
Copyright c© 2007 by Karl Sigman

1 Poisson processes, and Compound (batch) Poisson processes

1.1 Point Processes

Definition 1.1 A simple point process ψ = {tn : n ≥ 1} is a sequence of strictly increasing
points

0 < t1 < t2 < · · · , (1)

with tn−→∞ as n−→∞. With N(0) def= 0 we let N(t) denote the number of points that fall in
the interval (0, t]; N(t) = max{n : tn ≤ t}. {N(t) : t ≥ 0} is called the counting process for ψ.
If the tn are random variables then ψ is called a random point process. We sometimes allow a
point t0 at the origin and define t0

def= 0. Xn = tn − tn−1, n ≥ 1, is called the nth interarrival
time.

We view t as time and view tn as the nth arrival time. The word simple refers to the fact that
we are not allowing more than one arrival to ocurr at the same time (as is stated precisely
in (1)). In many applications there is a “system” to which customers are arriving over time
(classroom, bank, hospital, supermarket, airport, etc.), and {tn} denotes the arrival times of
these customers to the system. But {tn} could also represent the times at which phone calls
are made to a given phone or office, the times at which jobs are sent to a printer in a computer
network, the times at which one receives or sends email, the times at which one sells or buys
stock, the times at which a given web site receives hits, or the times at which subways arrive
to a station. Note that

tn = X1 + · · ·+Xn, n ≥ 1,

the nth arrival time is the sum of the first n interarrival times.
Also note that the event {N(t) = 0} can be equivalently represented by the event {t1 > t},

and more generally
{N(t) = n} = {tn ≤ t, tn+1 > t}, n ≥ 1.

In particular, for a random point process, P (N(t) = 0) = P (t1 > t).

1.2 Renewal process

A random point process ψ = {tn} for which the interarrival times {Xn} form an i.i.d. sequence
is called a renewal process. tn is then called the nth renewal epoch and F (x) = P (X ≤ x)
denotes the common interarrival time distribution. The rate of the renewal process is defined
as λ def= 1/E(X).

Such processes are very easy to simulate, assuming that one can generate samples from F
which we shall assume is so here; the key point being that we can use the recursion tn+1 =
tn +Xn+1, n ≥ 0, and thus simply generate the interarrival times sequentially:

Simulating a renewal process with interarrival time distribution F up to time T :

1. t = 0, N = 0

2. Generate an X distributed as F .

3. t = t+X. If t > T , then stop.

1



4. Set N = N + 1 and set tN = t.

5. Go back to 2.

Note that when the algorithm stops, the value of N is N(T ) and we have sequentially
simulated all the desired arrival times t1, t2 . . . up to tN(T ).

1.3 Poisson process

Definition 1.2 A Poisson process at rate λ is a renewal point process in which the interarrival
time distribution is exponential with rate λ: interarrival times {Xn : n ≥ 1} are i.i.d. with
common distribution F (x) = P (X ≤ x) = 1− e−λx, x ≥ 0; E(X) = 1/λ.

Simulating a Poisson process at rate λ up to time T :

1. t = 0, N = 0

2. Generate U .

3. t = t+ [−(1/λ) ln (U)]. If t > T , then stop.

4. Set N = N + 1 and set tN = t.

5. Go back to 2.

1.4 Further properties of the Poisson process; a different algorithm for sim-
ulating

Here we review known properties of the Poisson process and use them to obtain another algo-
rithm for simulating such a process.

The reason that the Poisson process is named so is because: For each fixed t > 0, the
distribution of N(t) is Poisson with mean λt:

P (N(t) = k) = e−λt (λt)
k

k!
, k ≥ 0.

In particular, E(N(t)) = λt, V ar(N(t)) = λt, t ≥ 0. In fact, the number of arrivals in ANY
interval of length t, N(s+ t)−N(s) is also Poisson with mean λt:

P (N(s+ t)−N(s) = k) = e−λt (λt)
k

k!
, s > 0, k ≥ 0,

and E(N(s+ t)−N(s)) = λt, V ar(N(s+ t)−N(s)) = λt, t ≥ 0.
N(s + t) − N(s) is called a length t increment of the counting process {N(t) : t ≥ 0};

the above tells us that the Poisson counting process has increments that have a distribution
that is Poisson and only depends on the length of the increment. Any incrementof length t is
distributed as Poisson with mean λt.

This is an example of a process having stationary increments: Any increment of length t
has a distribution that only depends on the length t.

