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1 Discrete-time Markov chains

1.1 Stochastic processes in discrete time

A stochastic process in discrete time n ∈ = {0, 1, 2, . . .} is a sequence of random variables
(rvs) X0, X1, X2, . . . denoted by X = {Xn : n ≥ 0} (or just X = {Xn}). We refer
to the value Xn as the state of the process at time n, with X0 denoting the initial
state. If the random variables take values in a discrete space such as the integers ZZ =
{. . . ,−2,−1, 0, 1, 2, . . .} (or some subset of them), then the stochastic process is said to
be discrete-valued; we then denote the states by i, j and so on. In general, however, the
collection of possible values that the Xn can take on is called the state space, is denoted
by S and could be, for example, d− dimensional Euclidean space IRd, d ≥ 1, or a subset
of it.

Stochastic processes are meant to model the evolution over time of real phenomena for
which randomness is inherent. For example, Xn could denote the price of a stock n days
from now, the population size of a given species after n years, the amount of bandwidth
in use in a telecommunications network after n hours of operation, or the amount of
money that an insurance risk company has right after it pays out its nth claim. The
insurance risk example illustrates how “time” n need not really be time, but instead
can be a sequential indexing of some kind of events. Other such examples: Xn denotes
the amount of water in a reservoir after the nth rain storm of the year, Xn denotes the
amount of time that the nth arrival to a hospital must wait before being admitted, or Xn

denotes the outcome (heads or tails) of the nth flip of a coin.
The main challenge in the stochastic modeling of something is in choosing a model that

has – on the one hand – enough complexity to capture the complexity of the phenomena
in question, but has – on the other hand – enough structure and simplicity to allow one
to compute things of interest. In the context of our examples given above, we may be
interested in computing P (X30 > 50) for a stock that we bought for X0 = $35 per share,
or computing the probability that the insurance risk company eventually gets ruined
(runs out of money), P (Xn < 0, for some n > 0), or computing the long-run average
waiting time of arrivals to the hospital

lim
N→∞

1

N

N∑
n=1

Xn.

As a very simple example, consider the sequential tossing of a “fair” coin. We let
Xn denote the outcome of the nth toss. We can take the Xn as p = 0.5 Bernoulli rvs,
P (Xn = 0) = P (Xn = 1) = 0.5, with Xn = 1 denoting that the nth flip landed heads, and
Xn = 0 denoting that it landed tails. We also would assume that the sequence of rvs are
independent. This then yields an example of an independent and identically distributed
(iid) sequence of rvs. Such sequences are easy to deal with for they are defined by a
single distribution (in this case Bernoulli), and are independent, hence lend themselves
directly to powerful theorems in probability such as the strong law of large numbers and
the central limit theorem.

For the other examples given above, however, an iid sequence would not capture
enough complexity since we expect some correlations among the rvs Xn. For example,
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in the hospital example, if the waiting time Xn is very large (and arrivals wait “first-in-
first-out”) then we would expect Xn+1 to be very large as well. In the next section we
introduce a stochastic process called a Markov chain which does allow for correlations
and also has enough structure and simplicity to allow for computations to be carried
out. We will also see that Markov chains can be used to model a number of the above
examples.

1.2 Definition of a Markov chain

We shall assume that the state space S = ZZ = {. . . ,−2,−1, 0, 1, 2, . . .}, the integers, or a
proper subset of the integers. Typical examples are S = = {0, 1, 2 . . .}, the non-negative
integers, or S = {0, 1, 2 . . . , a}, or S = {−b, . . . , 0, 1, 2 . . . , a} for some integers a, b > 0,
in which case the state space is finite.

Definition 1.1 A stochastic process {Xn} is called a Markov chain if for all times n ≥ 0
and all states i0, . . . , i, j ∈ S,

P (Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P (Xn+1 = j|Xn = i) (1)
= Pij.

Pij denotes the probability that the chain, whenever in state i, moves next (one unit
of time later) into state j, and is referred to as a one-step transition probability. The
square matrix P = (Pij), i, j ∈ S, is called the one-step transition matrix, and since
when leaving state i the chain must move to one of the states j ∈ S, each row sums to
one (e.g., forms a probability distribution): For each i ∈ S∑

j∈S

Pij = 1.

We are assuming that the transition probabilities do not depend on the time n, and so,
in particular, using n = 0 in (1) yields

Pij = P (X1 = j|X0 = i).

The defining Markov property (1) can be described in words as the future is indepen-
dent of the past given the present state. Letting n be the present time, the future after
time n is {Xn+1, Xn+2, . . .}, the present state is Xn, and the past is {X0, . . . , Xn−1}. If
the value Xn = i is known, then the future evolution of the chain only depends (at most)
on i, in that it is stochastically independent of the past values Xn−1, . . . , X0.

