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1 Introduction to reducing variance in Monte Carlo simulations

1.1 Review of confidence intervals for estimating a mean

In statistics, we estimate an unknown mean µ = E(X) of a distribution by collecting n iid
samples from the distribution, X1, . . . , Xn and using the sample mean

X(n) =
1
n

n∑
j=1

Xj . (1)

Letting σ2 = V ar(X) denote the variance of the distribution, we conclude that

V ar(X(n)) =
σ2

n
. (2)

The central limit theorem asserts that as n →∞, the distribution of
Zn

def=
√

n
σ (X(n) − µ) tends to N(0, 1), the unit normal distribution. Letting Z denote a

N(0, 1) rv, we conclude that for n sufficiently large,
Zn ≈ Z in distribution. From here we obtain for any z ≥ 0,

P (|X(n)− µ| > z
σ√
n

) ≈ P (|Z| > z) = 2P (Z > z).

(We can obtain any value of P (Z > z) by referring to tables, etc.)
For any α > 0 no matter how small (such as α = 0.05), letting zα/2 be such that P (Z >

zα/2) = α/2, we thus have

P (|X(n)− µ| > zα/2
σ√
n

) ≈ α,

which implies that the unknown mean µ lies within the interval X(n)± zα/2
σ√
n

with (approxi-
mately) probability 1− α.

This allows us to construct confidence intervals for our estimate:

we say that the interval X(n)± zα/2
σ√
n

is a 100(1−α)% confidence interval for the
mean µ.

Typically, we would use (say) α = 0.05 in which case zα/2 = z0.025 = 1.96, and we thus
obtain a 95% confidence interval X(n)± (1.96) σ√

n
.

The length of the confidence interval is 2(1.96) σ√
n

which of course tends to 0 as the sample
size n gets larger.

In practice we would not actually know the value of σ2; it would be unknown (just as µ is).
But this is not really a problem: we instead use an estimate for it, the sample variance s2(n)
defined by

s2(n) =
1

n− 1

n∑
j=1

(Xj −Xn)2.

It can be shown that s2(n) → σ2, with probability 1, as n →∞ and that E(s2(n)) = σ2, n ≥ 2.
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So, in practice we would use s(n) is place of σ when constructing our confidence intervals.
For example, a 95% confidence interval is given by X(n)± (1.96) s(n)√

n
.

The following recursions can be derived; they are useful when implementing a simulation
requiring a confidence interval:

Xn+1 = Xn +
Xn+1 −Xn

n + 1
,

S2
n+1 =

(
1− 1

n

)
S2

n + (n + 1)(Xn+1 −Xn)2.

1.2 Application to Monte Carlo simulation

In Monte Carlo simulation, instead of “collecting” the iid data X1, . . . , Xn, we simulate it.
Moreover, we can choose n as large as we want; n = 10, 000 for example, so the central limit
theorem justification for constructing confidence intervals can safely be used. Thus we can
immediately obtain confidence intervals for Monte Carlo estimates.

But simulation also allows us to be clever: We can purposely try to induce negative cor-
relation among the variables X1, . . . , Xn, or generate copies that while having the same mean,
have a smaller variance, so that the variance of the estimator in (1) becomes smaller than σ2

n
resulting in a smaller confidence interval. The idea is to try to get even better estimates by
reducing the uncertainty in our estimate. In the next sections, we explore ways of doing this.

1.3 Antithetic variates method

Let Xi denote our copies of X (each has the same distribution hence the same mean µ and
variance σ2) but let us not assume that they are independent. Let n = 2m, for some m ≥ 1,
that is, n is even. Note that

X(n) =
1

2m

2m∑
j=1

Xj =
1
m

m∑
j=1

Yj = Y (m), (3)

where

Y1 =
X1 + X2

2

Y2 =
X3 + X4

2
...

Ym =
Xn−1 + Xn

2
,

and we conclude that

The two estimators Y (m) and X(n) for E(X) in (3) are identical.

