
Copyright c© 2007 by Karl Sigman

1 Simulating normal (Gaussian) rvs with applications to simu-
lating Brownian motion and geometric Brownian motion in
one and two dimensions

Fundamental to many applications in financial engineering is the normal (Gaussian) distribu-
tion. It is the building block for simulating such basic stochastic processes as Brownian motion
and geometric Brownian motion. In this section, we will go over algorithms for generating
univariate normal rvs and learn how to use such algorithms for constructing sample paths of
Brownian motion and geometric Brownian motion, in both one and two dimensions, at a desired
sequence of times t1 < t2 < · · · < tk.

1.1 Generating a univariate normal random variable

We focus here on the generation of a rv Z ∼ N(0, 1) for we can always then transform it into
an X ∼ N(µ, σ2) via X = σZ + µ. For example, if {B(t) : t ≥ 0} denotes a standard Brownian
motion (BM), then for any fixed t > 0, B(t) ∼ N(0, t) can be constructed via B(t) =

√
tZ. If it

is desired to simulate the pair (B(t1), B(t2)) where 0 < t1 < t2, then we can use the recursion
B(t2) = B(t1)+B(t2)−B(t1) and the basic stationary and independent increments properties of
BM: Generate two iid N(0, 1) rvs, Z1, Z2 and set B(t1) =

√
t1Z1, B(t2) =

√
t1Z1 +

√
t2 − t1Z2.

The point is that B(t1) ∼ N(0, t1), and independently B(t2) − B(t1) ∼ N(0, t2 − t1). This
method extends in the obvious fashion to the generation of the k− dimensional multivariate
normal vector (B(t1), B(t2), . . . , B(tk)), in which 0 < t1 < t2 < · · · < tk, k ≥ 2.

N(0, 1) density and cdf

The density of Z is given by

f(x) =
1√
2π

e
−x2

2 , x ∈ R,

and the cdf by

Θ(x) = P (Z ≤ x) =
1√
2π

∫ x

−∞
e
−y2

2 dy, x ∈ R.

Using the inverse transform method is not possible here since we do not have an explicit
closed formula for Θ−1(y). One could of course approximate this inverse function by some closed
form function and then use that, and there are some algorithms in the literature for doing that.
But it is possible to exactly generate a Z ∼ N(0, 1) using alternative (clever) algorithms, so
that is what we will do.

Acceptance rejection algorithm for Z

Recall from our lecture on the acceptance rejection method that we already have an algorithm
for generating a rv Z ∼ N(0, 1):

Algorithm for generating Z ∼ N(0, 1) via the acceptance rejection method

1. Generate two independent exponentials at rate 1; Y1 = − ln(U1) and Y2 = − ln(U2).

1

2. If Y2 ≥ (Y1 − 1)2/2, set |Z| = Y1; otherwise go back to 1.

3. Generate U . Set Z = |Z| if U ≤ 0.5, set Z = −|Z| if U > 0.5.

On average, this algorithm requires 2
√

2e/π + 1 ≈ 3.64 uniforms to produce one copy of Z.
Since we of course will use the algorithm many many times over and over again, we can do even
better by using the “free” independent exponential produced as overshoot in a success at step
2), Y

def= Y2 − (Y1 − 1)2/2, as the Y1 in step 1) in the next round; this reduces the expected
number to 2.64.

We next introduce another algorithm that generates pairs Z1, Z2 of independent normals
each time. Called the polar method, it requires some more complex calculations (sin, cos, etc.)
but has an advantage of only requiring one uniform for each copy of Z, not a random number.
In a variety of real applications, it is very desirable to try to “synchronize” the use of random
numbers across different runs in a simulation so as to reduce the variance of an estimate, and
thus a non-random algorithm might well be useful at times. So we include it here in our study.

Algorithm for generating Z ∼ N(0, 1) via the polar method

1. Generate an exponential at rate 1/2, D = −2 ln(U1), and a uniform over (0, 2π), Θ =
2πU2.

2. Set Z1 =
√

D cos Θ, Z2 =
√

D sinΘ.