Conditional on the rv Xn, the future sequence of rvs {Xn+1, Xn+2, . . .} is
independent of the past sequence of rvs {X0, . . . , Xn−1}.

The Markov property extends to stochastic processes that have non-discrete state
spaces as well such as R or Rd; they are more generally called Markov Processes.
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Examples of Markov chains

1. Any independent and identically distributed (iid) sequence:

Any iid sequence forms a Markov chain, for if {Xn} is iid, then {Xn+1, Xn+2, . . .}
(the future) is independent of {X0, . . . , Xn−1} (the past) given Xn (the present). In
fact {Xn+1, Xn+2, . . .} is independent of {X0, . . . , Xn} (the past and the present):
For an iid sequence, the future is independent of the past and the present state. Let
p(j) = P (X = j) denote the common probability mass function (pmf) of the Xn.
Then Pij = P (X1 = j|X0 = i) = P (X1 = j) = p(j) because of the independence of
X0 and X1; Pij does not depend on i: Each row of P is the same, namely the pmf
(p(j)).

An iid sequence is a very special kind of Markov chain; whereas a Markov chain’s
future is allowed (but not required) to depend on the present state, an iid sequence’s
future does not depend on the present state at all.

2. Rat in the open maze: Consider a rat in a maze with four cells, indexed 1− 4, and
the outside (freedom), indexed by 0 (that can only be reached via cell 4). The rat
starts initially in a given cell and then takes a move to another cell, continuing to
do so until finally reaching freedom. We assume that at each move (transition) the
rat, independent of the past, is equally likly to choose from among the neighboring
cells (so we are assuming that the rat does not learn from past mistakes). This
then yields a Markov chain, where Xn denotes the cell visited right after the nth

move. S = {0, 1, 2, 3, 4}. For example, whenever the rat is in cell 1, it moves next
(regardless of its past) into cell 2 or 3 with probability 1/2; P1,2 = P1,3 = 1/2.
We assume that when the rat escapes it remains escaped forever after, so we have
P0,0 = 1, P0,i = 0, i ∈ {1, 2, 3, 4}. The transition matrix is given by

P =


1 0 0 0 0
0 0 1/2 1/2 0
0 1/2 0 0 1/2
0 1/2 0 0 1/2

1/3 0 1/3 1/3 0


State 0 here is an example of an absorbing state: Whenever the chain enters state 0,
it remains in that state forever after; P (Xn+1 = 0 | Xn = 0) = P00 = 1. Of interest
is determining the expected number of moves required until the rat reaches freedom
given that the rat starts initially in cell i. Let τi,0 = min{n ≥ 0 : Xn = 0|X0 = i},
the number of moves required to reach freedom when starting in cell i. We wish
to compute E(τi,0). The trick is to condition on X1. For example, let us try to
compute E(τ1,0); we thus assume that X0 = 1. Then X1 = 2 or 3 w.p. 1/2, and
E(τ1,0|X1 = 2) = 1 + E(τ2,0); E(τ1,0|X1 = 3) = 1 + E(τ3,0). The point is that the
rat must take at least 1 step to get out, and if the first step is to cell 2, then by the
Markov property, the remaining number of steps is as if the rat started initially in
cell 2 and we wish to calculate E(τ2,0), the expected number of steps required to
each freedom from cell 2; similarly if X1 = 3. Thus

E(τ1,0) = E(τ1,0|X1 = 2)P (X1 = 2|X0 = 1) + E(τ1,0|X1 = 3)P (X1 = 3|X0 = 1)

= (1 + E(τ2,0))(1/2) + (1 + E(τ3,0))(1/2)

= 1 + E(τ2,0)(1/2) + E(τ3,0)(1/2).
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Using the same trick on each of E(τ2,0),E(τ3,0),E(τ4,0) yields, in the end, four linear
equations with the four unknowns. E(τ40) is a little different since it is only from
cell 4 that the rat can escape;
E(τ40) = 1

3
(1) + 1

3
(1 + E(τ20)) + 1

3
(1 + E(τ30)) = 1 + 1

3
E(τ20) + 1

3
E(τ30). The full

set of equations is

E(τ10) = 1 +
1

2
E(τ20) +

1

2
E(τ30)

E(τ20) = 1 +
1

2
E(τ10) +

1

2
E(τ40)

E(τ30) = 1 +
1

2
E(τ10) +

1

2
E(τ40)

E(τ40) = 1 +
1

3
E(τ20) +

1

3
E(τ30)

Solving (details left to the reader) yields

E(τ10) = 13
E(τ20) = 12
E(τ30) = 12
E(τ40) = 9

3. Random walk: Let {∆n : n ≥ 1} denote any iid sequence (called the increments),
and define

Xn
def
= ∆1 + · · ·+ ∆n, n ≥ 1, X0 = 0. (2)

The Markov property follows since Xn+1 = Xn + ∆n+1, n ≥ 0 which asserts that
the future, given the present state, only depends on the present state Xn and an
independent (of the past) r.v. ∆n+1.