Because they are identical, we can and will use Y (m) in what follows. Moreover, E(Yi) =
E(X) = µ (remember we are assuming that the Xi all have the same distribution hence the
same mean). This means that for purposes of argument here we can view each Yi as the end
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“copy” that we wish to simulate from (instead of the Xi ). We let Y = X1+X2
2 denote a generic

Yi. The problem of estimation can be re-cast as “we are trying to estimate µ = E(Y )”.
Computing variances,

V ar(Y ) = (1/4)(σ2 + σ2 + 2Cov(X1, X2))
= (1/2)(σ2 + Cov(X1, X2)).

In the case when the Xi are iid, Cov(X1, X2) = 0 and thus V ar(Y ) = σ2/2 yielding (as we
already know, recall (2)) V ar(Y (m)) = σ2

n .
But if Cov(X1, X2) < 0, then V ar(Y ) < (1/2)σ2 yielding V ar(Y (m)) < σ2

n ; variance is
reduced. So it is in our interest to somehow create some negative correlation within each pair
(X1, X2), (X3, X4), . . ., but keep the pairs iid so that the Yi are iid (and thus the CLT still
applies); for then V ar(Y (m)) will be lowered from what it would be if we simply used iid copies
of the Xi.

To motivate how we might create the desired negative correlation, recall that we can generate
an exponentially distributed rv X1 = −(1/λ) ln (U) with U uniformly distributed on (0, 1). Now
instead of using a new independent uniform to generate a second such copy, use 1 − U which
we well know is also uniformly distributed on (0, 1); that is, define X2 = −(1/λ) ln (1− U).
Clearly X1 and X2 are negatively correlated since if U increases, then 1−U decreases and the
function ln(y) is an increasing function of y: X1 increases iff U increases iff 1− U decreases iff
X2 decreases. More generally, for any distribution F (x) = P (X ≤ x) with inverse F−1(y) we
could generate a negatively correlated pair via X1 = F−1(U), X2 = F−1(1− U) since F−1(y)
is a monotone increasing function of y. The random variables U and 1− U have a correlation
coefficient ρ = −1, they are negatively correlated (to the largest extent), thus the monotonicity
preserves the property of negative correlation; ρX1,X2 < 0 (not necessarily −1 though).

In a general Monte Carlo simulation our X is of the form X = h(U1, . . . , Uk), for some
(perhaps very complicated) function h, and some k (perhaps large), that is, we need k iid Ui

to generate each copy of X. For example, if we are considering

X = C2 = (
1
2

2∑
i=1

Si −K)+,

the payoff at time T = 2 of an Asian call option under the binomial lattice model, then re-writing

1
2

2∑
i=1

Si = (1/2)S0Y1[1 + Y2],

where the Yi are the iid up-down rvs, we have

h(U1, U2) =
(
(1/2)S0(uI{U1 ≤ p}+ dI{U1 > p})[1 + (uI{U2 ≤ p}+ dI{U2 > p})]−K

)+
.

This function is monotone decreasing in U1 and U2 : as either variable increases, they will
exceed the value p and hence the indicators will tend towards the lower value d as opposed
to the higher value u > d. Because the vectors (U1, U2) and (1 − U1, 1 − U2) are identically
distributed, so are the rvs X1 = h(U1, U2) and X2 = h(1− U1, 1− U2); in particular they have
the same mean E(X). But the monotonicity of h results in negative correlation between them,
Cov(X1, X2) < 0.

In general, as long as the function h is monotone (either increasing or decreasing) in each
variable, then it can be shown that X1 = h(U1, . . . , Uk) and X2 = h(1 − U1, . . . , 1 − Uk) are
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indeed negatively correlated, and are referred to as antithetic variates. Again, because the
vectors (U1, U2, . . . Uk) and (1 − U1, 1 − U2, . . . 1 − Uk) have the same distribution, so do X1

and X2; in particular they have the same mean E(X). But because of the induced negative
correlation (when h is monotone) the two are themselves negatively correlated copies:

Proposition 1.1 If the function h for generating X = h(U1, . . . , Uk) is monotone in each
variable, then X1 = h(U1, . . . , Uk) and X2 = h(1 − U1, . . . , 1 − Uk) with the Ui iid uniform on
(0, 1) are in fact negatively correlated; Cov(X1, X2) < 0.

