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1 Review of the exponential distribution

The exponential probability distribution has many nice/special properties; we review them here.
They are fundamental in the use of the famous Poisson point process, and more generally in
continuous-time Markov chains; both topics that we will study soon.

1.1 Basic definition

A r.v. X has an exponential distribution at rate λ > 0, denoted by X ∼ exp(λ), if X is non-
negative with c.d.f. F (x) = P (X ≤ x), x ≥ 0, tail F (x) = P (X > x) = 1 − F (x) and density
f(x) = F ′(x) given by

F (x) = 1− e−λx, x ≥ 0,

F (x) = e−λx, x ≥ 0,

f(x) = λe−λx, x ≥ 0.

It is easily seen that

E(X) =
1

λ

E(X2) =
2

λ2

V ar(X) =
1

λ2
.

For example,

E(X) =

∫ ∞
0

xf(x)dx

=

∫ ∞
0

xλe−λxdx =
1

λ
. Alternatively:

E(X) =

∫ ∞
0

F (x)dx (integrating the tail method)

=

∫ ∞
0

e−λxdx

=
1

λ
.

If the rate is λ, then the mean is 1/λ.
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Similarly,

E(X2) =

∫ ∞
0

x2f(x)dx

=

∫ ∞
0

x2λe−λxdx =
2

λ2
. Alternatively:

E(X2) =

∫ ∞
0

2xF (x)dx (integrating the tail method)

=

∫ ∞
0

e−λxdx

=
2

λ2
.

Hence V ar(X) = E(X2)− E2(X) = 1/λ2.

The most important property of the exponential distribution is the memoryless property,

P (X − y > x|X > y) = P (X > x), for all x ≥ 0 and y ≥ 0,

which can also be written as

P (X > x+ y) = P (X > x)P (X > y), for all x ≥ 0 and y ≥ 0.

The memoryless property asserts that the residual (remaining) lifetime of X given that its age
is at least y, namely X − y, has the same distribution as X originally did, and is independent
of its age: X forgets its age or past and starts all over again. If X denotes the lifetime of a
light bulb, then this property implies that if you find this bulb burning sometime in the future,
then its remaining lifetime is the same as a new bulb and is independent of its age. So you
could take the bulb and sell it as if it were brand new. Even if you knew, for example, that the
bulb had already burned for 3 years, this would be so. We say that X (or its distribution) is
memoryless.

The fact that if X ∼ exp(λ), then it is memoryless is immediate from the basic definition
of conditional probability, P (A | B) = P (AB)/P (B), where below, A = {X > x + y} and
B = {X > y}, where we also observe that P (X − y > x,X > y) = P (X > x + y,X > x) =
P (X > x+ y):

P (X − y > x|X > y) =
P (X > x+ y)

P (X > y)

=
e−λ(x+y)

e−λy

= e−λx

= P (X > x).

Note that equivalently we can write that as

P (X > x+ y) = P (X > x)P (X > y), x ≥ 0, y ≥ 0.

The converse is also true:
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Proposition 1.1 A non-negative r.v. X (which is not identically 0) has the memoryless prop-
erty if and only if it has an exponential distribution.

Proof : One direction was proved above already, so we need only prove the other. Letting
g(x) = P (X > x), we have g(x + y) = g(x)g(y), x ≥ 0, y ≥ 0, and we proceed to show that
such a function must be of the form g(x) = e−λx for some λ. To this end, observe that by using
x = y = 1 it follows that g(2) = g(1)g(1) and more generally g(n) = g(1)n, n ≥ 1. Noting that

1 =
1

m
+

1

m
+ · · ·+ 1

m
(m summands),

we see that g(1) = g(1/m)m yielding g(1/m) = g(1)1/m.
Thus for any rational number r = n/m,

r =
n

m
=

1

m
+

1

m
+ · · ·+ 1

m
(n summands),

yielding g(r) = g(1/m)n = g(1)n/m = g(1)r. Finally, we can, for any irrational x > 0, choose a
decreasing sequence of rational numbers, r1 > r2 > · · · , such that rn → x, as n→∞. Since g
is the tail of a c.d.f., it is right-continuous in x and hence

g(x) = lim
n→∞

g(rn)

= lim
n→∞

g(1)rn

= g(1)x.

