p, P(A,=-1)=q=1—-0p.

If the insurance company starts off initially with a reserve of $i > 1, then what is the
probability it will eventually get ruined (run out of money)?

The answer is given by (5) and (6), we want 1 — P;(0c0): If p > 0.5 then the probability is
given by (%)i > 0, whereas if p < 0.5 ruin will always ocurr. This makes intuitive sense because
if p > 0.5, then the average net income per day is F(A) = p — ¢ > 0, whereas if p < 0.5, then
the average net income per day is E(A) = p — ¢ < 0. So the company can not expect to stay
in business unless earning (on average) more than is taken away by claims.

In later lectures, we will learn how to solve for the ruin probabilities for the much more
general model in which the claims arrive according to a Poisson process, money comes in at a
constant rate ¢ and the claim sizes have a general distribution G: The classic Cramér-Lundberg
Model. If the insurance business starts out with a reserve of x > 0, what is the probability it
will get ruined? The answer turns out to be deeply related to a queueing model in stationarity.

1.3 Random walk hitting probabilities

Let R, = A1+---+Ay,, n>1, Ry =0 denote a simple random walk initially at the origin, the
{A,} are iid with P(A =1) =p, P(A=—-1)=qg=1—p. Note that F(A)=p—q¢=2p—1
and 03 = Var(A) = E(A?) — E?2(A) =1— (2p — 1)? = 4p(1 — p).

Let a > 0 and b > 0 be integers and define

p(a) = P({R,} hits level a before hitting level —b).

In words this is the probability that the random walk “goes up by the amount a before going
down by the amount b”.

By letting ¢ = b, and N = a + b, we can equivalently imagine a gambler who starts with
i = b and wishes to reach N = a+b before going broke (e.g.“go up by the amount a before going



down by the amount b”). So we can compute p(a) by casting the problem into the framework
of the gambler’s ruin problem: p(a) = P;(N) where N = a+ b, i = b. Thus

BRI _
p(a) — ,(%)aer? lfp # Q7 (7)
aib’ if p=¢=0.5.

Examples

1. Ellen bought a share of stock for $10, and it is believed that the stock price moves (day
by day) as a simple random walk with p = 0.55. What is the probability that Ellen’s
stock reaches the high value of $15 before the low value of $57

SOLUTION

We want “the probability that the stock goes up by 5 before going down by 5.” This is
equivalent to starting the random walk at 0 with @ = 5 and b = 5, and computing p(a).

1— () — (0.82)5

pla) = 1— (p)a+b (0820 ~ =0.73

2. What is the probability that Ellen will become infinitely rich (without ever hitting O first)?
SOLUTION

Here we equivalently want to know the probability that a gambler starting with ¢ = 10
becomes infinitely rich before going broke. Just like Example 2 on Page 3:

1—(q/p)=1—(0.82)0~1—0.14 = 0.86.

1.4 Maximums and minimums of the simple random walk

Formula (7) can immediately be used for computing the probability that the simple random
walk {R,}, starting initially at Ry = 0, will ever at some time in the future hit level a, for
any given positive integer a > 1: P(R, = a, for some n > 1). To compute this, we need to
simply keep a fixed while taking the limit as b — oo in (7), limp_,o P(a). The result depends
on wether p < 0.50 or p > 0.50. The limit is easily computed, proof given below: If p > 0.5 we
already know that (positive drift case), the random walk R,, — oo wpl, hence of course will
always hit a eventually, so limj_,o, P(a) = 1 in this case (and by taking the limit, limy_,o, P(a),
the same answer is derived). When p = 0.5, we immediately obtain limj_, ., P(a) = 1. So the
interesting case is when p < 0.5 and we get limy_,~ P(a) = (p/q)®.

A little thought reveals that we can equivalently state this problem as computing the tail
P(M > a), a > 0, where M def max{R, : n > 0} is the all-time mazimum of the random
walk; a non-negative random variable: because the simple random walk can only change by +1
at each move, we have {M > a} = {R,, > a, for some n > 1} = {R,, = a, for some n > 1}.
Summarizing:

Proposition 1.3 Let M def max{R,, : n > 0} for the simple random walk starting initially at
the origin (Ry =0).



1. When p < 0.50,
P(M = a) = (p/q)*, a=0;

M has a geometric distribution with “success” probability 1 — (p/q):

P(M =a)=(p/q)*"(1—(p/q)), a=>0.

(Recall that P(M = a) = P(M > k) — P(M > a+1).) In this case, the random walk

drifts down to —oo, wpl, but before doing so reaches the finite mazimum M.