(Equivalently E(X1X2) < E(X1)E(X2) = E2(X).)

Algorithm for using antithetic variates to estimate µ = E(X), when X = h(U1, . . . , Uk) is
monotone in the Ui:

The method of simulating our pairs is straightforward:

1. Generate U1, . . . Uk. Construct a first pair: Set X1 = h(U1, . . . , Uk) and X2 = h(1 −
U1, . . . , 1− Uk).

2. Now independently generate k new iid uniforms to construct another pair X3, X4 and so
on pair by pair until reaching m (large) desired pairs.

3. Use the estimate

Y (m) =
m∑

j=1

Yj ,

where

Y1 =
X1 + X2

2

Y2 =
X3 + X4

2
...

Ym =
X2m−1 + X2m

2
.

To construct our (new and better) confidence interval:

Define the sample variance as

s2(m) =
1

m− 1

m∑
j=1

(Yj − Y m)2.

Then the interval Y (m)± zα/2
s(m)√

n
is a 100(1− α)% confidence interval for the mean µ.

As a very simple example recall that we can estimate π by observing that π/4 = E(
√

1− U2).
Since h(y) =

√
1− y2 is monotone decreasing in y, we can use antithetic variates. Thus we

would use X1 =
√

1− U2
1 , X2 =

√
1− (1− U1)2 for our first pair, X3 =

√
1− U2

2 , X4 =√
1− (1− U2)2 and so on.
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Remark 1.1 In a real simulation application, computing exactly Cov(X1, X2) when X1 and X2

are antithetic is never possible in general; after all, we do not even know (in general) either
E(X) or V ar(X). But this is not important since our objective was only to reduce the variance,
and we accomplished that.

1.4 Antithetic normal rvs

In many finance applications, the fundamental rvs needed to construct a desired output copy
X are unit normals, Z1, Z2, . . .. For example, when using geometric Brownian motion for asset
pricing, our payoffs typically can be written in the form X = h(Z1, . . . , Zk). Noting that −Z
is also a unit normal if Z is, and that the correlation coefficient between them is ρ = −1, the
following is the Gaussian analogue to Proposition 1.1

Proposition 1.2 If the function h for generating X = h(Z1, . . . , Zk) is monotone in each
variable, then X1 = h(Z1, . . . , Zk) and X2 = h(−Z1, . . . ,−Zk) with the Zi iid N(0, 1) are in
fact negatively correlated; Cov(X1, X2) < 0.

Example with an Asian call option:

Suppose for example you wish to estimate the expected payoff of an Asian call option (termi-
nation date T ) averaged over the time points 0 = t0 < t1 < t2 < · · · < tk = T . The payoff is
then

X = CT = (
1
k

k∑
i=1

S(tk)−K)+.

We next show how to construct the antithetic pairs.

1. Generate k iid N(0, 1) rvs, Z1, . . . , Zk. Set

Li = eσ
√

ti−ti−1Zi+µ(ti−ti−1), i ∈ {1, 2, . . . , k}. (4)

2. Recursively set

S(t1) = S(0)L1

S(t2) = S(t1)L2 = S0L1 × L2

...
S(tk) = S(tk−1)Lk = S0L1 × L2 × · · · × Lk.

Set

X1 = (
1
k

k∑
i=1

S(tk)−K)+.

3. Now reset the Li in (5) by using −Z1, . . . ,−Zk in place of Z1, . . . , Zk, that is, set

Li = e−σ
√

ti−ti−1Zi+µ(ti−ti−1), i ∈ {1, 2, . . . , k}. (5)
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4. Recursively set

S(t1) = S(0)L1

S(t2) = S(t1)L2 = S0L1 × L2

...
S(tk) = S(tk−1)Lk = S0L1 × L2 × · · · × Lk.

Set

X2 = (
1
k

k∑
i=1

S(tk)−K)+.

5. Set

Y =
X1 + X2

2
.

Denoting the above copy by Y1 = Y , we can generate a second independent such copy by
starting again at (1) with a new (independent) Z1, . . . , Zk and settingY2 = Y . Repeating this
procedure m times yields our desired m iid copies of Y .

