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1 Non-stationary Poisson processes and Compound (batch) Pois-
son processes

Assuming that a Poisson process has a fixed and constant rate λ over all time limits its applica-
bility. (This is known as a time-stationary or time-homogenous Poisson process, or just simply
a stationary Poisson process.) For example, during rush hours, the arrivals/departures of ve-
hicles into/out of Manhattan is at a higher rate than at (say) 2:00AM. To accommodate this,
we can allow the rate λ = λ(t) to be a deterministic function of time t. For example, consider
time in hours and suppose λ(t) = 100 per hour except during the time interval (morning rush
hour) (8, 9) when λ(t) = 200, that is

λ(t) = 200, t ∈ (8, 9), λ(t) = 100, t /∈ (8, 9).
In such a case, for a given rate function λ(s), the expected number of arrivals by time t is

thus given by

m(t) def= E(N(t)) =
∫ t

0
λ(s)ds. (1)

For a compound such process such as buses arriving: If independently each bus holds a
random number of passengers (generically denoted by B) with some probability mass function
P (k) = P (B = k), k ≥ 0, and mean E(B). Letting B1, B2, . . . denote the iid sequential bus
sizes, the number of passengers to arrive by time t, X(t) is given by

X(t) =
N(t)∑
n=1

Bn, (2)

where N(t) is the counting process for the non-stationary Poisson process; N(t) = the number
of buses to arrive by time t. This is known as a compound or batch non-stationary Poisson
arrival process. We have E(X(t)) = E(N(t))E(B) = m(t)E(B).

We have already learned how to simulate a stationary Poisson process up to any desired
time t, and next we will learn how to do so for a non-stationary Poisson process.

1.1 The non-stationary case: Thinning

In general the function λ(t) is called the intensity of the Poisson process, and the following
holds:

For each t > 0, the counting random variable N(t) is Poisson distributed with mean

m(t) =
∫ t

0
λ(s)ds.

E(N(t)) = m(t)

P (N(t) = k) = e−m(t)m(t)k

k!
, k ≥ 0.

More generally, the increment N(t+h)−N(t) has a Poisson distribution with mean
m(t+ h)−m(t) =

∫ t+h
t λ(s)ds.
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Furthermore, {N(t)} has independent increments;
If 0 ≤ a < b < c < d, then N(b)−N(a) is independent of N(d)−N(c).

We shall assume that the intensity function is bounded from above: There exists a λ∗ > 0
such that

λ(t) ≤ λ∗, t ≥ 0.

(In practice, we would want to use the smallest such upper bound.) (Note that if λ(t) was
unbounded, then with very mild further assumptions (such as continuity, etc.), it would be
bounded over any finite time interval (0, T ) and hence our method could be used over any finite
time interval anyhow.)

Then the simulation of the Poisson process is accomplished by a “thinning” method: First
simulate a stationary Poisson process at rate λ∗. For example, sequentially generate iid ex-
ponential rate λ∗ interarrival times and use the recursion vn+1 = vn + [−(1/λ∗) ln (Un+1)], to
obtain the arrival times which we are denoting by vn. The rate λ∗ is larger than needed for
our actual process, so for each arrival time vn, we independently flip a coin to decide wether to
keep it or reject it. The sequence of accepted times we denote by {tn} and forms our desired
non-stationary Poisson process. To make this precise: for each arrival time vn, we accept it
with probability pn = λ(vn)/λ∗, and reject it with probability 1 − pn. Thus for each vn we
generate a uniform Un and if Un ≤ pn we accept vn as a point, otherwise we reject it.

The thinning algorithm for simulating a non-stationary Poisson process with
intensity λ(t) that is bounded by λ∗

Here is the algorithm for generating our non-stationary Poisson process up to a desired time T
to get the N(T ) arrival times t1, . . . tN(T ).

1. t = 0, N = 0

2. Generate a U

3. t = t+ [−(1/λ∗) ln (U)]. If t > T , then stop.

4. Generate a U .

5. If U ≤ λ(t)/λ∗, then set N = N + 1 and set tN = t.

6. Go back to 2.

Note that when the algorithm stops, the value of N is N(T ) and we have sequentially
simulated all the desired arrival times t1, t2 . . . up to tN(T ).

Here is a proof that this thinning algorithm works:

Proof :[Thinning algorithm] Let {M(t)} denote the counting process of the rate λ∗ Poisson
process. First note that {N(t)} has independent increments since {M(t)} does and the thinning
is done independently. So what is left to prove is that for each t > 0, N(t) constructed by this
thinning has a Poisson distribution with mean m(t) =

∫ t
0 λ(s)ds. We know that for each t > 0,

M(t) has a Poisson distribution with mean λ∗t. We will partition M(t) into N(t) (the accepted
ones), and R(t) (the rejected ones), and conclude that N(t) has the desired Poisson distribution.
To this end recall that conditional on M(t) = n, we can treat the n unordered arrival times
as iid unif (0, t) rvs. Thus a typical arrival, denoted by V ∼ Unif(0, t), will be accepted with
conditional probability λ(v)/λ∗, conditional on V = v. Thus the unconditional probability of
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acceptance is q(t) = E[λ(V )/λ∗] = (1/λ∗)(1/t)
∫ t
0 λ(s)ds, and we conclude from partitioning1

that N(t) has a Poisson distribution with mean λ∗tq(t) = m(t), as was to be shown.

1.2 Simulating a compound Poisson process

Suppose that we wish to simulate a non-stationary compound Poisson process at rate λ(t) ≤ λ∗
with iid Bi distributed as (say) G (could be continuous or discrete). Suppose that we already
have an algorithm for generating from G.

Here is the algorithm for generating our compound Poisson process up to a desired time T
to get X(T ):

1. t = 0, N = 0, X = 0.

2. Generate U

3. t = t+ [−(1/λ∗) ln (U)]. If t > T , then stop.

4. Generate U .

5. If U ≤ λ(t)/λ∗, then set N = N + 1 and generate B distributed as G and set X = X+B.

6. Go back to 2.

1A general result in elementary probability is known as partitioning of a Poisson rv : Suppose X is a rv
with a Poisson distribution with mean α. Suppose that for all n ≥ 1, conditional on X = n, each of the n is
independently labeled as being of type 1 or 2 with probability p, 1−p respectively, and let Xi denote the number
of type i, i = 1, 2 (in particular X = X1 + X2). Then the two Xi are independent rvs, and X1 has a Poisson
distribution with mean αp and X2 has a Poisson distribution with mean α(1− p).
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