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1 Some basic renewal theory: The Renewal Reward Theorem

Here, we will present some basic results in renewal theory such as the elementary renewal
theorem, and then the very useful Renewal Reward Theorem (RRT). As we shall see, there are
many applications of the RRT including understanding the famous inspection paradox.

1.1 Renewal process

Recall that a random point process ψ = {tn} for which the (non-negative) interarrival times
Xn = tn − tn−1, n ≥ 1, form an i.i.d. sequence is called a renewal process. tn is then called
the nth renewal epoch and F (x) = P (X ≤ x), x ≥ 0, denotes the common interarrival time
distribution. tn = X1 + · · · + Xn, and N(t) = max{n : tn ≤ t} is the counting process. To
avoid trivialities we always assume that P (X > 0) > 0, hence ensuring that wp1, tn → ∞, as

n→∞, and N(t)→∞ as t→∞. The rate of the renewal process is defined as λ
def
= 1/E(X)

which is justified by

Theorem 1.1 (Elementary Renewal Theorem (ERT)) For a renewal process,

lim
t→∞

N(t)

t
= λ w.p.1.

and

lim
t→∞

E(N(t))

t
= λ.

Proof : (First part only) Since tn = X1 + · · ·+Xn, n ≥ 1, and

tN(t) ≤ t < tN(t)+1, (1)

we have tN(t) =
∑N(t)

j=1 Xj , and tN(t)+1 =
∑N(t)+1

j=1 Xj , yielding after division of (1) by N(t):

1

N(t)

N(t)∑
j=1

Xj ≤
t

N(t)
≤ 1

N(t)

N(t)+1∑
j=1

Xj .

By the Strong Law of Large Numbers (SLLN), both the left and the right pieces converge wp1
to E(X) as t−→∞. Since t/N(t) is sandwiched between the two, it also converges to E(X),
yielding the first result after taking reciprocals.

Remark 1 In the elementary renewal theorem, the case when λ = 0 (e.g., E(X) = ∞) is
allowed, in which case the renewal process is said to be null recurrent. In the case when
0 < λ <∞ (e.g., 0 < E(X) <∞ ) the renewal process is said to be positive recurrent.
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1.2 The Renewal Reward Theorem

Consider a NYC taxi driver who drops off passengers at times tn, n ≥ 1 forming a renewal

process with iid interarrival times Xn = tn − tn−1, n ≥ 1 (t0
def
= 0). Suppose that Rj denotes

the cost to the jth passenger for their ride. We view this as a reward for the driver. (We are
assuming a negligeable amount of time is spent by the driver to find new passengers: as soon
as one passenger departs, the next one is found immediately.) Our objective is to compute the
long run rate at which the driver earns money from the passengers (amount of money per unit
time). Letting

R(t) =

N(t)∑
j=1

Rj

denote the total amount collected by time t, where N(t) is the counting process for the renewal
process, we wish to compute

lim
t→∞

R(t)

t
= the long-run rate that money is earned. (2)

We suppose that the pairs of rvs (Xj , Rj) are iid which means that Rj is allowed to depend on
the length Xj (the length of the ride) but not on any other lengths (or other Rj). Since we can
re-write R(t)/t as

N(t)

t
× 1

N(t)

N(t)∑
j=1

Rj ,

the Elementary Renewal Theorem (ERT) (N(t)/t → λ = (E(X))−1) and the Strong Law of
Large Numbers (SLLN)( 1

n

∑n
j=1Rj → E(R)) then give (2) as

lim
t→∞

R(t)

t
=
E(R)

E(X)
w.p.1., (3)

where (X,R) denotes a typical “cycle” (Xj , Rj).

In words: the rate at which rewards are earned is equal to the expected reward over
a “cycle” divided by an expected “cycle length”. In terms of taxi rides this means
that the rate at which money is earned is equal to the expected cost per taxi ride
divided by the expected length of a taxi ride; an intuitively clear result.

For (3) to hold there is no need for rewards to be collected at the end of a cycle; they
could be collected at the beginning or in the middle or continuously throughout,
but the total amount collected during cycle length Xj is Rj , and it is earned in the
time interval [tj−1, tj ]. Moreover, “rewards” need not be non-negative (they could
be “costs” incurred as opposed to rewards). In this more general case, because t is
in the middle of a cycle tN(t) ≤ t < tN(t)+1, we have

R(t) =

N(t)∑
j=1

Rj + l(t),
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where l(t) is a partial reward, that is, that part of the reward already cumulated
in the current cycle (e.g., during [tN(t), t]), and under conditions in the theorem
below, asymptotically is negligible; l(t)/t→ 0 as t→∞. A precise statement of the
theorem follows:

