
Copyright c© 2017 by Karl Sigman

1 Notes on Little’s Law (l = λw)

We consider here a famous and very useful law in queueing theory called Little’s Law, also known
as l = λw, which asserts that the time average number of customers in a queueing system, l,
is equal to the rate at which customers arrive, λ, × the average sojourn time of a customer,
w. For example, in a four-year college, in which (on average) 5000 first-year students enter per
year, the average number of students present at this college is given by 5000 ×4 = 20, 000.1

After presenting l = λw, we offer, in the same spirit, a more general law known as H = λG
that allows one to analyze different queueing quantities of interest besides number in system,
but is based on the same elementary principles and methods. Our presentation is based on
a sample-path analysis and the reader should not assume apriori that any specific stochastic
assumptions are in force. Imagine instead that a sample path is being studied of some stochastic
queueing process.

1.1 Little’s Law

We consider a queueing “system” in which customers arrive from the outside, spend some time in
the system and then depart. Cn denotes the nth customer, and this customer arrives and enters
the system at time tn. The point process {tn : n ≥ 1} is assumed an increasing (to∞) sequence
of non-negative numbers with counting process {N(t) : t ≥ 0}; N(t) = max{n : tn ≤ t} (= 0 if
there are no arrivals by time t), the number of arrivals during (0, t]. Upon entering the system,
Cn spends Wn ≥ 0 units of time inside the system (Cn’s sojourn time) and then departs the
system at time tdn = tn +Wn. Note that the departure times are not necessarily ordered, which
means that we do not require that customers depart in the same order that they arrived (think
of a supermarket). {Nd(t) : t ≥ 0} denotes the counting process for the departure times {tdn};
Nd(t) = the number of customers who have departed by time t; note that Nd(t) ≤ N(t), t ≥ 0.

A customer Cn is in the system at time t if and only if tn ≤ t < tdn = tn +Wn, and we define
L(t), the total number of customers in the system at time t, by

L(t) =
∞∑
n=1

I{tn ≤ t < tdn}(1)

=
∑

{n:tn≤t}
I{Wn > t− tn}(2)

=

N(t)∑
n=1

I{Wn > t− tn},(3)

where I{A} denotes the indicator function for the event A: I{A} = 1 if A occurs; 0 otherwise.
Define (when the limits exist)

λ
def
= lim

t→∞

N(t)

t
, the arrival rate into the system,(4)

1Little’s Law is named after John D.C. Little, who was the first to prove a version of it, in 1961. Little’s
original framework was stochastic however. In 1974 S. Stidham proved a sample-path version which is what we
present here.

1

w
def
= lim

n→∞
1

n

n∑
j=1

Wj , average sojourn time,(5)

l
def
= lim

t→∞

1

t

∫ t

0
L(s)ds, time average number in system.(6)

Theorem 1.1 (l = λw) If both λ and w exist and are finite, then l exists and l = λw.

l = λw is one of the most general and versatile laws in queueing theory, and, if used in clever
ways, can lead to remarkably simple derivations. The trick is to choose what the “system” is,
and what the arrivals to this system are. For example, given a complicated network of queues,
the “system” can be the waiting area of an isolated node of interest, or it can be one (or all
together) of the service areas, etc.

The area under the path of L(s) from 0 to t,
∫ t
0 L(s)ds, is simply the sum of whole and partial

sojourn times (e.g., rectangles of height 1 and lengths Wj). This is because: A customer Cj is in

the system at time t if and only if tj ≤ t < tdj = tj+Wj , so they contribute height 1 to the path of
{L(s)} all throughout their sojourn time Wj yielding an area under {L(s)} of size Wj×1 = Wj .

If the system is empty at time t, then the area is exactly
∫ t
0 L(s)ds = W1+· · ·+WN(t); otherwise

some partial pieces must be considered. The following inequality is easily derived:

∑
{j:tdj≤t}

Wj ≤
∫ t

0
L(s)ds ≤

∑
{j:tj≤t}

Wj =

N(t)∑
j=1

Wj .(7)

To see this: ∫ t

0
L(s)ds =

∫ t

0
{

∑
{j:tj≤s≤t}

I{Wj > s− tj}}ds(8)

=
∑
{j:tj≤t}

∫ t

tj

I{Wj > s− tj}ds(9)

=
∑
{j:tj≤t}

min{Wj , t− tj}.(10)

Since min{Wj , t− tj} ≤Wj , the upper bound in (7) is immediate. For the lower bound∑
{j:tj≤t}

min{Wj , t− tj} =
∑

{j:tj+Wj≤t}
Wj +

∑
{j:tj≤t, tj+Wj>t}

t− tj(11)

≥
∑

{j:tj+Wj≤t}
Wj =

∑
{j:tdj≤t}

Wj .(12)

Dividing the upper bound by t, and re-writing 1/t = (N(t)/t)(1/N(t)), we obtain

(
N(t)

t
)

1

N(t)

N(t)∑
j=1

Wj .

