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Abstract

The winner of a USA presidential election is determined by which candidate wins a ma-
jority of the 538 Electoral College (EC) votes, not the national popular vote. We introduce
the breakdown of the Electoral College (EC) votes for each state and study the problem of
determining the total number of ways there could be a tie in a presidential election. We use
stochastic simulation (random number generation), to obtain an approximation to the an-
swer. It turns out that an exact (non-random recursive) method is possible to get the exact
answer, but here we focus on stochastic simulation as a powerful approximation method.
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1 Introduction

The USA Presidential election, every four (4) years, is not decided by the nation’s popular
vote, but instead by what is called the Electoral College (EC) vote. In short, there are 538
EC votes distributed among the 50 states of the USA (plus Washington D.C.) for a total of
51 “states” that each decide how to allocate their allotment of EC votes. The number of EC
votes that each state is granted is based on population, and is updated every 10 years based
on the “Census”. The way the election works: The presidential election takes place on the
Tuesday after the first Monday in November, every 4 years. (The last such election (as of the
writing of this paper) was November 6, 2012: Obama versus Romney; Obama won his second
term.) Whichever candidate wins the majority of the popular vote in a given state, wins all
the EC votes in that state, a winner-takes-all method. For example, in the State of New York
(which currently has n = 29 EC votes) if candidate A wins the popular vote, even by as little
as 51 percent, then candidate A is awarded all 29 EC votes.1 The sum for each candidate is
totaled, a tie being 269 each; the winner is the one with at least 270 EC votes. (Yes, a tie
is theoretically possible!) The number of EC votes varies from as little as n = 3, for small
population states such as Alaska, and D.C., to as large as n = 55 for California (the state with
the largest population). We will study the problem of determining the total number of ways
there can be a tie. We will assume that there are two (2) candidates A and B.

2 The EC votes

Let ni denote the number of EC votes granted to state i, i = 1, 2, . . . , 51. Each state has
a number of members in the USA House of Representatives, based on its population (each
member represents about 750, 000 constituents in their district.) Let Hi denote the number of
House Representatives for state i. Each state also has 2 Senators serving in the USA Senate.
Then ni = Hi + 2 by definition. Washington D.C. is not a state, so it has no Representatives
and no Senators, but it is awarded 3 EC votes because its population is the same as having
1 Representative (about 750, 000), and 2 (for Senators) is thrown in to be fair. This is done
because citizens of D.C. are USA Citizens and thus have the right to vote (even though they
have no representatives in Congress).

A list of the allocation of the EC (Electors) over the last several elections is given here up
to and including the 2010 Census (hence including the 2012 election):

http://www.thegreenpapers.com/Census10/HouseAndElectors.phtml
The numbers that were used in 2012 are under the heading (2012, 2016,2020). The numbers

that were used in 2008 are different because of the 2010 Census. This change will change the
answer to our question, but probably not by much. (You will be able to compare!)

1Maine and Nebraska use the Congressional District Method instead of the winner-takes-all method, but we
will not take this into account in our analysis given that they are small states, and given that in past elections
their method essentially ends up being winner-takes-all anyhow (for example, Maine has never split its votes).
We do note, however, that in the 2008 election, Nebraska’s n = 5 EC votes were split for the very first time, 4
for John McCaine and 1 for Barack Obama. On the other hand, the Nebraska’s state legislature has put forth a
bill (still pending) to revert back to a winner-takes-all method.
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3 The problem statement

Given two (2) candidates, A and B, let Ii(A) = 1 if candidate A wins state i, and 0 if not. Let
Ii(B) = 1 if candidate B wins state i, and 0 if not. Here i ∈ {1, 2, . . . , 51}. Letting CA and CB

denote the total number of EC votes won, we have

CA =
51∑
i=1

niIi(A), (1)

CB =
51∑
i=1

niIi(B), (2)

and CA + CB = 538.
A tie occurs if and only if CA = CB = 269.
In any case, there are N = 251 = 2, 251, 799, 813, 685, 248 ways that the EC votes can be

allocated among the two candidates. This is a very large number!! Equivalently, there are
N = 251 ways that the USA’s 51 states can be partitioned into two groups (one for candidate
A and one for candidate B).

Let NT denote the number of ways there could be a tie. We want to determine NT .
Given how large N is, this at first seems like an onerous task. But we will indeed solve for

NT using two methods to be introduced next.

4 Simulation method for estimation of NT

Note that if we used a fair coin flip to determine each states outcome (Heads = A, Tails = B),
flipping the coin 51 times, then each of the N = 251 possibilities would be equally likely.
Moreover, the ratio PT = NT /N would then yield the probability that there is a tie.