When P (∆ = 1) = p, P (∆ = −1) = 1− p, then the random walk is called a simple
random walk, and can be thought of as representing the step-by-step position of
a randomly moving particle on the integer lattice: Each step the particle either
moves one unit distance to the right or to the left with probabilities p and 1 − p
respectively. When p = 1/2 the process is called the simple symmetric random
walk. Since the chain’s value can only go up or down by 1 at each step, we see
that Pi,i+1 = p, Pi,i−1 = 1− p and all other transition probabilities are zero. When
p > 1 − p (equivalently, p > 1/2), then the random walk is said to have positive
drift because it can be proved via the strong law of large numbers (SLLN) that
Xn → ∞ as n → ∞ wp1.; while when p < 1 − p (equivalently, p < 1/2), then the
random walk is said to have negative drift because it can be proved via the strong
law of large numbers (SLLN) that Xn → −∞ as n→∞ wp1.

Requiring that X0 = 0 is not necessary, we can start with any deterministic state
X0 = i in which case the process is called a random walk started from state i.

4. Random walk with restricted state space: Random walks can also be restricted to
stay within a subset of states, {0, 1, 2, . . .}, or {0, 1, 2, . . . , N} for example. Let
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us consider the simple random walk restricted to stay within S = {0, 1, 2, 3}. We
must specify what happens when either state 0 or 3 is hit. Let’s assume that
P0,0 = 1 = P3,3, meaning that both states 0 and 3 are absorbing. Then the
transition matrix is

P =


1 0 0 0

1− p 0 p 0
0 1− p 0 p
0 0 0 1


The above can easily be extended to S = {0, 1, 2, . . . , N}, with P0,0 = 1 = PN,N .
Of intrinsic interest for this chain is the probability, when X0 = i, 0 < i < N , that
the chain first hits N (the highest value), before hitting 0 (the lowest value). This
is known as the gambler’s ruin problem, because we can imagine a gambler starting
off with i dollars, and then at each gamble either winning a dollar (probability p)
or losing a dollar (probability 1 − p). With Xn denoting the total fortune at the
end of the nth gamble, the gambler’s objective is to reach a fortune of N before
ruin (running out of money).

One can also imagine using a random walk to model asset prices over time; Xn =
the price per share at the end of the nth day for example. Then one can use the
solution to the gambler’s ruin problem to compute such things as the probability
that the price, currently at $50, will ever hit $100 before hitting $25 (which could
be used to analyze barrier options say).

5. Population model: Consider a species in which each individual independent of one
another gives birth to k new individuals with probability pk, k ≥ 0 (this is called
the progeny distribution). Let X0 > 0 denote the initial number of individuals,
and let Y0,1, . . . , Y0,X0 denote the corresponding (iid) number of progeny of each

such individual; P (Y0,m = k) = pk, k ≥ 0. Then X1
def
=

∑X0

m=1 Y0,m denotes
the population size of the first generation. In general, letting Yn,m denote the (iid)
number of progeny of the mth individual from the nth generation yields the recursive
stochastic process

Xn =

Xn−1∑
m=1

Yn−1,m, n ≥ 1,

denoting the population size of the nth generation. This is known as the Galton-
Watson model, and it forms a Markov chain on S = {0, 1, 2, . . .} with 0 as an
absorbing state. For a given initial state and a given progeny distribution, it is of
interest to compute the probability that the population will become extinct (e.g.,
Xn = 0 for some n).