The polar method is easily derived (proved) via starting with an iid N(0, 1) pair Z1, Z2, mapping
the vector (Z1, Z2) into polar coordinates, D = Z2

1 +Z2
2 (the squared distance from the origin),

Θ = arctan (Z2/Z1) (the angle, counterclockwise, from the horizontal axis to the point (Z1, Z2)),
then deriving (using elementary multivariate calculus, with the Jacobian, etc.) the joint density
function g(d, θ) of (D,Θ), to reveal that D is an exponential at rate 1/2 and independent of D,
the angle Θ is uniform over (0, 2π); g(d, θ) = 1

2e−d/2 × 1
2π , d > 0, θ ∈ (0, 2π). Using this fact

inversely then yields the algorithm: we can produce Z1, Z2 by mapping an independent pair
(D,Θ) back into rectangular coordinates; that is exactly what step 2. in the algorithm does.

1.2 Simulating 1-dimensional Brownian motion (BM) and geometric Brow-
nian motion (GBM)

1.2.1 Standard BM

A stochastic process B = {B(t) : t ≥ 0} possessing (wp1) continuous sample paths is called
standard Brownian motion (BM) if

1. B(0) = 0.

2. B has both stationary and independent increments.

3. B(t)−B(s) has a normal distribution with mean 0 and variance t− s, 0 ≤ s < t.

2) and 3) together can be summarized by: If t0 = 0 < t1 < t2 < · · · < tk, then the
increment rvs B(ti)−B(ti−1), i ∈ {1, . . . k}, are independent and distributed as N(0, ti− ti−1).
In particular, B(ti)−B(ti−1) is independent of B(ti−1) = B(ti−1)−B(0).

If we only wish to simulate B(t) at one fixed value t > 0, then we need only generate a unit
normal Z ∼ N(0, 1) and set B(t) =

√
tZ. But typically, we will want to simulate (say) k values

at times t0 = 0 < t1 < t2 < · · · < tk and we can easily do so as follows:

2

Generate k iid unit normals Z1, Z2, . . . , Zk, then construct the independent increments via
B(ti)−B(ti−1) =

√
ti − ti−1Zi, i = 1, . . . , k.

Thus to simulate the values B(t1), . . . , B(tk), we sequentially generate unit normals, Z1, Z2, . . . , Zk,
and use the recursion
B(ti+1) = B(ti) + (B(ti+1)−B(ti)) = B(ti) +

√
ti+1 − tiZi+1, i ∈ {0, . . . k − 1}.

Simulating Standard BM at times 0 = t0 < t1 < t2 < · · · < tk:

Sequentially generate unit normals Z1, Z2, . . . , Zk, and recursively define

B(t1) =
√

t1Z1

B(t2) = B(t1) +
√

t2 − t1Z2 =
√

t1Z1 +
√

t2 − t1Z2

...

B(tk) =
k∑

i=1

√
ti − ti−1Zi.

In the end, we see that to simulate BM at a collection of specific times we need only generate
unit normals.

1.2.2 BM with drift

X(t) = σB(t) + µt will denote the BM with drift µ and variance term σ > 0. It has continuous
sample paths and is defined by

1. X(0) = 0.

2. X has both stationary and independent increments.

3. X(t)−X(s) has a normal distribution with mean µ(t−s) and variance σ2(t−s), 0 ≤ s < t.

X(t) − X(s) thus can be constructed (simulated) by generating a standard normal rv Z
and setting X(t) − X(s) = σ

√
t− sZ + µ(t − s). Again, by the stationary and independent

increments, we can simulate such a BM at times 0 = t0 < t1 < t2 < · · · < tk, by generating k
iid unit normals Z1, Z2, . . . , Zk and using the recursion
X(ti+1) = X(ti) + (X(ti+1)−X(ti)) = X(ti) + σ

√
ti+1 − tiZi+1 + µ(ti+1 − ti).