The Poisson process also has independent increments, meaning that non-overlapping incre-
ments are independent: If 0 ≤ a < b < c < d, then the two increments N(b) − N(a), and
N(d)−N(c) are independent rvs.

2



Remarkable as it may seem, it turns out that the Poisson process is completely
characterized by stationary and independent increments:

Theorem 1.1 Suppose that ψ is a simple random point process that has both stationary and
independent increments. Then in fact, ψ is a Poisson process. Thus the Poisson process is the
only simple point process with stationary and independent increments.

The practical consequences of this theorem: To check if some point process is Poisson, one
need only verify that it has stationary and independent increments. (One would not need to
check to see if it is a renewal process and then check that the interarrival time distribution is
exponential.)

Remark 1.1 A Poisson process at rate λ can be viewed as the result of performing an inde-
pendent Bernoulli trial with success probability p = λdt in each “infinitesimal” time interval
of length dt, and placing a point there if the corresponding trial is a success (no point there
otherwise). Intuitively, this would yield a point process with both stationary and independent
increments; a Poisson process: The number of Bernoulli trials that can be fit in any interval
only depends on the length of the interval and thus the distribution for the number of successes
in that interval would also only depend on the length; stationary increments follows. For two
non-overlapping intervals, the Bernoulli trials in each would be independent of one another
since all the trials are i.i.d., thus the number of successes in one interval would be independent
of the number of successes in the other interval; independent increments follows. This Bernoulli
trials idea can be made mathematically rigorous.

1.4.1 Partitioning Theorems for Poisson processes and random variables

Given X ∼ Poiss(α) (a Poisson rv with mean α) suppose that we imagine that X denotes some
number of objects (arrivals during some fixed time interval for example), and that independent
of one another, each such object is of type 1 or type 2 with probability p and q = 1 − p
respectively. This means that if X = n then the number of those n that are of type 1 has a
Bin(n, p) distribution and the number of those n that are of type 2 has a Bin(n, q) distribution.
Let X1 and X2 denote the number of type 1 and type 2 objects respectively ; X1 +X2 = X.
The following shows that in fact if we do this, then X1 and X2 are independent Poisson random
variables with means pα and qα respectively.

Theorem 1.2 (Partitioning a Poisson r.v.) If X ∼ Poiss(α) and if each object of X is,
independently, type 1 or type 2 with probability p and q = 1− p, then in fact X1 ∼ Poiss(pα),
X2 ∼ Poiss(qα) and they are independent.

Proof : We must show that

P (X1 = k,X2 = m) = e−pα (pα)k

k!
e−qα (qα)m

m!
. (2)

P (X1 = k,X2 = m) = P (X1 = k,X = k +m) = P (X1 = k|X = k +m)P (X = k +m).

But given X = k +m, X1 ∼ Bin(k +m, p) yielding

P (X1 = k|X = k +m)P (X = k +m) =
(k +m)!
k!m!

pkqmeα
αk+m

(k +m)!
.

Using the fact that eα = epαeqα and other similar algabraic identites, the above reduces to (2)
as was to be shown.

The above theorem generalizes to Poisson processes:

3



Theorem 1.3 (Partitioning a Poisson process) If ψ ∼ PP (λ) and if each arrival of ψ
is, independently, type 1 or type 2 with probability p and q = 1−p then in fact, letting ψi denote
the point process of type i arrivals, i = 1, 2, the two resulting point processes are themselves
Poisson and independent: ψ1 ∼ PP (pλ), ψ2 ∼ PP (qλ) and they are independent.

The above generalizes in the obvious fashion to k ≥ 2 types (type i with probability pi)
yielding independent Poisson processes with rates λi = piλ, i ∈ {1, 2, . . . , k}.

The above is quite interesting for it means that if Poisson arrivals at rate λ come to our
lecture room, and upon each arrival we flip a coin (having probability p of landing heads), and
route all those for which the coin lands tails (type 2) into a different room, only allowing those
for which the coin lands heads (type 1) enter our room, then the arrival processes to the two
room are independent and Poisson.

The above allows us to simulate two desired independent Poisson processes (e.g., two dif-
ferent “classes” of arrivals) by simulating only one and partitioning it:

Simulating two independent Poisson process at rates λ1, λ2 up to time T :

1. t = 0, t1 = 0, t2 = 0, N1 = 0, N2 = 0, set λ = λ1 + λ2, set p = λ1/λ.

2. Generate U .

3. t = t+ [−(1/λ) ln (U)]. If t > T , then stop.