Taking the limit as t−→∞ yields λw, due to the assumed existence of the two limts in (4) and
(5) for λ and w (and their assumed finiteness). Thus the proof of l = λw can be completed

2

by showing that the lower bound in (7) when divided by t converges to λw as well, that is, we
must show that

lim
t→∞

1

t

∑
{j:tdj≤t}

Wj = λw.(13)

Lemma 1.1 If λ and w exists and are finite, then

lim
n→∞

Wn

n
= 0,(14)

lim
n→∞

Wn

tn
= 0.(15)

Proof :

Wn

n
=

1

n

n∑
j=1

Wj −
1

n

n−1∑
j=1

Wj(16)

=
1

n

n∑
j=1

Wj − (
n− 1

n
)(

1

n− 1
)
n−1∑
j=1

Wj(17)

→ w − w = 0,(18)

by (5) and finiteness of w. (14) is thus proved.
From (4) it follows that N(tn)/tn → λ because it is assumed that tn →∞. Assuming that

the arrival times are strictly increasing yields N(tn) = n and thus that

n

tn
=
N(tn)

tn
→ λ.

If the arrival times are not strictly increasing (so-called batch arrivals), then

n

tn
≤ N(tn)

tn
→ λ.

Thus in either case, from (14)

Wn

tn
=

Wn

n

n

tn

≤ Wn

n

N(tn)

tn
→ 0 λ = 0,

because λ is assumed finite. (15) is thus proved.

We are now prepared to finish the proof of l = λw:
Proof :[l = λw] To prove (13) it suffices to prove

lim
t→∞

1

t

∑
{j:tdj≤t}

Wj ≥ λw,(19)

3

because we already established λw as an upper bound.
To this end, choose any ε > 0 no matter how small. From Lemma 1.1 there exists an integer

m such that Wj ≤ εtj , j ≥ m, and thus that tdj = tj +Wj ≤ (1 + ε)tj , j ≥ m.
Thus

{j : tdj ≤ t} ⊃ {j : j ≥ m, (1 + ε)tj ≤ t} = {j : j ≥ m, tj ≤
t

1 + ε
},

from which it follows that ∑
{j:tdj≤t}

Wj ≥
N(t

1+ε
)∑

j=m

Wj .

The rhs of the above can be re-written as

N(t
1+ε

)∑
j=1

Wj −
m−1∑
j=1

Wj .

Dividing the first piece by t and letting t → ∞ yields λw/(1 + ε) by the same argument used
on the upper bound in (7). The second piece is a constant hence when divided by t, tends to
0. Thus we conclude that for any ε > 0,

lim
t→∞

1

t

∑
{j:tdj≤t}

Wj ≥ λw/(1 + ε).

Since ε > 0 was chosen arbitrary, we conclude that (19) holds.

A consequence of the proof of Theorem 1.1 (l = λw) is

Proposition 1.1 If λ exists and is finite, and if Wn/n→ 0, then

lim
t→∞

Nd(t)

t
= λ,

the departure rate exists and equals the arrival rate λ: Departure rate = arrival rate.

Proof : (15) followed from (14) only (a condition that is weaker than assuming w exists and
is finite); hence as in the proof of l = λw, for every ε > 0 there exists an integer m such that
Nd(t) ≥ N(t/(1 + ε))−m, yielding

lim
t→∞

Nd(t)

t
≥ λ.

Since Nd(t) ≤ N(t), limt→∞
Nd(t)

t ≤ limt→∞
N(t)
t = λ; the upper bound holds as well yielding

the result.

1.2 Applications of l = λw

1. Q = λd: If we let the “system” be the queue area (where customers wait before entering
service), then average sojourn time is average delay in queue, d, l becomes average number
waiting in queue, Q, and l = λw takes on the form Q = λd.

4

2. Infinite server queue: For any infinite server queue with arrival rate λ < ∞ and average
service time 1/µ <∞, l exists and l = ρ = λ/µ, because w = 1/µ here: Wn = Sn.

3. Proportion of time the server is busy in a single-server queue: Customers arrive to the
queue at rate λ < ∞ and have average service time 1/µ < ∞. Let λs denote the rate
at which customers enter service. Letting the “system” be the server, and letting Ls(t)
denote the number of customers in service at time t, with time-average ls, we conclude
that ls = λs(1/µ), because Wn = Sn here. It can be proved that λs = λ when ρ < 1 and
λs = µ when ρ ≥ 1. Thus ls = ρ if ρ < 1; ls = 1 if ρ ≥ 1. But since Ls(t) = 1 if the server
is busy at time t, and Ls(t) = 0 if the server is idle at time t, we conclude (from the fact
that ls is a time average) that ls is in fact the long run proportion of time the server is
busy:

The long-run proportion of time the server is busy in a single-server queue
= min{1, ρ}.

5