Simulating BM with drift µ and variance term σ at times 0 = t0 < t1 < t2 < · · · < tk:

Sequentially generate unit normals Z1, Z2, . . . , Zk, and recursively define

X(t1) = σ
√

t1Z1 + µt1

X(t2) = X(t1) + σ
√

t2 − t1Z2 + µ(t2 − t1) = σ
√

t1Z1 + µt1 + σ
√

t2 − t1Z2 + µ(t2 − t1)
...

X(tk) =
k∑

i=1

(σ
√

ti − ti−1Zi + µ(ti − ti−1)).

3

1.2.3 Geometric BM

Geometric Brownian motion (GBM) is given by

S(t) = S(0)eX(t), t ≥ 0,

where X(t) = σB(t) + µt, t ≥ 0, is a BM. eX(t) has a lognormal distribution for each fixed
t > 0. In general if Y = eX is lognormal with X ∼ N(µ, σ2), then we can easily simulate Y via
setting Y = eσZ+µ, with Z ∼ N(0, 1).

Moreover, for any 0 ≤ s < t it holds that

S(t) = S(0)
S(s)
S(0)

× S(t)
S(s)

= S(0)eX(s) × eX(t)−X(s),

and since the increment X(s) is independent of the increment X(t) −X(s), we conclude that
the consecutive ratios S(s)

S(0) and S(t)
S(s) are independent lognormals. We can thus simulate the pair

(S(s), S(t)) by generating two iid N(0, 1) rvs, Z1, Z2 and setting S(s) = S(0)eσ
√

sZ1+µs, S(t) =
S(s)eσ

√
t−sZ2+µ(t−s) = S(0)eσ

√
sZ1+µs × eσ

√
t−sZ2+µ(t−s).

More generally, for 0 = t0 < t1 < t2 < · · · < tk, define Yi = S(ti)/S(ti−1), i ∈ {1, 2, . . . , k}.
Then we can write

S(t1) = S(0)Y1

S(t2) = S(t1)Y2 = S0Y1 × Y2

...
S(tk) = S(tk−1)Yk = S0Y1 × Y2 × · · · × Yk.

The Yi are independent lognormal rvs and can be constructed by generating k iid N(0, 1) rvs,
Z1, Z2, . . . Zk and setting

Yi = eσ
√

ti−ti−1Zi+µ(ti−ti−1), i ∈ {1, 2, . . . , k}. (1)

Simulating paths of GBM is thus an easy consequence of our algorithm for simulating paths
of BM since for 0 = t0 < t1 < t2 < · · · < tk, the following recursion holds

S(ti+1) = S(ti)eX(ti+1)−X(ti), i ∈ {0, 1, . . . , k − 1}.

Simulating Geometric BM (with drift µ and variance term σ) at times 0 = t0 < t1 < t2 < · · · <
tk:

Sequentially generate unit normals Z1, Z2, . . . , Zk, and set the Yi as in (1). Then recursively
define

S(t1) = S(0)Y1

S(t2) = S(t1)Y2 = S0Y1 × Y2

...
S(tk) = S(tk−1)Yk = S0Y1 × Y2 × · · · × Yk.

4

1.3 Simulating correlated BM and GBM in two dimensions in which the two
BM’s have a specific desired correlation ρ.

In many financial applications, there are several correlated assets that make up a portfolio or
from which certain options/derivatives are created (spread options, basket options, etc.). Here
we focus on the case of two correlated assets.

Let W1(t) and W1(t) denote standard Brownian motions. Consider two Brownian motions
X1(t) = σ1W1(t)+µ1t, and X2(t) = σ2W1(t)+µ2t. X(t) = (X1(t), X2(t))T is a two-dimensional
Brownian motion, where we shall assume the coordinates have correlation coefficient ρ: For a
given −1 < ρ < 1,

Cov(X1(t), X2(t))
σ1

√
t× σ2

√
t

= ρ, t > 0. (2)

To construct this BM, we start with two independent standard BM’s, B1(t) and B2(t), define
B(t) = (B1(t), B2(t))T, define the 2× 2 matrix

A =

(
σ1 0
σ2ρ σ2

√
1− ρ2

)
,

and construct
X(t) = AB(t) + µt, t ≥ 0,

where µ = (µ1, µ2)T.
Letting

Σ = AAT =

(
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

)
,

we say that X is a two-dimensional BM with drift vector µ and covariance matrix Σ; we denote
this by

X ∼ BM(µ,Σ).

