
Copyright c© 2006 by Karl Sigman

1 Simulating a single-server queueing model

Here we introduce a single-server queueing model, and how to simulate it. A good example to
think about for intuition is an ATM machine. We view the machine as a “server” that serves
customers one at a time. The customers arrive randomly over time and wait in a queue (line),
and upon beginning service, each customer spends a random amount of time in service before
departing.

1.1 FIFO single-server model

There is one server (clerk, machine), behind which forms a queue (line) for arriving customers
to wait in. The nth customer is denoted by Cn and arrives at time tn, where

0 = t0 < t1 < t2 < · · · < tn < · · · ,

with limn→∞ tn = ∞.
Tn

def= tn+1 − tn denotes the nth interarrival time, the length of time between arrival of the
successive customers Cn and Cn+1.

Cn requires a service time of length Sn, which is the length of time Cn spends in service
with the server. We assume that the server processes service times at rate 1, meaning that, for
example, if Cn enters service now with Sn = 6, then 4 units of time later there are 2 units of
service time remaining to process. Dn, called the delay of Cn, denotes the length of time that
Cn waits in the queue (line) before entering service; if Cn arrives finding the system empty, then
Cn enters service immediately and so Dn = 0. Summarizing: Cn arrives at time tn, waits in
the queue for Dn units of time, then spends Sn units of time with the server before departing
at time tdn = tn + Dn + Sn, the nth departure time. We are inherently assuming here that
customers join the end of the queue upon arrival an enter service one at a time, and this is
known as first-in-first-out (FIFO). But other service disciplines are useful in other applications,
such as in computer processing, where processor sharing (PS) might be employed: If there are
k ≥ 1 “jobs” in the system, they all are in service together, but each is served at rate 1/k. We
will discuss disciplines later on, so for now we assume FIFO.

FIFO delay has a nice recursive property:

Proposition 1.1
Dn+1 = (Dn + Sn − Tn)+, n ≥ 0, (1)

where x+ = max{x, 0} denotes the positive part of a number x.

A proof of the above recursion is supplied by introducing workload V (t) = the sum of all
remaining service times in the system at time t. For example, suppose at time t there are 3
customers in the system. The one in service has some remaining service time Sr, and the other
two waiting in queue have service times S̃1 and S̃2 respectively (say). Then V (t) = Sr + S̃1 + S̃2.
A little thought reveals that in fact V (t) is the delay, Dn, that Cn would experience if Cn arrived
at time t: Cn would have to wait in queue for V (t) units of time before entering service. Thus,
in general Dn can be rewritten as Dn = V (tn−), the work found in system when Cn arrives
at time tn. We use “tn−” to stress that the service time Sn of Cn is not included into the
workload found by Cn; but right after Cn arrives and joins the queue the Sn is included into the
workload. So: Dn = V (tn−) and V (tn+) = V (tn) = Dn +Sn. In words, then, the recursion for
delay in Proposition 1.1 can be stated as: The work found by Cn+1 is equal to the work found

1

by Cn, plus Cn’s service time added, Sn, but minus the amount of work processed during the
interarrival time Tn. Since work is processed at rate 1, this amount processed is at most Tn;
the workload would become empty if V (tn−) + Sn < Tn; hence the need for taking the positive
part.

A nice way to think about workload is to imagine that our system is a reservoir filled with
water (work), and that the water is drained off at constant rate 1. V (t) denotes the water level
at time t, and at time tn, an amount Sn of water is dumped into the reservoir by Cn, causing
the workload to jump upwards by the amount Sn. So, V ′(t) = −1, whenever V (t) > 0, and
V (tn+)− V (tn−) = Sn, for all n ≥ 1. With this view, we easily conclude that

V (tn+1−) = (V (tn−) + Sn − Tn)+,

which is precisely the recursion for delay in Proposition 1.1: The water level at time tn+1− is
equal to the water level at time tn−, plus the water added, Sn, but minus the amount of water
drained during the interarrival time Tn. Since water is drained at rate 1, this amount drained is
at most Tn; the reservoir would become empty if V (tn−) + Sn < Tn; hence the need for taking
the positive part.

1.2 Simulating the FIFO GI/GI/1 queue

The delay recursion (1) can be readily used to simulate the delay sequence {Dn : n ≥ 0}. We of
course must make some assumptions about the sequence of service times {Sn} and interarrival
times {Tn}. In applications these would be random variables, so we shall assume that {Sn} is an
iid sequence with common distribution denoted by G(x) = P (S ≤ x), x ≥ 0 and independently
{Tn} is an iid sequence with common distribution denoted by A(x) = P (T ≤ x), x ≥ 0. In
practice, one would go out and collect data to figure out what G and A should be; for example,
maybe the arrival process is a Poisson process at rate λ, meaning that A(x) = 1 − e−λx,
and maybe the service times are uniformly distributed over some interval (a, b), meaning that
G(x) = (x−a)/(b−a), x ∈ (a, b). In any case, this model is known as the GI/GI/1 queue, where
the first GI refers to the interarrival times having a general distribution (A here) and being iid,
and the second GI independently refers to the service times having a general distribution (G
here) and being iid.