6. Products of iid rvs: The Binomial Lattice Model: If {Yk : k ≥ 1} is an iid sequence
of rvs, then, with X0 the initial value (assumed independent of the sequence {Yk},

Xn = X0Y1 × Y2 × · · ·Yn, n ≥ 0,

defines a Markov chain. This is easily seen since the following recursion holds

Xn+1 = XnYn+1, n ≥ 0,
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which (as in our proof that random walks are Markovian) asserts that the future,
given the present state, only depends on the present state Xn and an independent
(of the past) r.v. Yn+1. We would usually allow the state space to be something
other than the integers, so in general {Xn} forms a Markov process. A famous
example is the Binomial Lattice Model for modeling the price per share of risky
assets (at the end of each day (say)) such as stocks:

Sn = S0Y1 × Y2 × · · ·Yn, n ≥ 0,

where the distribution of the Yi are given by the two-point distribution P (Y = u) =
p, P (Y = d) = 1− p, where u, d are given parameters satisfying 0 < d < 1 + r < u,
with r the current interest rate. The initial price per share is S0 and then its price
either goes “up” to uS0 or “down” to dS0 yielding S1. Each day it is as if a coin
is flipped to determine what happens next, independent of the past. We will study
this model in detail later. The inequality 0 < d < 1 + r < u means that if the
stock goes down, what we really mean is that it does worse than placing money in
the bank at interest rate r, and when it goes up, it does better than placing money
in the bank at interest rate r. For example if you put S0 in the bank today, then
tomorrow you would have S0(1 + r), and after n days you would have S0(1 + r)n.
Alternatively, if you bought a share of the stock at price S0 today, then after n
days it would be worth Sn = S0Y1×Y2×· · ·Yn which is a rv. The bank investment
is risk-free because there is no randomness, but the stock investment is risky since
it has randomness: it might go down many times yielding a bad investment as
compared to the bank investment, or it might go up many times yielding a great
investment.

1.3 Markov chains as recursions

Proposition 1.1 Let f(x, u) be a (real-valued) function of two variables and let {Un :
n ≥ 0} be an iid sequence of random variables. We let U denote a typical such random
variable.

Then the recursion
Xn+1 = f(Xn, Un), n ≥ 0, (3)

defines a Markov chain. (We of course must specify X0, making sure it is chosen in-
dependent of the sequence {Un : n ≥ 0}.) The transition probabilities are given by
Pij = P (f(i, U) = j).

Proof : It is immediate almost by definition: Given Xn = i, Xn+1 = f(i, Un) only depends
on i and some independent (of the past) random variable Un; hence the Markov property
holds.

The transition probabilities are determined via P (Xn+1 = j|Xn = i) = P (f(i, Un) =
j) = P (f(i, U) = j).

It turns out that the converse is true as well:

Proposition 1.2 Every Markov chain can in fact be represented in the form of a recur-
sion

Xn+1 = f(Xn, Un), n ≥ 0,
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for some function f and some iid sequence {Un}. The sequence {Un} can be chosen to
be iid with a uniform distribution over the unit interval (0, 1).

Proof : The proof is a consequence of what is called the inverse transform method from
simulation: For any cumulative distribution function (cdf) F (x) = P (X ≤ x), x ∈ IR,
we can construct a rv X distributed as F by first taking a uniform rv U over (0, 1),

and then defining X
def
= F−1(U), where F−1(y) is the generalized inverse function of

F defined as F−1(y) = min{x : F (x) ≥ y}, y ∈ [0, 1]. (If F is continuous, then this
reduces to the inverse function.) To use this: Consider a MC with transition matrix
P = (Pij). For each state i ∈ S, define Fi(x) = P (X1 ≤ x | X0 = i), x ∈ IR, the
cdf of the ith row of P . Let F−1i (y), y ∈ [0, 1] denote its generalized inverse. Define
f(i, u) = F−1i (u), i ∈ S, u ∈ [0, 1]. Now take {Un} as iid with a uniform distribution
over the unit interval (0, 1). Applying Proposition 1.1 to this f with our iid uniforms
{Un} yields that the process {Xn} defined by (3) is a MC. The inverse transform method
ensures that it has the same transition matrix P as the original MC: For each i, the
random variable F−1i (U) has the same distribution as the ith row of P .

1.3.1 Recursive Examples

Here we illustrate Proposition 1.2 with some examples.

1. Random walk: The random walk with iid increments {∆n : n ≥ 1}, defined in
(2) was already seen to be in recusive form, Xn+1 = Xn + ∆n+1. Letting Un =
∆n+1, n ≥ 0, f(x, u) = x + u is the desired function. Thus Pij = P (i + ∆ = j) =
P (∆ = j − i).

2. Max and Min of iid sequences: For {Yn : n ≥ 0} any iid sequence, both Mn =
max{Y0, . . . , Yn} and mn = min{Y0, . . . , Yn} are Markov chains: Un = Yn+1 and
f(x, u) = max(x, u), f(x, u) = min(x, u) respectively yields the desired recursive
representation.

We now compute the transition probabilities for Mn above. Suppose that j > i.
Then Pij = P (Mn+1 = j|Mn = i) = P (max(i, Yn+1) = j) = P (Y = j), (where Y
denotes a typical Yn). Note that if j < i, then P (Mn+1 = j|Mn = i) = 0 since the
maximum can never decrease in value.

