IEOR 4106 lec 6

communication classes

More on recurrence, transience

\[S = \bigcup_{k=1}^{\infty} C_k \]

(countably infinite)

disjoint communication classes

positive/null recurrence
Recall \(i, j \in \mathbb{F} \)

If \(p_i(\pi) > 0 \), \(p_j(\pi) > 0 \)

for some \(n \geq 0 \)

1) all states communicate with themselves
 \(i \leftrightarrow i \) \((p_i^0 = 1) \)

2) symmetry: if \(i \leftrightarrow j \) then \(j \leftrightarrow i \)

3) transitivity: if \(i \leftrightarrow k \) and \(k \leftrightarrow j \)
 then \(i \leftrightarrow j \) \((p_i^m j \geq p_i^m k \cdot p_{k}^m j > 0) \)
Generalization of “=” for \mathbb{R}

1) $x = x$, $x \in \mathbb{R}$

2) if $x = y$, then $y = x$

3) if $x = y$ and $y = z$, then $x = z$

\leftrightarrow "equivalence relation"
Communication Classes

Every state space S of a MC can be uniquely written as

$$S = \bigcup_{k=1}^{\infty} C_k \quad \text{(finite or countably infinite union)}$$

of sets C_k called communication classes for which

1) they are disjoint subsets
2) all states within any class communicate but don't with any states in another class.
Examples

Rat in closed maze

\[S = \{1, 2, 3, 4\} \]

All states communicate

\[C = S \]

An example of an "irreducible" MC
open maze

\[
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
3 & 6 & 4 \\
0 & & \\
\end{array}
\]

\[S = \{0, 1, 2, 3, 4\}\]

No state 1, 2, 3, or 4 is reachable from 0.

So \[C_1 = \{0\}\]

\[C_2 = \{1, 2, 3, 4\}\]

\[C_1 \cup C_2 = S\]
Gambler's Ruin MC
\[S = \{0, 1, 2, \ldots, N\} \]

\[P_{00} = P_{NN} = 1 \]

\[C_1 = \{0\} \]
\[C_2 = \{N\} \]
\[C_3 = \{1, 2, \ldots, N-1\} \]
\[C, u < z < c_s = S \]
\[\bar{\mathcal{S}} = \{0, 1, 2, 3\} \]

\[P = \begin{bmatrix}
 0 & 1 & 2 & 3 \\
 \frac{1}{2} & \frac{1}{2} & 0 & 0 \\
 \frac{1}{2} & \frac{1}{2} & 0 & 0 \\
 \frac{1}{3} & \frac{1}{3} & \frac{1}{4} & \frac{1}{3} \\
 0 & 0 & 0 & 1
\end{bmatrix} \]

\[\begin{align*}
 \mathcal{C}_1 &= \{0, 1\} \\
 \mathcal{C}_2 &= \{2\} \\
 \mathcal{C}_3 &= \{3\}
\end{align*} \]

\[\mathcal{C}_1 \cup \mathcal{C}_2 \cup \mathcal{C}_3 = \bar{\mathcal{S}} \]
Simple Random Walk

$0 < p < 1$

$p_{i,j}^{i+1} = p$

$p_{i,j}^{i-1} = 1 - p = q$

$i \in \mathbb{Z}$

$p_{i,j}^{(1)} = p^{4} > 0$

$p_{i,j}^{(2)} = q^{4} > 0$

$p_{i,j}^{(n)} = \frac{1}{j-i} \quad n = |i-j|$

irreducible MC for all p. $C = \mathbb{S} = \mathbb{Z}$
State $i \in S$ is either recurrent ($f_i = 1$) or transient ($f_i < 1$)

$$T_{i,c} = \min \{ n \geq 1 : X_n = i \mid X_0 = c \}$$

- ∞ if no return to i

$$f_i = P(T_{i,c} < \infty)$$

N_i is the total number of visits to i:

$$P(N_i = k) = f_i^{k-1} (1 - f_i), \quad k \geq 1$$

Geometric distribution.
\[N_i = \sum_{n=0}^{\infty} \mathbb{I}(X_n = i \mid X_0 = i) \]

\[\mathbb{P}(N_i < \infty) = 1 \quad \text{if} \quad f_i < 1 \]
\[\mathbb{P}(N_i = \infty) = 1 \quad \text{if} \quad f_i = 1 \]

\[\mathbb{E}(N_i) = \frac{1}{1-f_i} = \left\{ \begin{array} {c} \infty \quad \text{if} \quad f_i = 1 \\ < \infty \quad \text{if} \quad f_i < 1 \end{array} \right. \]
If \(i \leftrightarrow j \) and \(i \) is recurrent then \(j \) is recurrent

\[P_{ii} > 0 \]

If \(i \leftrightarrow j \) and \(i \) is transient then \(j \) is transient

\[\Rightarrow \text{ all states in a communication class } \]

either all are recurrent or all transient
Simple Random Walk $0 < p < 1$

irreducible

$C = \emptyset$

\Rightarrow all states together are recurrent or all are transient

$p = \frac{1}{2}$ recurrent

$p \neq \frac{1}{2}$ transient
Rat in closed wise (irreducible)
\[C = \{ 1, 2, 3, 4 \} \]