We conclude that g(x) = g(1)x, x ≥ 0, and since g(x) = P (X > x) → 0 as x → ∞, we
conclude that 0 ≤ g(1) < 1. But g(1) > 0, for otherwise g(x) = P (X > x) = 0, x ≥ 0 implies
that P (X = 0) = 1, a contradiction to the assumption that X not be identically 0. Thus

0 < g(1) < 1. Since g(1)x = ex ln(g(1)) we finally obtain g(x) = e−λx, where λ
def
= − ln(g(1)) > 0.

1.2 Relation to the geometric distribution

In a discrete r.v. setting, the memoryless property is given by

P (X − k > n|X > k) = P (X > n),

for non-negative integers k, n. The only discrete distribution with this property is the geometric
distribution; P (X = n) = (1 − p)n−1p, n ≥ 1 (success probability p). Thus the exponential
distribution can be viewed as the continuous analog of the geometric distribution. To make this
rigorous: Fix n large, and perform, using (tiny) success probability pn = λ/n, an independent
Bernoulli trial at each time point i/n, i ≥ 1. Thus we are performing such a Bernoulli trial
every (tiny) 1/n units of time. Let Yn denote the time at which the first success occurred. Then
Yn = Kn/n where Kn denotes the number of trials until the first success, and has the geometric
distribution with success probability pn; P (Kn = k) = (1 − pn)k−1pn, k ≥ 1. As n → ∞, Yn
converges in distribution to a r.v. Y having the exponential distribution with rate λ (we use
the tail probabilities):

P (Yn > x) = P (Kn > nx)

= (1− pn)nx

= (1− (λ/n))nx

→ e−λx, n→∞
= P (Y > x).
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The limit is computed from elementary calculus by taking natural logarithms and using L’Hô
pital’s rule: (1 − (λ/n))nx → e−λx if and only if nx ln (1− (λ/n)) → −λx, as n → ∞. We
re-write nx ln (1− (λ/n)) as f(n)/g(n) where f(n) = ln (1− (λ/n)) and g(n) = 1/(nx), then
obtain the limit via limn→∞ f

′(n)/g′(n) = −λx.
In essence, intuitively, we can construct an exponential rv Y at rate λ, by performing

iid Bernoulli trials every (infinitesimal) dx units of time with (infinitesimally small) success
probability λdx, and define Y as the time until the first success.

1.3 Useful properties of the exponential distribution

Other useful properties of the exponential distribution are given by

Proposition 1.2 If X1 has an exponential distribution with rate λ1, and X2 has an exponential
distribution with rate λ2 and the two r.v.s. are independent, then

1. The minimum of X1 and X2, Z = min{X1, X2}, has an exponential distribution with rate
λ = λ1 + λ2;

P (Z > x) = e−(λ1+λ2)x, x ≥ 0.

2.

P (X1 < X2) =
λ1

λ1 + λ2
.

3. The r.v. Z = min{X1, X2} is independent of the two events {Z = X1} = {X1 < X2} and
{Z = X2} = {X2 < X1}: Z is independent of which one of the two r.v.s. is in fact the
minimum. This means that

P (Z > x|X1 < X2) = e−(λ1+λ2)x, x ≥ 0,

P (Z > x|X2 < X1) = e−(λ1+λ2)x, x ≥ 0.

This implies that E(Z | X1 < X2) = E(Z | X2 < X1) = E(Z) = 1
λ1+λ2

.

Proof : 1. Observing that Z > x if and only if both X1 > x and X2 > x, we conclude that
P (Z > x) = P (X1 > x,X2 > x) = P (X1 > x)P (X2 > x) (from independence)

= e−λ1xe−λ2x = e−(λ1+λ2)x.
2. Let f1(x) = λ1e

−λ1x denote the density function for X1.
P (X1 < X2|X1 = x) = P (X2 > x|X1 = x) = P (X2 > x) (from independence)

= e−λ2x, and thus

P (X1 < X2) =

∫ ∞
0

P (X1 < X2|X1 = x)f1(x)dx

=

∫ ∞
0

e−λ2xλ1e
−λ1xdx

= λ1

∫ ∞
0

e−(λ1+λ2)xdx

=
λ1

λ1 + λ2
.
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3. P (Z > x|Z = X1) = P (X1 > x|X1 < X2) so we must prove that

P (X1 > x|X1 < X2) = e−(λ1+λ2)x, x ≥ 0. To this end we condition on X2 = y for all values
y > x, noting that P (x < X1 < X2|X2 = y) = P (x < X1 < y):

P (Z > x|Z = X1) = P (X1 > x|X1 < X2)

=
P (X1 > x,X1 < X2)

P (X1 < X2)

=
P (x < X1 < X2)

P (X1 < X2)

=

∫∞
x {P (x < X1 < y)λ2e

−λ2y}dy
P (X1 < X2)

=

∫∞
x {(e

−λ1x − e−λ2y)λ2e−λ2y}dy
P (X1 < X2)

=
e−(λ1+λ2)x λ1

λ1+λ2

P (X1 < X2)

=
e−(λ1+λ2)x λ1

λ1+λ2
λ1

λ1+λ2

from 2. above

= e−(λ1+λ2)x.