Finally, if j = i, then P (Mn+1 = i|Mn = i) = P (Y ≤ i); the maximum remains
constant at its current value i if the next Y value is less than or equal to i. A
similar analysis yields the transition probabilities for mn.

3. The Binomial Lattice Model (BLM): As we saw when defining the BLM, Sn+1 =
SnYn+1 and so letting Un = Yn+1, n ≥ 0, f(x, u) = xu is the desired function.

1.4 Chapman-Kolmogorov equations and n-step transition prob-
abilities

Given a Markov chain {Xn} with transition matrix P, it is of interest to consider the

analogous n-step transition matrix P(n) = (pnij), n ≥ 1, where P n
ij

def
= P (Xm+n = j|Xm =

i), a n-step transition probability, denotes the probability that n time units later the chain
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will be in state j given it is now (at time m) in state i. Since transition probabilities do
not depend on the time m ≥ 0 at which the initial condition is chosen, we can without
loss of generality choose m = 0 and write P n

ij = P (Xn = j|X0 = i). Also note that

P (1) = P .
For example, for the rat in the maze chain (Example 1), P 2

11 = P (X2 = 1|X0 = 1)
denotes the probability that the rat, starting initially in cell 1, is back in cell 1 two
steps later. Clearly, this can happen only if the rat goes to cell 2 then back to cell 1,
or goes to cell 3 then back to cell 1, yielding P 2

11 = P (X1 = 2, X2 = 1|X0 = 1) +
P (X1 = 3, X2 = 1|X0 = 1)= 1/4 + 1/4 = 1/2. It turns out that in general, computing
P(n) is accomplished via matrix multiplication:

Proposition 1.3
P(n) = Pn = P×P× · · · ×P, n ≥ 1;

P(n) is equal to P multiplied by itself n times.

For example, taking the P in Example 1 for the rat in the maze chain and squaring
yields

P2 =


1 0 0 0 0
0 1/2 0 0 1/2

1/6 0 5/12 5/12 0
1/6 0 5/12 5/12 0
1/3 1/3 0 0 1/3

 ;

in partucular P 2
11 = 1/2 as was derived by direct calculation before.

A proof of Proposition 1.3 is based on the Chapman-Kolmogorov equations:

Proposition 1.4 (Chapman-Kolmogorov) For any n ≥ 0, m ≥ 0, i ∈ S, j ∈ S,

P n+m
i,j =

∑
k∈S

P n
i,kP

m
k,j.

The above is derived by first considering what state the chain is in at time n: Given
X0 = i, P n

i,k = P (Xn = k|X0 = i) is the probability that the state at time n is k. But
then, given Xn = k, the future after time n is independent of the past, so the probability
that the chain m time units later (at time n + m) will be in state j is Pm

k,j, yielding the
product, P n

i,kP
m
k,j = P (Xn = k,Xn+m = j|X0 = i). Summing up over all k yields the

result. A rigorous proof of Proposition 1.4 is given next:
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Proof :

P n+m
i,j = P (Xn+m = j|X0 = i)

=
∑
k∈S

P (Xn+m = j,Xn = k|X0 = i)

=
∑
k∈S

P (Xn+m = j,Xn = k,X0 = i)

P (X0 = i)

=
∑
k∈S

P (Xn+m = j|Xn = k,X0 = i)P (Xn = k,X0 = i)

P (X0 = i)

=
∑
k∈S

P (Xn = k,X0 = i)Pm
k,j

P (X0 = i)

=
∑
k∈S

P n
i,kP

m
k,j,

where, in the second to last equality we used the Markov property to conclude that
P (Xn+m = j|Xn = k,X0 = i) = P (Xn+m = j|Xn = k) = P (Xm = j|X0 = k) = Pm

k,j.

Proof :[Proposition 1.3] When n = m = 1 Chapman-Kolmogorov yields

P 2
i,j =

∑
k∈S

Pi,kPk,j, i ∈ S, j ∈ S,

which in matrix form asserts that P(2) = P2. Similarly when n = 1 and m = 2 Chapman-
Kolmogorov yields

P 3
i,j =

∑
k∈S

Pi,kP
2
k,j,

which in matrix form asserts that P(3) = P × P(2). But since P(2) = P2, we conclude
that P × P(2) = P × P2 = P3. The proof is completed by induction: Suppose that
P(l) = Pl for some l ≥ 2. Then Chapman-Kolmogorov with n = 1 and m = l yields
P(l+1) = P×P(l) which by the induction hypothesis is the same as P×Pl = Pl+1.
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