Theorem 1.2 (Renewal Reward Theorem) For a positive recurrent renewal pro-
cess in which a reward Rj is earned during cycle length Xj and such that {(Xj , Rj) :
j ≥ 1} is iid with E|Rj | <∞, the long run rate at which rewards are earned is given
by

lim
t→∞

R(t)

t
=
E(R)

E(X)
= λE(R) w.p.1., (4)

where (X,R) denotes a typical “cycle” (Xj , Rj); λ = {E(X)}−1 is the arrival rate
for the renewal process. In words: the rate at which rewards are earned is equal to
the expected reward over a “cycle” divided by an expected “cycle length”. Also note
that since λ is the rate at which renewals occur, and each renewal yields a reward on
average in the amount E(R), the formula makes good sense as the rate, from basic
principles.

Moreover,

lim
t→∞

E(R(t))

t
=
E(R)

E(X)
. (5)

Proof : ((4) only) When rewards are non-negative the proof of (4) is based on a
“sandwiching” argument in which the two extreme cases (collect at the end of a cycle
vs collect at the beginning of a cycle) serve as lower and upper bound respectively:

1

t

N(t)∑
j=1

Rj ≤
R(t)

t
≤ 1

t

N(t)+1∑
j=1

Rj .

Both these bounds converge to E(R)/E(X) yielding the result. In the case when Rj

is not non-negative, one can break Rj into positive and negative parts to complete
the proof; Rj = R+

j −R
−
j with R+

j = max{0, Rj} ≥ 0 and R−j = −min{0, Rj} ≥ 0.

Then R(t) = R+(t)−R−(t), where

R+(t) =

N(t)∑
j=1

R+
j , R

−(t) =

N(t)∑
j=1

R−j .

The condition E|Rj | < ∞ ensures that both E(R+
j ) < ∞ and E(R−j ) < ∞ so

that the non-negative proof goes through for each of R+(t) and R−(t): R+(t)/t→
E(R+)/E(X) and R−(t)/t→ E(R−)/E(X). Thus, since E(R) = E(R+)−E(R−),
the result follows, R(t)/t→ E(R)/E(X).
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1.3 Examples

It is apparent that for any renewal reward problem, we need only compute the
reward over the first cycle length X1, and get R1. This is the easiest cycle to
compute over, thus we let R = R1 and X = X1 as our “typical” cycle.

1. Car replacement problem with “T” policy: Suppose new cars cost $C1 and
have i.i.d. lifetimes {Vj : j ≥ 1} with a continuous distribution with cdf
F (x) = P (V ≤ x) (and tail F (x) = 1−F (x)). A car that dies when we own it
costs $C2 to tow away (to the dump), then we buy a new one. Suppose that at
time 0 we have a new car and then for fixed time T > 0 we decide to use the
following “T” policy concerning when to buy a new car from then onwards: If
our car is still working after T time units, then we give it away to a friend for
free and buy a new one. If however, the car dies before T time units, we must
pay the tow charge $C2 and buy a new one. What is our long run cost when
using such a policy?

Letting the consecutive times at which we buy a new car serve as the beginning
of a cycle, we conclude that we have a renewal process with interarrival times
Xj = min{Vj , T}, and that Rj = C1 + C2I{Vj < T} is the cost over the jth

cycle. Consequently, from the Renewal Reward Theorem, our rate of cost is
E(R)/E(X).

E(R) is immediately computed as

E(R) = C1 + C2P (V < T ) = C1 + C2F (T ),

where P (V < T ) = P (V ≤ T ) = F (T ) because F is assumed a continu-
ous distribution. To compute E(X) we integrate the tail of X = min{V, T}:
P (X > x) = P (V > x, T > x) = P (V > x)I{x < T} because T is a constant.
Thus

E(X) =

∫ ∞
0

P (X > x)dx =

∫ T

0
P (V > x)dx =

∫ T

0
F (x)dx.

Finally
E(R)

E(X)
= g(T ) =

C1 + C2F (T )∫ T
0 F (x)dx

. (6)

Of intrinsic interest is now finding the “optimal” value of T to use, the one
that minimizes our cost. Clearly, on the one hand, by choosing a T too large,
the car will essentially always break down therbye always costing you the C2

in addition to the C1. On the other hand, by choosing a T too small, you
will essentially keep giving away good cars and have to buy a new one every
T time units; incurring C1 at a fast rate. Between those two extremes should
be a moderate value for T that is best. The general method of determing such
a value is to differentiate the above function g(T ) with respect to T , set equal
to 0 and solve. The solution of course depends upon the specific distribution
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F in use. Several examples are given as homework exercises. Finally note that
E(X) can also be computed by using the density function f(x) of V :

E(X) = E(min{V, T}) =

∫ T

0
xf(x)dx+ TF (T ),

since we can break up

E(min{V, T}) = E(V I{V ≤ T}) + E(TI{V > T}).