2. If p > 0.50, then P(M > a) =1, a > 0: P(M = o0) = 1; the random walk will, with
probability 1, reach any positive integer a no matter how large.

Proof : Taking the limit in (7) as b — oo yields the result by considering the two cases p < 0.5
or p > 0.5: If p < 0.5, then (¢/p) > 1 and so both (g/p)® and (g/p)*** tend to oo as b — oc.
But before taking the limit, multiply both numerator and denominator by (¢/p)~° = (p/q)®,

yielding
(p/q)* -1
(p/q)® — (a/p)*

Since (p/q)? — 0 as b — oo, the result follows.
If p > 0.5, then (¢/p) < 1 and so both (g/p)? and (g/p)**® tend to 0 as b — oo yielding the
limit in (7) as 1. If p = 0.5, then p(a) =b/(b+a) — 1 as b — oo. [ ]

p(a) =

If p < 0.5, then E(A) < 0, and if p > 0.5, then E(A) > 0; so Proposition 1.3 is consistent
with the fact that any random walk with E(A) < 0 (called the negative drift case) satisfies
lim,, oo R, = —00, wpl, and any random walk with E(A) > 0 ( called the positive drift case)
satisfies lim, o0 Ry = +00, wpl. 2

But furthermore we learn that when p < 0.5, although wpl the chain drifts off to —oo, it
first reaches a finite maximum M before doing so, and this rv M has a geometric distribution.

Finally Proposition 1.3 also offers us a proof that when p = 0.5, the symmetric case, the
random walk will wpl hit any positive value, P(M > a) = 1.

By symmetry, we also obtain analogous results for the minimum, :

Corollary 1.1 Let m def min{ R, : n > 0} for the simple random walk starting initially at the
origin (Ry =0).

1. If p > 0.5, then
P(m < —b) = (¢/p)°, b>0.

In this case, the random walk drifts up to 400, but before doing so drops down to a finite
minimum m < 0. Taking absolute values of m makes it non-negative and so we can
express this result as P(|m| > b) = (q/p)’, b > 0; |m| has a geometric distribution with
“success” probability 1 — (¢/p): P(|m|=k) = (¢/p)*(1 — (¢/p)), k > 0.

2. If p <0.50, then P(m < —b) =1, b > 0: P(m = —o0) = 1; the random walk will, with
probability 1, reach any negative integer a no matter how small.

2From the strong law of large numbers, lim, oo % = E(A), wpl,so R, ®nE(A) - —cc if E(A) <0 and
— +oo if E(A) > 0.



Note that when p < 0.5, P(M =0) =1 — (p/q) > 0. This is because it is possible that the
random walk (with Ry = 0), will never enter the positive axis before drifting off to —oo; with
positive probability it will remain forever < 0: P(R, <0, n > 0) = P(M =0) =1 — (p/q).
Similarly, if p > 0.5, then P(m = 0) = 1 — (¢/p) > 0; with positive probability the random
walk will never enter the negative axis before drifting off to +oc.

Recurrence of the simple symmetric random walk

Combining the results for both M and m in the previous section when p = 0.5, we have

Proposition 1.4 The simple symmetric (p = 0.50) random walk, starting at the origin, will
wpl eventually hit any integer a, positive or megative. In fact it will hit any given integer a
infinitely often, always returning yet again after leaving; it is a recurrent Markov chain.

Proof : The first statement follows directly from Proposition 1.3 and Corollary 1.1; P(M =
o0) = 1 = P(m = —oo) = 1. For the second statement we argue as follows: Using the first
statement, we know that the simple symmetric random walk starting at 0 will hit 1 eventually.
But when it does, we can use the same result to conclude that it will go back and hit 0 eventually
after that, because that is stochastically equivalent to starting at Rg = 0 and waiting for the
chain to hit —1, which also will happen eventually. But then yet again it must hit 1 again
and so on (back and forth infinitely often), all by the same logic. We conclude that the chain
will, over and over again, return to state 0 wpl; it will do so infinitely often; 0 is a recurrent
state for the simple symmetric random walk. Thus (since the chain is irreducible) all states are
recurrent. ]

Let 7 =min{n > 1: R, =0 | Ry = 0}, the so-called return time to state 0. We just argued
that 7 is a proper random variable, that is, P(7 < co) = 1. This means that if the chain starts
in state 0, then, if we wait long enough, we will (wpl) see it return to state 0. What we will
prove later is that F(7) = oco; meaning that on average our wait is infinite. This implies that
the simple symmetric random walk forms a null recurrent Markov chain.