The probability there is a tie is equal to the number of ways there can be a tie divided by
the total number of ways possible.

Since NT = PT N = PT 251: If we can estimate PT , then we get an estimate for NT .
We will use simulation to obtain our estimate of PT . We will ask our computer to flip a fair

coin for us 51 times. We will set Ii(A) = 1 if it lands Heads, 0 otherwise, and set Ii(B) = 1 if
it lands Tails, 0 otherwise. (If Ui denotes the ith independent uniform number over the interval
(0, 1) generated by our computer, then we can set Ii(A) = 1 if Ui ≤ 0.5; Ii(A) = 0 if Ui > 0.5.)

Then we can use the formula in (1) to get a copy CA, CB of the outcome. We will denote this
(first) outcome as CA(1), CB(1). We next do this again independently, to obtain CA(2), CB(2),
and so on, a very large number m of times yielding m such CA copies CA(1), CA(2), . . . , CA(m).
(Since CB = 538 − CA, we do not need to separately compute the CB copies.) We now let
Ti = 1 if CA(i) = 269 and 0 otherwise. For then

m∑
j=1

Ti

is the total number out of the m copies that yielded a tie.
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The following approximation results from the famous strong law of large numbers (SLLN)
in probability theory:

PT ≈ P̂T (m) =
1
m

m∑
j=1

Ti.

The SLLN asserts that PT is exactly (with probability one) the long-run proportion of copies
out of m that yield a tie; PT = limm→∞ P̂T (m). For example, it asserts that the proportion of
fair coin flips that land Heads approaches exactly a half as the number of flips increases to ∞.

How big should m be? Well, we will use m = 106 to be sure it is large enough!

5 Exact algorithm method for determining NT : a recursive ap-
proach

In general, trying to count through a huge number of possibilities (such as N = 251) to compute
exactly how many produce a tie, can be a daunting and time consuming task. Mathematically,
one can show that such problems are too hard to solve exactly in general (complexity theory).
But it turns out that in our case, because the values of the ni are not large, we indeed can
do the counting in a fast way (15 seconds on your laptop)! We will learn how to do this, and
we will see that our exact answer is very similar to our approximation thus showing that the
simulation method was a good one for approximation.

As we will see , the method of solving exactly for NT involves the use of a mathematical
recursion. As a simple example of a recursion consider

Xn+1 = 2Xn + 1, n ≥ 0,

where the values of n are the non-negative integers. If we start with a given initial value for
X0, then the recursion sequentially yields all future values of Xn. For example, if we choose
X0 = 1, then X1 = 2X0 + 1 = 2 × 1 + 1 = 3, and X2 = 2X1 + 1 = 2 × 3 + 1 = 7, and so on.
Computationally, this means that we can produce the values of Xn sequentially one at a time
and could have a computer do so up to any number (such as n = 500.) Sometimes a recursion
even allows us to explicitly solve for each value of Xn in terms of only the initial value X0. For
example, in our recursion here, we can do so: X2 = 4X0 + 3, and X3 = 8X0 + 7 and so on: Can
you derive the fact that

Xn = 2nX0 + 2n − 1, n ≥ 1,

?

5.1 The recursion

We have 51 integers n1, . . . n51. For any 1 ≤ j ≤ 51, and any non-negative integer I, let N(j, I)
denote the number of ways that a subset of the first j, n1, . . . nj , of all the 51 integers can be
used to sum up to I. (What we want is I = 269, and j = 51.) Then the following recursion
holds:

N(j + 1, I) = N(j, I) + N(j, I − nj+1). (3)

To motivate the recursion (3) consider a small case of only 6 states with ni values
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{n1, n2, n3, n4, n5, n6} = {3, 4, 4, 5, 6, 8}. A tie is then 15. How many ways can this be
achieved? The answer is easily seen as 4: Here are the 4 ways: {6, 5, 4}, {6, 5, 4}, {3, 4, 8},
{3, 4, 8}. So, N(6, 15) = 4.

Now let us use the recursion (3) to compute this answer: If we use I = 15, and we take
j = 5, then j + 1 = 6. For j = 5 we use the first 5 numbers {n1, n2, n3, n4, n5} = {3, 4, 4, 5, 6},
and we have n6 = 8. Note that I − n6 = 15− 8 = 7. The recursion then says that

N(6, 15) = N(5, 15) + N(5, 7).