2. Taxi driver revisited: Suppose for the taxi driver problem we incorporate the
fact that the driver must spend time finding new passengers. Let Yj denote
the amount of time spent finding a jth passenger after the (j − 1)th passenger
departs. Let Lj denote the length of the jth passenger’s ride, Rj the cost of
this ride. We shall assume that {Yj} are i.i.d. and independent of all else (we
could more generally only assume that (Lj , Yj , Rj) are i.i.d. vectors.) Then
cycle lengths are now given by Xj = Lj + Yj and the long run rate at which
the driver earns money is given by

E(R)

E(L) + E(Y )
.

3. Train dispatching problem: Suppose that passengers arrive to a train platform
according to a renewal process at rate µ. As soon as N passengers arrive,
a train departs with all N on board. This process continues over and over.
Suppose further that the train company incurs a cost at the constant rate of
$nc per unit time whenever exactly n passengers are waiting, and also incurred
a fixed cost of $K each time a train departs. What is the long-run cost rate
for the train company?

We view the departure of trains as the renewal epochs for our “cycles”. Letting
sn denote the passenger arrival times and {Tn : n ≥ 1} denote the interarrival
times of passengers, Tn = sn − sn−1, assumed iid with mean E(T ) = 1/µ, our
first “cycle length” is given by

X = T1 + · · ·+ TN ,

and has mean E(X) = NE(T ) = N/µ. The cost over the first cycle is given
by

R = (0)cT1 + cT2 + . . .+ (N − 1)cTN +K,

and hence

E(R) = cE(T )(1 + 2 + · · ·+N − 1) = cE(T )N(N − 1)/2 +K.

Finally,

E(R)

E(X)
= g(N) =

cE(T )N(N − 1)/2 +K

NE(T )
=
c(N − 1)

2
+
Kµ

N
.
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Now suppose the train company wants to minimize cost by choosing the value
of N that does so. Then we need to solve g′(N) = 0.

To this end, we get

g′(N) = c/2− Kµ

N2
= 0,

or

N =

√
2Kµ

c
.

N is indeed a minimum (as opposed to a maximum) since the second derivative
is always positive: g′′(N) = 2KµN−3 > 0. If the solution N is not an integer,
then one should choose the 2 closest integers surrounding N , N1 < N <
N2, and check which one yields the lower cost, g(N1) or g(N2) and that is
the answer. If g(N1) = g(N2), then either can be used as the answer. As
an example 7.13, from S. Ross, Introduction to Probability Models, Academic
Press, if we consider K = 6, µ = 1, c = 2, then N =

√
6 ≈ 2.45, but as one

can check g(2) = g(3) = 4.

1.4 Applications to forward recurrence time (excess), age, and the
inspection paradox

Consider a renewal point process {tn : n ≥ 1} with iid interarrival times Xn =
tn − tn−1, n ≥ 1. Since tN(t) ≤ t < tN(t)+1, we define the forward recurrence time
as the time until the next point strictly after time t:

A(t)
def
= tN(t)+1 − t, t ≥ 0. (7)

A(t) is also called the excess at time t, or remaining lifetime. If tn−1 ≤ t < tn, then
A(t) = tn − t ≤ Xn.

If the arrival times {tn} denote the times at which subways arrive to a platform,
then A(t) is the amount of time you must wait for the next subway if you arrive at
the platform at time t. Similarly, if the Xj denote iid lifetimes of lightbulbs, then
A(t) denotes the remaining lifetime of the bulb you find burning at time t. If {tn}
is a Poisson process at rate λ, then by the memoryless property of the exponential
distribution, we know that A(t) ∼ exp(λ), t ≥ 0. But for a general renewal process,
the distribution of A(t) is complicated and depends on the time t.

But by taking the limit as t−→∞, and using the renewal reward theorem, we can
derive a nice formula for average waiting time:

Proposition 1.1

lim
t→∞

1

t

∫ t

0
A(s)ds =

E(X2)

2E(X)
w.p.1.

Proof : Note that we can view the iid Xj as cycle lengths, and r(t) = A(t) as the
(continuous) rate at time t at which money is being earned. For then the total
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reward over the first cycle is

R = R1 =

∫ X1

0
A(s)ds =

∫ X1

0
(X1 − s)ds =

∫ X1

0
sds = X2/2;

the graph of A(t) over the first cycle is a right triangle with sides X1. In general
Rj =

∫ tj
tj−1

A(s)ds = X2
j /2, j ≥ 1, and indeed the {(Xj , Rj)} are iid vectors as is

required for using the renewal reward theorem. Thus

lim
t→∞

1

t

∫ t

0
A(s)ds =

E(R)

E(X)
=
E(X2)

2E(X)
w.p.1.