From (2), this implies that for each t > 0, Cov(X1(t), X2(t)) = ρσ1σ2t.
As with BM in 1-dimension, X has both stationary and independent increments.
If we wish to simulate X(t) at a fixed time t > 0, then we can generate Z1, Z2 iid N(0, 1),

define the vector Z = (Z1, Z2)T, then set

X(t) =
√

tAZ + µt.

For generating the pair X(t1) and X(t2) at the times 0 < t1 < t2, we generate a pair of N(0, 1)
vectors, Z1 = (Z1,1, Z1,2)T, Z2 = (Z2,1, Z2,2)T and define

X(t1) =
√

t1AZ1 + µt1.

X(t2) = X(t1) +
√

t2 − t1AZ2 + µ(t2 − t1) =
√

t1AZ1 + µt1 +
√

t2 − t1AZ2 + µ(t2 − t1).

This then yields

5

An algorithm for simulating X ∼ BM(µ,Σ) at times 0 = t0 < t1 < t2 < · · · < tk:

Sequentially generate k iid pairs of independent N(0, 1) rvs; Z1 = (Z1,1, Z1,2)T, Z2 = (Z2,1, Z2,2)T, . . . ,Zk =
(Zk,1, Zk,2)T, then recursively define

X(t1) =
√

t1AZ1 + µt1.

X(t2) = X(t1) +
√

t2 − t1AZ2 + µ(t2 − t1) =
√

t1AZ1 + µt1 +
√

t2 − t1AZ2 + µ(t2 − t1).
...

X(tk) = X(tk−1) +
√

tk − tk−1AZk + µ(tk − tk−1) =
k∑

i=1

(
√

ti − ti−1AZi + µ(ti − ti−1)).

From here we can then define correlated geometric BM’s (GBM)

S1(t) = S1(0)eX1(t), S2(t) = S2(0)eX2(t).

To simulate these, we use the algorithm above for the BM, coordinate by coordinate, utilizing
the rows of the matrix A = (Ai,j) given above, together with the algorithm at the end of
Section 1.2.3 for simulating a one dimensional GBM.

An algorithm for simulating two correlated GBMs with underlying two-dimensional
X ∼ BM(µ,Σ) at times 0 = t0 < t1 < t2 < · · · < tk:

Sequentially generate k iid pairs of independent N(0, 1) rvs; Z1 = (Z1,1, Z1,2)T, Z2 = (Z2,1, Z2,2)T, . . . ,Zk =
(Zk,1, Zk,2)T, then recursively define

S1(t1) = S1(0)e
√

t1

(∑2

j=1
A1,jZ1,j

)
+µ1t1

.

S1(t2) = S1(t1)e
√

t2−t1

(∑2

j=1
A1,jZ2,j

)
+µ1(t2−t1)

.

...

S1(tk) = S1(tk−1)e
√

tk−tk−1

(∑2

j=1
A1,jZk,j

)
+µ1(tk−tk−1)

.

S2(t1) = S2(0)e
√

t1

(∑2

j=1
A2,jZ1,j

)
+µ2t1

.

S2(t2) = S2(t1)e
√

t2−t1

(∑2

j=1
A2,jZ2,j

)
+µ2(t2−t1)

.

...

S2(tk) = S2(tk−1)e
√

tk−tk−1

(∑2

j=1
A2,jZk,j

)
+µ2(tk−tk−1)

.

Remark 1.1 The case of three or more dimensions can be handled analogously to our method
here; we will cover this in more detail later.

6

