
Copyright c© 2007 by Karl Sigman

1 Acceptance-Rejection Method

As we already know, finding an explicit formula for F−1(y) for the cdf of a rv X we wish to
generate, F (x) = P (X ≤ x), is not always possible. Moreover, even if it is, there may be
alternative methods for generating a rv distributed as F that is more efficient than the inverse
transform method or other methods we have come across. Here we present a very clever method
known as the acceptance-rejection method.

We start by assuming that the F we wish to simulate from has a probability density function
f(x); that is, the continuous case. Later we will give a discrete version too, which is very similar.

The basic idea is to find an alternative probability distribution G, with density function g(x),
from which we already have an efficient algorithm for generating from (e.g., inverse transform
method or whatever), but also such that the function g(x) is “close” to f(x). In particular, we
assume that the ratio f(x)/g(x) is bounded by a constant c > 0; supx{f(x)/g(x)} ≤ c. (And
in practice we would want c as close to 1 as possible.)

Here then is the algorithm for generating X distributed as F :

Acceptance-Rejection Algorithm for continuous random variables

1. Generate a rv Y distributed as G.

2. Generate U (independent from Y).

3. If
U ≤ f(Y)

cg(Y)
,

then set X = Y (“accept”) ; otherwise go back to 1 (“reject”).

Before we prove this and give examples, several things are noteworthy:

• f(Y) and g(Y) are rvs, hence so is the ratio f(Y)
cg(Y) and this ratio is independent of U in

Step (2).

• The ratio is bounded between 0 and 1; 0 < f(Y)
cg(Y) ≤ 1.

• The number of times N that steps 1 and 2 need to be called (e.g., the number of iterations
needed to successfully generate X) is itself a rv and has a geometric distribution with
“success” probability p = P (U ≤ f(Y)

cg(Y) ; P (N = n) = (1−p)n−1p, n ≥ 1. Thus on average
the number of iterations required is given by E(N) = 1/p.

• In the end we obtain our X as having the conditional distribution of a Y given that the
event {U ≤ f(Y)

cg(Y)} occurs.

A direct calculation yields that p = 1/c, by first conditioning on Y :
P (U ≤ f(Y)

cg(Y) | Y = y) = f(y)
cg(y) ; thus, unconditioning and recalling that Y has density g(y) yields

p =
∫ ∞

−∞

f(y)
cg(y)

× g(y)dy

1

=
1
c

∫ ∞

−∞
f(y)dy

=
1
c
,

where the last equality follows since f is a density function (hence by definition integrates to
1). Thus E(N) = c, the bounding constant, and we can now indeed see that it is desirable
to choose our alternative density g so as to minimize this constant c = supx{f(x)/g(x)}. Of
course the optimal function would be g(x) = f(x) which is not what we have in mind since the
whole point is to choose a different (easy to simulate) alternative from f . In short, it is a bit
of an art to find an appropriate g. In any case, we summarize with

The expected number of iterations of the algorithm required until an X is successfully
generated is exactly the bounding constant c = supx{f(x)/g(x)}.

Proof that the algorithm works

Proof : We must show that the conditional distribution of Y given that U ≤ f(Y)
cg(Y) , is indeed F ;

that is, that P (Y ≤ y | U ≤ f(Y)
cg(Y)) = F (y). Letting B = {U ≤ f(Y)

cg(Y)}, A = {Y ≤ y}, recalling
that P (B) = p = 1/c, and then using the basic fact that P (A|B) = P (B|A)P (A)/P (B) yields

P (U ≤ f(Y)
cg(Y)

| Y ≤ y)× G(y)
1/c

=
F (y)
cG(y)

× G(y)
1/c

= F (y),

where we used the following computation:

P (U ≤ f(Y)
cg(Y)

| Y ≤ y) =
P (U ≤ f(Y)

cg(Y) , Y ≤ y)

G(y)

=
∫ y

−∞

P (U ≤ f(y)
cg(y) | Y = w ≤ y)

G(y)
g(w)dw

=
1

G(y)

∫ y

−∞

f(w)
cg(w)

g(w)dw

=
1

cG(y)

∫ y

−∞
f(w)dw

=
F (y)
cG(y)

.

2 Applications of the acceptance-rejection method

2.1 Normal distribution

If we desire an X ∼ N(µ, σ2), then we can express it as X = σZ + µ, where Z denotes a rv
with the N(0, 1) distribution. Thus it suffices to find an algorithm for generating Z ∼ N(0, 1).
Moreover, if we can generate from the absolute value, |Z|, then by symmetry we can obtain our
Z by independently generating a rv S (for sign) that is ±1 with probability 1/2 and setting

2

Z = S|Z|. In other words we generate a U and set Z = |Z| if U ≤ 0.5 and set Z = −|Z| if
U > 0.5.

|Z| is non-negative and has density

f(x) =
2√
2π

e−x2/2, x ≥ 0.