Let us assume that the inverse functions G−1(y) and A−1(y) are known so that the inverse
transform method can be employed to generate our two sequences of rvs {Sn} and {Tn}. Letting
{Un : n ≥ 0} and {Vn : n ≥ 0} denote two independent sequences of iid uniform(0, 1) rvs
generated by your computer, we can generate Sn = G−1(Un) and Tn = A−1(Vn), n ≥ 0 to
use in the recursion. To be precise, let’s start with D0 = 0. Then D1 = (S0 − T0)+ =
(G−1(U0)− A−1(V0))+ can be simulated. Now that we have D1, we then can simulate D2 via
D2 = (D1 + G−1(U1) − A−1(V1))+. Continuing out to any desired n, we can obtain Dn =
(Dn−1 + G−1(Un−1)−A−1(Vn−1))+.

1.2.1 Long-run (infinite horizon) simulation: estimating average delay

One measure of performance of use in applications is the average delay over all customers

d = lim
n→∞

1
n

n∑
j=1

Dj .

In general, computing this exactly is not possible, so we can approximate it by using as our
estimate

1
n

n∑
j=1

Dj ,

2

where n is chosen to be large (10,000 say). This estimate requires only one simulation run of
the n rvs D1, . . . , Dn, that is, your computer would be asked to do this just once. We refer
to this as long-run simulation since we are trying to estimate something (a limit in time) that
requires all of the infinite future.

As another example, we might wish to estimate the proportion of customers who have a
delay exceeding some given (high) fixed value x;

lim
n→∞

1
n

n∑
j=1

I{Dj > x},

where I{A} denotes the indicator of an event A; I{A} = 1 if A occurs, 0 otherwise.

1.2.2 Finite-horizon simulation: Monte Carlo

Instead of computing average delay over all customers, suppose we are only interested in the
expected delay of the 5th one. That is, we want to estimate E(D5), an expected value. In this
case we would ask the computer to simulate n iid copies of D5, where n is large and fixed,
denoted by X1, . . . , Xn, and use as our estimate the empirical average

1
n

n∑
j=1

Xi (2)

Here, since the Xi are iid, we justify our estimate via the strong law of large numbers which
asserts that wp1, we get the exact answer E(D5) as n → ∞. Each independent replication
(copy) Xi of D5 requires a new independent simulation run. The first run would be carried out
via D1 = (S0 − T0)+ = (G−1(U0) − A−1(V0))+, D2 = (D1 + G−1(U1) − A−1(V1))+, up to the
desired X1 = D5 = (D4 + G−1(U4)−A−1(V4))+. We then, using new uniforms, independently
do this all over again to obtain another copy X2 and so on, until we have a total of n such
independent copies. Then we use the estimate in (2).

Another example is estimating the average delay over a given fixed number of customers N
;

E
[1
N

N∑
j=1

Dj

]
.

Here, each copy Xi would be a copy of

1
N

N∑
j=1

Dj ,

and would require its own run. Each run would require the generation of the fixed number N
of the Dj ’s.

One might instead wish to simulate only up to a a fixed time T . For example, a web site
offering some special service might open at midnight and then close after T time units, and we
might want to estimate the average delay over all customers who went to the site for service. In
this case we need to introduce the counting process {N(t) : t ≥ 0} for the arrival times tn, where
N(t) denotes the number of arrivals during the time interval (0, t], and can be represented by
N(t) = max{j : tj ≤ t}. Thus there would be N(T) arrivals during our desired time interval
(0, T] and we wish to estimate

E
[1
N(T)

N(T)∑
j=1

Dj

]
.

3

Each Xi will be a copy of
1

N(T)

N(T)∑
j=1

Dj .

Here N(T) is a random variable so each copy Xi will typically have a different value for N(T).
Note that tN(T) is the last arrival time before (or at) time T , and tN(T)+1 is the first arrival
time strictly after time T ;

tN(T) ≤ T < tN(T)+1.

For each run (yielding a copy Xi) we would thus simulate our delays Dj until j = N(T), and
then stop. Using the fact that tj+1 = tj + Tj , j ≥ 0, we keep simulating the Dj until finally
(for some j) tj+1 > T , that is we set N = N(T) = min{j : tj+1 > T} and we stop simulating
this run yielding our copy Xi as

1
N

N∑
j=1

Dj .

Repeating this procedure n times yields our copies X1, . . . , Xn.
In general, estimating an expected value such as θ = E(D5) or an integral such as θ =∫ 1

0 g(x)dx = E(g(U)) by generating a large number, n, of copies X1, . . . , Xn, with mean
E(Xi) = θ, and then using the empirical average in (2) as the estimate is known as Monte
Carlo simulation. The name apparently comes historically from the fact that the generation of
random numbers needed could be provided in the context of gambling, in the famous gambling
city of Monte Carlo, as the outcome of a roulette wheel.

We will study Monte Carlo simulation in more detail later, where we will study methods
that purposely introduce correlation among the copies Xj so as to reduce the variance of the
estimator.

4