To compute N(5, 15) we see that there are two ways (subsets) to get the sum 15 from the 5
elements {3, 4, 4, 5, 6}: {n5, n4, n3} = {6, 5, 4} and {n5, n4, n2} = {6, 5, 4}. Thus N(5, 15) = 2.

Similarly, there are two ways (subsets) to get the sum 7 from the 5 elements: {n1, n2} =
{3, 4} and {n1, n3} = {3, 4}. Thus N(5, 7) = 2.

Thus indeed N(6, 15) = N(5, 15) + N(5, 7) = 2 + 2 = 4.
Expanding further another step we could use the recursion to compute each of the two

pieces N(5, 15) and N(5, 7):)

N(5, 15) = N(4, 15) + N(4, 9),

and
N(5, 7) = N(4, 7) + N(4, 1).

It is easy to see that N(4, 9) = 2 (subsets {n2, n4} = {4, 5} and {n3, n4} = {4, 5}), and that
N(4, 7) = 2 (same subsets {n1, n2} = {3, 4} and {n1, n3} = {3, 4}), and N(4, 15) = 0 = N(4, 1).
Thus N(5, 15) = N(5, 7) = 2.

If we go a step further to compute

N(4, 7) = N(3, 7) + N(3, 2),

and
N(4, 9) = N(3, 9) + N(3, 4),

it is easy to see that N(3, 7) = 2 (same subsets {n1, n2} = {3, 4} and {n1, n3} = {3, 4}), and
N(3, 2) = 0, and N(3, 9) = 0 and N(3, 4) = 2 (subsets {n2} = {4} and {n3} = {4}).

If we go a step further to compute

N(3, 7) = N(2, 7) + N(2, 3),

N(3, 4) = N(2, 4) + N(2, 0),

it is easy to see that N(2, 7) = 1 (subset {n1, n2} = {3, 4}), and N(2, 3) = 1 (subset
{n1} = {3}). Also N(2, 4) = 1 ({n2} = {4}, and we do have N(2, 0) = 1 since we can use the
so-called empty subset ∅ consisting of no elements (so indeed they sum up to 0). Continuing:

N(2, 7) = N(1, 7) + N(1, 3),

N(2, 3) = N(1, 3) + N(1,−1)

N(2, 4) = N(1, 4) + N(1, 0),
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where we immediately see that N(1, 7) = 0 and N(1, 3) = 1 (subset {n1} = {3}), and of
course N(1,−1) = 0, and N(1, 4) = 0 and N(1, 0) = 1 (empty set again).

To actually use the recusion the way it is intended, we would start at the bottom initializing
with the immediate obvious pieces N(1, 3) = 1 and N(1, 7) = 0, and N(1, 4) = 0 then going
up one step to get N(2, 7) = N(1, 7) + N(1, 3) = 1 and N(2, 3) = N(1, 3) + N(1,−1) = 1,
N(2, 4) = N(1, 4) + N(1, 0) = 1. Then moving up another step to get N(3, 7) = 2, N(3, 4) = 2
and so on moving step by step all the way to the top to get the final answer N(6, 15) =
N(5, 15) + N(5, 7) = 2 + 2 = 4. All this can be done by your computer!

5.2 Further applications of the simulation approach: A particular election

Putting aside the problem of determining the number of ways NT there can be a tie, note
that the simulation approach can yield the probability PT there is a tie regardless of what the
individual state probabilities are. We used “equally likely” p = 0.5 for each state so that we
could assert the simple relation

NT = PT 251; (4)

our objective was to determine the value of NT .
But when the values of p differ from state to state (as they would in a real election), we

no longer have the relation in (4). But it would be useful to compute PT as well as certain
expected values and probabilities under such a scenario such as E(CA) , the expected number
of EC votes that candidate A will get, or P (CA ≥ 270), the probability that candidate A will
be the winner. In a real election, then, one can in principle make predictions of who will win.
The idea is to obtain good estimates of pi

def= the probability that candidate A will win state i,
for each 1 ≤ i ≤ 51. One way of estimating pi is through extensive state-by-state polling data.
Note how this method completely bypasses using the overall national poll estimate: That is
not what determines who will win a USA Presidential election. Of course, if one candidate is
leading the other by a wide margin in the national polls, then it becomes increasingly unlikely
that the other will win; a simulation study is not likely to shed any light on the matter. It
is only when the polls are relatively close that a simulation study can really add new help to
predict what will happen.

6


	Introduction
	The EC votes
	The problem statement
	Simulation method for estimation of NT
	Exact algorithm method for determining NT: a recursive approach
	The recursion
	Further applications of the simulation approach: A particular election