For our alternative we will choose g(x) = e−x, x ≥ 0, the exponential density with rate
1, something we already know how to easily simulate from (inverse transform method, for
example). Noting that h(x) def= f(x)/g(x) = ex−x2/2

√
2/π, we simply use calculus to compute its

maximum (solve h′(x) = 0); which must occur at that value of x which maximizes the exponent
x− x2/2; namely at value x = 1. Thus c =

√
2e/π ≈ 1.32, and so f(y)/cg(y) = e−(y−1)2/2.

The algorithm for generating Z is then

1. Generate Y with an exponential distribution at rate 1; that is, generate U and set Y =
− ln(U).

2. Generate U

3. If U ≤ e−(Y−1)2/2, set |Z| = Y ; otherwise go back to 1.

4. Generate U . Set Z = |Z| if U ≤ 0.5, set Z = −|Z| if U > 0.5.

Note that in 3, U ≤ e−(Y−1)2/2 if and only if − ln(U) ≥ (Y − 1)2/2 and since − ln(U) is
exponential at rate 1, we can simplify the algorithm to

Algorithm for generating Z ∼ N(0, 1)

1. Generate two independent exponentials at rate 1; Y1 = − ln(U1) and Y2 = − ln(U2).

2. If Y2 ≥ (Y1 − 1)2/2, set |Z| = Y1; otherwise go back to 1.

3. Generate U . Set Z = |Z| if U ≤ 0.5, set Z = −|Z| if U > 0.5.

As a nice afterthought, note that by the memoryless property of the exponential distribution,
the amount by which Y2 exceeds (Y −1)2/2 in Step 2 of the algorithm when Y1 is accepted, that
is, the amount Y

def= Y2 − (Y1 − 1)2/2, has itself the exponential distribution with rate 1 and
is independent of Y1. Thus, for free, we get back an independent exponential which could then
be used as one of the two needed in Step 1, if we were to want to start generating yet another
independent N(0, 1) rv. Thus, after repeated use of this algorithm, the expected number of
uniforms required to generate one Z is (2c + 1)− 1 = 2c = 2.64.

One might ask if we could improve our algorithm for Z by changing the rate of the expo-
nential; that is, by using an exponential density g(x) = λe−λx for some λ 6= 1. The answer is
no: λ = 1 minimizes the value of c obtained (as can be proved using elementary calculus).

3

2.2 Beta distribution

In general, a beta distribution on the unit interval, x ∈ (0, 1), has a density of the form
f(x) = bxn(1 − x)m with n and m non-negative (integers or not). The constant b is the
normalizing constant,

b =
[∫ 1

0
xn(1− x)mdx

]−1
.

(Such distributions generalize the uniform distribution and are useful in modeling random
proportions.)

Let us consider a special case of this: f(x) = bxn(1− x)n = b(x(1− x))n. Like the uniform
distribution on (0, 1), this has mean 1/2, but its mass is more concentrated near 1/2 than near
0 or 1; it has a smaller variance than the uniform. If we use g(x) = 1, x ∈ (0, 1) (the uniform
density), then f(x)/g(x) = f(x) and as is easily verified, c = supx f(x) is achieved at x = 1/2;
c = b(1/4)n.

Thus we can generate from f(x) = b(x(1− x))n as follows:

1. Generate U1 and U2.

2. If U2 ≤ 4n(U1(1− U1))n, then set X = U1; otherwise go back to 1.

It is interesting to note that in this example, and in fact in any beta example using g(x) = 1,
we do not need to know (or compute in advance) the value of b; it cancels out in the ratio
f(x)/cg(x). Of course if we wish to know the value of c, we would need to know the value of
b. In the case when n and m are integers, b is given by b = (n + m + 1)!/n!m!, which in our
example yields b =

(2n+1
n

)
, and so c =

(2n+1
n

)
/4n. For large values of n, this is not so efficient,

as should be clear since in that case the two densities f and g are not very similar.
There are other ways to generate the beta distribution. For example one can use the

basic fact (can you prove this?) that if X1 is a gamma rv with shape parameter n + 1, and
independently X2 is a gamma rv with shape parameter m + 1 (and both have the same scale
parameter), then X = X1/(X1 + X2) is beta with density f(x) = bxn(1− x)m. So it suffices to
have an efficient algorithm for generating the gamma distribution. In general, when n and m
are integers, the gammas become Erlang (represented by sums of iid exponentials); for example,
if X1 and X2 are iid exponentials, then X = X1/(X1 + X2) is uniform on (0, 1).

The gamma distribution can always be simulated using acceptance-rejection by using the
exponential density g(x) = λe−λx in which 1/λ is chosen as the mean of the gamma (it can be
shown that this value of λ is optimal).

3 Discrete case

The discrete case is analogous to the continuous case. Suppose we want to generate an X
that is a discrete rv with probability mass function (pmf) p(k) = P (X = k). Further suppose
that we can already easily generate a discrete rv Y with pmf q(k) = P (Y = k) such that
supk{p(k)/q(k)} ≤ c < ∞. The following algorithm yields our X:

Acceptance-Rejection Algorithm for discrete random variables

1. Generate a rv Y distributed as q(k).

2. Generate U (independent from Y).

3. If U ≤ p(Y)
cq(Y) , then set X = Y ; otherwise go back to 1.

4

