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1 Expected number of visits of a finite state Markov chain to
a transient state

When a Markov chain is not positive recurrent, hence does not have a limiting stationary
distribution π, there are still other very important and interesting things one may wish to
consider computing. For example, in the rat in the open maze, we computed the expected
number of moves until the rat escapes. In the Gambler’s Ruin Problem, we considered the
probability that the game ends in no more than (say) 7 gambles, and so on.

Here we consider another such important quantity for finite state chains that have transient
states: The expected number of visits of the chain to a transient state.

Consider a finite state space (N=|S| < ∞) MC with 1 ≤ b < N transient states, labeled
1, . . . , b. (Without loss of generality we can always assume the b states are ordered this way
via relabeling the states.) Let T = {1, . . . , b}, denote the set of transient states and let PT =
(Pi,j), i, j ∈ T , denote the transition matrix for only these transient states, a b×b matrix. (But
not a stochastic matrix; rows need not sum to 1 now!)

Recall that a state i is called transient if fi < 1, where fi denotes the probability the chain
will ever return to state i in the future given that X0 = i. Thus such a state is visited only a
finite (but random) number of times and then never again. Letting Ni denote the total number
of times that a transient state i is visited given that X0 = i, we know that Ni has a geometric
distribution:

P (Ni = k) = fk−1i (1− fi), k ≥ 1,

where we are counting the initial visit from X0 = i as the first visit. Thus E(Ni) = 1/(1− fi)
is the expected number of visits to transient state i given that X0 = i. Of course, we would
need to know the value fi in order to explicitly compute E(Ni). We will learn how to do that
and more so in what follows.

(The other states are called recurrent; fi = 1; they are visited over and over, always returned
to again, an infinite number of times.)

Let Si,j = the expected number of times (over all time) that the chain visits state j ∈ T
given X0 = i ∈ T .

Si,j = E{
∞∑
n=0

I{Xn = j|X0 = i}} =
∞∑
n=0

Pn
ij ,

S = (Si,j) is a b× b matrix 1. Note that Si,i ≥ 1 because the initial visit X0 = i is counted, and
Si,i = E(Ni) as discussed above.

Proposition 1.1 Let I denote the b×b identity matrix. Then S = I+PTS yielding the solution

S = (I − PT )−1. (1)

1Observe that it is not possible for the chain to make a transition from a recurrent state to a transient state
for otherwise (since the recurrent state is visited infinitely often), the transient state would be visited infinitely
often too contradicting that it is transient. Thus, once the chain makes a transition from a transient state to a
recurrent state it never returns back to the set T . As a result, we only must consider transitions from states in
T to states in T ; PT .
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Proof : Suppose that X0 = i ∈ T . We first consider the case j = i. Since X0 = i we already
have one such (the initial) visit to i. Thus

Si,i = 1 +
∑
k∈T

Pi,kSk,i,

by conditioning on the first state visited, X1 = k ∈ S, where we are using the Markov property
as soon as the chain visits the state k to add on the additional visits to i starting initially in
state k (e.g., Sk,i).

For the case j 6= i we do not have any initial visit to state j, hence

Si,j =
∑
k∈T

Pi,kSk,j .

We combine the two cases in matrix form and obtain the result S = I + PTS, yielding
(I−PT )S = I. But since in general, for any two square matrices, A, B it holds that det(AB) =
det(A)det(B) (multiplicative property of determinants), we conclude (via letting A = I − PT

and B = S; det(AB) = det(I) = 1) that both S and I − PT have non-zero determinant, hence
are invertible; we thus can write the solution S = (I − PT )−1.

As an example, consider the rat in the open maze; for then T = {1, 2, 3, 4}, 0 is not included
since it is recurrent, and

PT =


0 1/2 1/2 0

1/2 0 0 1/2
1/2 0 0 1/2
0 1/3 1/3 0

 .

Thus,

I − PT =


1 −1/2 −1/2 0
−1/2 1 0 −1/2
−1/2 0 1 −1/2

0 −1/3 −1/3 1

 .

Thus,

S = (I − PT )−1 =


4 3 3 3
3 3.5 2.5 3
3 2.5 3.5 3
2 2 2 3


S1,4 = 3, for example, is the expected number of times that the rat visits room 4 before

escaping, given that it initially started off in room 1.
As another interesting example, we can consider the Gambler’s Ruin Problem, with state

space S = {0, 1, 2, , . . . , N}; T = {1, 2, . . . , N − 1}, states 0 and N are not included since they
are recurrent. By computing S = (I − PT )−1, in the case when (say) N = 10, we could, for
example find the expected number of gambles (before the game ends) that the gambler’s total
is exactly $6 given that this gambler starts with $2; S2,6.

Remark 1 Note that we can use the matrix S to re-compute the expected number of moves
until the rate escapes in the open maze problem: For example, S1,1 + S1,2 + S1,3 + S1,4 = 13 =
E(T1,0) = the expected number of moves until the rat escapes, given the rat starts in Room 1.
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1.1 Probability of ever visiting state j given the chain is initially in state
i 6= j. state

For transient states i, j ∈ T , with i 6= j, let fi,j denote the probability that the Markov chain
ever visits state j given X0 = i. (For example, the probability that the rat, starting in Room
2 will ever visit Room 3 before escaping.) It is immediate that

Si,j = fi,jSj,j + (1− fi,j)0 = fi,jSj,j ,

because if the chain never visits j (probability 1− fi,j), then the total number of visits to j is
zero, whereas if the chain does visit j (probability fi,j), then by the Markov property, the chain
is as if initially in state j and we want Sj,j (which includes the first visit by definition).

We thus derive

fi,j =
Si,j
Sj,j

. (2)

For the rat in the open maze, we know that fi,4 = 1 for i = 1, 2, 3 because the rat must
visit Room 4 inorder to escape, but the other fi,j are not 1. For example f2,3 = S2,3/S3,3 =
2.5/3.5 = 5/7 < 1; the rat might never visit Room 3; could for example go 2→ 4→ 0.
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