1.5 Control variates

Suppose we wish to estimate µ = E(X) using Monte Carlo simulation (e.g., using X(n) with
iid copies of X). Letting C be any other rv, with mean E(C), and b a constant, note that the
rv Y given by

Y = X − b(C − E(C)), (6)

has the same desired mean: E(Y ) = E(X). Thus, if we could simulate iid copies of Y , Y1, . . . Yn,
then we could use as our estimate Y (n) instead of X(n).

Noting further that
σ2

Y = V ar(Y ) = σ2
X + b2σ2

C − 2bσX,C , (7)

we see that by choosing C and b wisely, it might be possible to reduce variance, that is, to have
σ2

Y < σ2
X thus resulting in the lower variance estimator Y (n) than the usual X(n). If X is non-

negative, then this would amount to choosing b > 0 and selecting C and X to have high positive
correlation, but in general many possibilities might come into play. Before we investigate this
further, note that it would be very helpful if C was already part of the simulation of X in the
sense that whenever we simulated a copy of X, a copy of C necessarily came out for free along
the way. Also we want C to be such that we exactly know the value E(C). The idea being that
we do not want to have to increase our work. An example would be X = ([S(t1)+S(t2)]/2−K)+
and C = S(t2) for an Asian call option.

This method of introducing such a C for purpose of reducing variance is the control variates
method, and C − E(C) is called the control variate for estimating E(X).

For a given C, we can view (7) as a function of b, g(b) = σ2
Y (b), and then using elementary

calculus, set g′(b) = 2bσ2
C − 2σx,C = 0 and solve for the minimum b∗. This yields:

b∗ =
σX,C

σ2
C

, (8)

σ2
Y (b∗) = σ2

X(1− ρ2
X,C), (9)

6



where ρX,C = σX,C/(σXσC) denotes the correlation coefficient. Thus by choosing any C for
which σX,C 6= 0 we can always reduce variance, and it is desirable to choose a C that is strongly
correlated with X.

In practice we would not be able to compute the value of b∗ exactly since it is unlikely
that we would know σX,C and maybe not even σ2

C . But we could estimate it in advance by
simulation: Choose n large and use

b∗ ≈ b∗(n) =
∑n

i=1(Xi −X(n))(Ci − E(C))∑n
i=1(Ci − E(C))2

. (10)

In other words we would first (just once) run a simulation (large n) to obtain the estimate
b∗(n), and then use that fixed value throughout our desired Monte Carlo simulation.

Examples with GBM

1. Asian call option: With 0 < t1 < · · · < tk = T , the payoff at time T is

X = (
1
k

k∑
i=1

S(ti)−K)+.

A natural choice for C is the stock itself at the terminal value, C = S(T ) = S(tk). We
certainly can compute E(C) it is part of the simulation anyhow and is clearly positively
correlated with X.
Another choice would be the payoff of a European call C = (S(T ) −K)+, since in this
case E(C) is known exactly from the Black-Scholes options pricing formula. An even
better choice (more correlation) would be to use C = (Πk

i=1S(ti) −K)+, the payoff of a
geometrically averaged Asian option. Here to, it turns out that the expected payoff E(C)
is exactly known (a formula exists), and because it incorporates all k values of the GBM,
it yields a higher correlation with X.
It should not be surprising that the choice of C might also depend on the strike price
K. For example, if K is very small compared to S(0), one would, with high probability,
obtain a positive payoff of 1

k

∑k
i=1 S(ti)−K, yielding a high correlation with (say) any of

the choices of C mentioned above, whereas if K is very large compared to S(0) then one
would, with high probability, obtain no payoff at all, thus yielding a low correlation with
a choice of C = S(T ) (but still a high one with the geometrically averaged payoff above).
There is no obvious best choice that works with all payoffs; one must take into consider-
ation the specific structure of a payoff, and its parameters.

2. In payoffs with multiple assets such as a spread option, one can use a control that uses
all (or some) of the assets. For example, for X = (|S1(T )− S2(T )| −K)+ one might try
C = S1(T )− S2(T ).
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