Since \(|S| < \infty \)

must be recurrent

\[\text{all irreducible finite state MCS} \]

are recurrent.
If i is recurrent

then $(\Pr(T_{ij} < \infty) = 1)$

with

9) $E(T_{jj}) < \infty$ Positive recurrent

b) $E(T_{jj}) = \infty$ Null recurrent

Consider a rv

$\Pr(X = k) = \frac{\lambda}{k^2}, \quad k \geq 1, \quad \Pr(X < \infty) = 1$

$c^{-1} = \sum_{k=1}^{\infty} \frac{1}{k} < \infty, \quad E(X) = \sum_{k=1}^{\infty} \frac{c}{k} = \infty$
If $i \leftrightarrow j$ then

 if i is pos. rec. then

 So is j

\Rightarrow all states in a communication class are
either

1) pos. rec.

2) Null. rec.

3) transient

both recurrent
Examples

\[\begin{array}{c|c|c|c}
1 & 2 & 3 & 4 \\
1 & 4 & 2 & 1 \\
3 & 4 & 1 & 1 \\
3 & 4 & 1 & 1 \\
\end{array} \]

\[\text{open} \quad \text{closed} \]

\[C_1 = \{1, 2, 3, 4\} \quad \text{transient} \]

\[C_2 = \{0\} \quad \text{recurrent} \]

\[\overline{\tau}_{00} = 1 \]

\[C = \{1, 2, 3, 4\} \quad \text{recurrent (Positive)} \]
Simple symmetric RW

Recurrent (Null recurrent)

$E(T_{0,0}) = \infty$

$T_{0,0}$ is an example of a RV X such that $\Pr(X < \infty) = 1$

but $E(X) = \infty$.\[1\]
\[\pi_j \overset{\text{def}}{=} \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}(X_n = j \mid X_0 = i) \]

We want \(\pi_j \) to not depend on \(X_0 = i \in \mathcal{S} \) and \(\pi_j > 0 \), \(j \in \mathcal{S} \), and \(\sum_{j \in \mathcal{S}} \pi_j = 1 \). \(\pi \) is a probability distribution.

In the long-run proportion of time, the chain spends in state \(j \).
If \(\Omega \) exists, we can take expected value of both sides to set

\[
E(\Xi \{ X_n = j \mid X_0 = i \}) = p^{(n)}_{i,j}
\]

For all \(i \in \mathcal{A} \)

\[
\Pi_j = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \pi_{i,j}^{(n)}
\]

for all \(i \in \mathcal{A} \)

\(\Pi = (\Pi_j)_{j \in \mathcal{A}} \) row vector
\[\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} r^n = \left(\frac{r}{1-r} \right) \]
If a Markov chain is irreducible and all states are positive recurrent, then:

\[\pi_j = \frac{1}{\sum \{ \pi_i \}} \]

for all \(j \).

\(\pi \) is called the limiting or stationary distribution of the MC.

\(\sum \pi_j = 1 \)

Positive recurrent:

\[1 \leq E(T_{ij}) < \infty \]

\(\pi = (\pi_i) \), i.e.,
if the chain (irreducible) and
is \text{ null rec } \text{ or }
\text{ transient } \text{ then }
\lim_{t \to \infty} \Pr[X_t = i | X_0 = 0] = 0;
No limiting prob. dist. exists
Pos. rec.

$\mathbb{P}(\text{?}) \equiv \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \right)$

$E(T_{ij}) = 4$

$1 \leq j \leq 4$
for an irreducible MC
it is pos. rec. iff
there exists a prob. solution
\(\left(\Pi_j > 0 \quad i \in A \right) \)
\(\sum \Pi_j = 1 \)
\(\Pi_j = \prod_j P \)

to the set of linear equations

in which case
\(\Pi \) is the limiting diet row vector

\((\Pi_j = \frac{1}{E(C_i,j)}) \) (unique)
\[P = \begin{bmatrix}
1 & 2 & 3 & 4 \\
1 & \frac{1}{2} & \frac{1}{2} & 0 \\
3 & 0 & 0 & \frac{1}{2} \\
4 & 0 & \frac{1}{2} & 0
\end{bmatrix} \]

\[\Pi = (\Pi_1, \Pi_2, \Pi_3, \Pi_4) \]

\[\Pi = \Pi \cdot P \]

\[\Pi_1 = \frac{1}{2} \Pi_2 + \frac{1}{2} \Pi_3 \]

\[\Pi_2 = \frac{1}{2} \Pi_1 + \frac{1}{2} \Pi_4 \]

\[\Pi_3 = \frac{1}{2} \Pi_1 + \frac{1}{2} \Pi_4 \]

\[\Pi_4 = \frac{1}{2} \Pi_2 + \frac{1}{2} \Pi_3 \]

\[\Pi = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}) \text{ is the Solution} \]