Hence, given Z = X1, Z is (still) exponential with rate λ1 + λ2. Similarly if Z = X2. The
point here is that the minimum is exponential at rate λ1 + λ2 regardless of knowing which of
the two is the minimum.

Examples

Here we illustrate, one at a time, each of 1,2,3 of Proposition 1.2.
Suppose you have two computer monitors (independently) one in your office having lifetime

X1 exponential with rate λ1 = 0.25 (hence mean = 4 years), and the other at home having
lifetime X2 exponential with λ2 = 0.5 (hence mean = 2 years). As soon as one of them breaks,
you must order a new monitor.

1. What is the expected amount of time until you need to order a new monitor?

The amount of time is given by Z = min{X1, X2} and has an exponential distribution at
rate λ1 + λ2; E(Z) = 1/(λ1 + λ2) = 1/(0.75) = 4/3 years.

2. What is the probability that the office monitor is the first to break?

P (X1 < X2) = λ1/(λ1 + λ2)
= 0.25/(0.25 + 0.50) = 1/3.

3. Given that the office monitor broke first, what was its expected lifetime?

The lifetime is given by Z = min{X1, X2} and has an exponential distribution at rate
λ1 + λ2 regardless of knowing that X1 < X2; thus the answer remains E(Z | X1 < X2) =
E(Z) = 4/3, as in Question 1.
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Remark 1 1. above generalizes to any finite number of independent r.v.s.: min{X1, X2, . . . , Xn} ∼
exp(λ1 + λ2 + · · ·+ λn) if Xi ∼ exp(λi), 1 ≤ i ≤ n.

P (min{X1, X2, . . . , Xn} > x) = P (X1 > x,X2 > x, . . . ,Xn > x)
= P (X1 > x)P (X2 > x) · · ·P (Xn > x)

= e−(λ1+λ2+···+λn)x.

1.4 Simulating samples X with the exponential distribution

Recalling the inverse transform method, the inverse function, F−1(y), y ∈ (0, 1), of F (x) =
1− e−λx, x ≥ 0 is given by solving

y = 1− e−λx,
for x in terms of y yielding

F−1(y) = − 1

λ
ln (1− y),

where ln (x) denotes the natural logarithm of x > 0.
Thus for U uniform over (0, 1), we can set X = − 1

λ ln (1− U) to get an X ∼ exp(λ). But
since 1− U is itself uniform over (0, 1), we can simplify the algorithm to

Algorithm for simulating/generating X ∼ exp(λ):

1. Generate U (uniform over (0, 1)).

2. Set X = − 1
λ ln (U).

This immediately leads to a simulation algorithm for a so-called Poisson process. If a random
sequence of times 0 < t1 < t2 < · · · , are defined by tn = X1 + · · · + Xn, where the Xi are iid
with an exponential distribution at rate λ, the point process, {tn : n ≥ 1} is called a Poisson
point process, or just a Poisson process for short.

If you imagine tn as the time that the nth call to your mobile phone comes in, then a Poisson
process can approximate {tn : n ≥ 1} under suitable conditions. We will study such processes
in detail later but let us observe how we can easily simulate {tn : n ≥ 1} out to any desired n
or out to any desired time T :

Algorithm for simulating a Poisson process at rate λ up to the nth point, n ≥ 1:

1. Generate U1, . . . , Un (iid uniforms over (0, 1)).

2. Set t0 = 0 and then recursively set ti+1 = ti − 1
λ ln (Ui+1), 0 ≤ i ≤ n− 1.

Algorithm for simulating a Poisson process at rate λ up to time T > 0:

1. Set t0 = 0 = i = N

2. Generate U . Set i = i+ 1. set ti = ti−1 − 1
λ ln (U).

3. If ti ≤ T , then set N = N + 1 and go back to (2); otherwise if ti > T , then stop. If N = 0
output “No points by time T”; otherwise output N and (t1, . . . , tN ).
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