This illustrates the point that when using the renewal reward theorem, we can
collect “rewards” in any way we desire within each cycle; it is only the total amount
Rj over the cycle length Xj that matters in the end.

Note how, when the point process is Poisson, E(X2) = 2/λ2 and E(X) = 1/λ and
hence (as should be): E(X2)/2E(X) = 1/λ = E(X). But in general, they are
very different, and in fact if E(X2) = ∞ such as in the case when (for example)
P (X > x) = 1/x3, x ≥ 1, then your average waiting time is infinite!

Age

Similar to remaining lifetime (excess) is age (backwards recurrence time):

B(t)
def
= t− tN(t) t ≥ 0. (8)

B(t) denotes the amount of time since the last subway arrived before time t or in
the context of the lightbulbs, how long the bulb found burning at time t has already
been burning (its age). If tn−1 ≤ t < tn, then B(t) = t− tn−1 ≤ Xn.

The graph of B(t) over a cycle Xj is also a right triangle with sides Xj but the
mirror image of the one for A(t). Thus its area is still Rj = X2

j /2 and the very
same renewal reward argument as for A(t) leads to

lim
t→∞

1

t

∫ t

0
B(s)ds =

E(R)

E(X)
=
E(X2)

2E(X)
w.p.1.

Total lifetime: The inspection paradox

S(t) = B(t) + A(t) = tN(t)+1 − tN(t) denotes the length of the interarrival time
covering time t. It is sometimes also called the spread. If tj−1 ≤ t < tj , then
S(t) = Xj . In the context of light bulbs, it represents the total lifetime of the bulb
found burning at time t. Defining the reward rate as r(t) = S(t) we note that over
Xj its graph is simply a square with sides Xj and hence area X2

j :
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Rj =
∫ tj
tj−1

S(s)ds =
∫ tj
tj−1

Xjds = Xj

∫ tj
tj−1

ds = X2
j .

Thus Rj = X2
j and once again the renewal reward theorem yields

lim
t→∞

1

t

∫ t

0
S(s)ds =

E(R)

E(X)
=
E(X2)

E(X)
w.p.1.

Since σ2 = E|X−E(X)|2 ≥ 0 and σ2 = E(X2)−E2(X), we conclude that E(X2) ≥
E2(X). Thus

E(X2)

E(X)
≥ E(X).

This says that the average lifetime of the bulb you find burning (at some time t in
the infinite future) is larger than the original mean lifetime E(X)! This is what is
called the Inspection Paradox.

Intuition: Your observation (inspection) time t is more likely to land in a larger inter-
val (interarrival time) than usual because larger intervals take up more of the time
line. For example, consider the sequence of interarrival times {1, 2, 1, 2, 1, 2, . . .}.
You will over time, land in a 2 with probability 2/3 and a 1 with only probability
1/3 because the 2s take up 2/3 of the time line. As a more extreme case, consider
lightbulbs with iid lifetimes distributed as P (X = 0) = 0.99, P (X = 1) = 0.01.
This means that 99% of the bulbs are defective and blow out immediately. But
you would always observe a 1 in progress, because 0 takes up no time. Hence
limt→∞

1
t

∫ t
0 S(s)ds = 1, while E(X) = (0)(0.99) + (1)(0.01) = 0.01. The difference

is huge.

To use the formula E(X2)/E(X) on this example: Note that X2 = X since X is
either 0 or 1, hence E(X2) = E(X) yielding E(X2)/E(X) = E(X)/E(X) = 1.

Even for a Poisson process at rate λ, the inspection paradox yields a large difference:
E(X2)/E(X) = 2/λ = 2E(X); we get an interval that is twice as large (on average)
than the original E(X). In fact, it can be proved that as t → ∞, S(t) for a
Poisson process at rate λ converges in distribution to that of X1 + X2, the sum of
2 independent exponentials a rate λ; an Erlang(2, λ) distribution.

The inspection paradox has an even stronger version which we state (without proof)
here:

Proposition 1.2 For a renewal process: For every fixed t > 0,

P (S(t) > x) ≥ P (X > x), x ≥ 0.

We say that S(t) is stochastically larger than X, for every t > 0. Recalling that
we can integrate a tail to obtain an expected value then yields, in particular, that
E(S(t)) ≥ E(X), t > 0.

What the above Proposition says is that no matter what time (finite) you choose
to inspect, you always land in an interval that is stochastically larger than a typical
X.
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