4. Generate U . If U ≤ p, then set N1 = N1 + 1 and set tN11 = t; otherwise (U > p) set set
N2 = N2 + 1 and set tN22 = t

5. Go back to 2.

The above algorithm generalizes in a straightforward fashion to handle k ≥ 2 such indepen-
dent processes.

1.5 Uniform property of Poisson process arrival times: a new simulation
algorithm

Suppose that for a Poisson process at rate λ, we condition on the event {N(t) = 1}, the event
that exactly one arrival ocurred during (0, t]. We might conjecture that under such conditioning,
t1 should be uniformly distributed over (0, t). To see that this is in fact so, choose s ∈ (0, t).
Then

P (t1 ≤ s|N(t) = 1) =
P (t1 ≤ s,N(t) = 1)

P (N(t) = 1)

=
P (N(s) = 1, N(t)−N(s) = 0)

P (N(t) = 1)

=
e−λsλse−λ(t−s)

e−λtλt

=
s

t
.

It turns out that this result generalizes nicely to any number of arrivals, and we present this
next.

Let U1, U2, . . . , Un be n i.i.d uniformly distributed r.v.s. on the interval (0, t). Let U(1) <
U(2) < · · · < U(n) denote them placed in ascending order. Thus U(1) is the smallest of them ,

4



U(2) the second smallest and finally U(n) is the largest one. U(i) is called the ith order statistic
of U1, . . . Un.

Note that the joint density function of (U1, U2, . . . , Un) is given by

g(s1, s2, . . . , sn) =
1
tn
, si ∈ (0, t),

because each Ui has density function 1/t and they are independent. Now given any ascending
sequence 0 < s1 < s2 < · · · < sn < t it follows that the joint distribution f(s1, s2, . . . , sn) of the
order statistics (U(1), U(2), . . . , U(n)) is given by

f(s1, s2, . . . , sn) =
n!
tn
,

because there are n! permutations of the sequence (s1, s2, . . . , sn) each of which leads to the
same order statistics. For example if (s1, s2, s3) = (1, 2, 3) then there are 3! = 6 permutations all
yielding the same order statistics (1, 2, 3): (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).

Theorem 1.4 For any Poisson process, if n ≥ 1, then: conditional on the event {N(t) = n},
the joint distribution of the n arrival times t1, . . . , tn is the same as the joint distribution of
U(1), . . . , U(n), the order statistics of n i.i.d. unif(0, t) r.v.s., that is, it is given by

f(s1, s2, . . . , sn) =
n!
tn
, 0 < s1 < s2 < · · · < sn < t.

Thus the following algorithm works:

Simulating a Poisson process at rate λ up to time T :

1. Generate N distributed as Poisson with mean λT . If N = 0 stop.

2. Set n = N . Generate n iid uniforms on (0, 1), U1, . . . , Un and reset Ui = TUi, i ∈
{1, . . . n} (this makes the Ui be uniform on (0, T ) as required).

3. Place the Ui is ascending order to obtain the order statistics U(1) < U(2) < · · · < U(n).

4. Set ti = U(i), i ∈ {1, . . . n}

The importance of the above is this: If you want to simulate a Poisson process up to time T ,
you need only first simulate the value of N(T ), then if N(T ) = n generate n i.i.d. Unif(0, T )
numbers (U1, U2, . . . , Un), place them in ascending order (U(1), U(2), . . . , U(n)) and finally define
ti = U(i), 1 ≤ i ≤ n. Simulating the value N(T ) is easy since N(T ) has a Poisson distribution
with mean λT and we have several methods already to handle this.

Uniform numbers are very easy to generate on a computer and so this method can have
computational advantages over simply generating exponential r.v.s. for interarrival times Xn,
and defining tn = X1 + · · ·+Xn. Exponential r.v.s. require taking logarithms to generate:

Xi = − 1
λ
log(Ui),

where Ui ∼ Unif(0, 1) and this can be computationally time consuming.

5



Proof :[Theorem 1.4:] We will compute the density for

P (t1 = s1, . . . , tn = sn|N(t) = n) =
P (t1 = s1, . . . , tn = sn, N(t) = n)

P (N(t) = n)

and see that it is precisely n!
tn . To this end, we re-write the event {t1 = s1, . . . , tn = sn, N(t) = n}

in terms of the i.i.d. interarrival times as {X1 = s1, . . . , Xn = sn − sn−1, Xn+1 > t − sn}. For
example if N(t) = 2, then {t1 = s1, t2 = s2, N(t) = 2} = {X1 = s1, X2 = s2 − s1, X3 > t− s2}
and thus has density λe−λs1λe−λ(s2−s1)e−λ(t−s2) = λ2e−λt due to the independence of the r.v.s.
X1, X2, X3, and the algebraic cancellations in the exponents.

We conclude that

P (t1 = s1, . . . , tn = sn|N(t) = n) =
P (t1 = s1, . . . , tn = sn, N(t) = n)

P (N(t) = n)

=
P (X1 = s1, . . . , Xn = sn − sn−1, Xn+1 > t− sn)

P (N(t) = n)

=
λne−λt

P (N(t) = n)

=
n!
tn
,

where the last equality follows since P (N(t) = n) = e−λt(λt)n/n!.

1.6 Non-stationary Poisson processes

Assuming that a Poisson process has a fixed and constant rate λ over all time limits its applica-
bility. (This is known as a time-stationary or time-homogenous Poisson process, or just simply
a stationary Poisson process.) For example, during rush hours, the arrivals/departures of vehi-
cles into/out of Manhattan is at a higher rate than at (say) 2:00AM. To accommodate this, we
can allow the rate λ = λ(t) to be a deterministic function of time t ≥ 0. For example, consider
time in hours and suppose λ(t) = 100 per hour except during the time interval (morning rush
hour) (8, 9) when λ(t) = 200, that is

λ(t) = 200, t ∈ (8, 9), λ(t) = 100, t /∈ (8, 9).
In such a case, for a given rate function λ(t), the expected number of arrivals by time t is

thus given by

m(t) def= E(N(t)) =
∫ t

0
λ(s)ds. (3)

We have already learned how to simulate a stationary Poisson process up to any desired
time t, and next we will learn how to do so for a non-stationary Poisson process.

1.7 The non-stationary case: Thinning

In general the function λ(t) is called the intensity of the Poisson process, and the following two
conditions must hold (e.g. these two conditions define a non-stationary Poisson process):

1. For each t > 0, the counting random variable N(t) is Poisson distributed with mean

m(t) =
∫ t

0
λ(s)ds.

6



E(N(t)) = m(t)

P (N(t) = k) = e−m(t)m(t)k

k!
, k ≥ 0.

More generally, the increment N(t + h) − N(t) has a Poisson distribution with mean
m(t+ h)−m(t) =

∫ t+h
t λ(s)ds.

2. {N(t)} has independent increments; if 0 ≤ a < b < c < d, thenN(b)−N(a) is independent
of N(d)−N(c).

We shall assume that the intensity function is bounded from above: There exists a λ∗ > 0
such that

λ(t) ≤ λ∗, t ≥ 0.

(In practice, we would want to use the smallest such upper bound.)
Then the simulation of the Poisson process is accomplished by a “thinning” method: First

simulate a stationary Poisson process at rate λ∗, denote the arrival times of this process by
{vn : n ≥ 1}. For example, sequentially generate iid exponential rate λ∗ interarrival times
and use the recursion vn+1 = vn + [−(1/λ∗) ln (Un+1)], to obtain the stationary process arrival
times. The rate λ∗ is larger than needed for our actual process, so for each arrival time vn, we
independently perform a Bernoulli trial with success probability λ(vn)/λ∗ to decide wether to
keep it (success) or reject it (failure). The sequence of accepted times we denote by {tn} and
forms our desired non-stationary Poisson process. To make this precise: for each arrival time
vn, we accept it with probability pn = λ(vn)/λ∗, and reject it with probability 1− pn. Thus for
each vn we generate a uniform Un and if Un ≤ pn, then we accept vn as a point, otherwise we
reject it.

The thinning algorithm for simulating a non-stationary Poisson process with
intensity λ(t) that is bounded by λ∗

Here is the algorithm for generating our non-stationary Poisson process up to a desired time T
to get the N(T ) arrival times t1, . . . tN(T ).

1. t = 0, N = 0

2. Generate a U

3. t = t+ [−(1/λ∗) ln (U)]. If t > T , then stop.

4. Generate a U .

5. If U ≤ λ(t)/λ∗, then set N = N + 1 and set tN = t.

6. Go back to 2.

Note that when the algorithm stops, the value of N is N(T ) and we have sequentially
simulated all the desired arrival times t1, t2 . . . up to tN(T ).

Here is a proof that this thinning algorithm works:

Proof :[Thinning works] Let {M(t)} denote the counting process of the rate λ∗ Poisson process,
and let {N(t)} the counting process of the resulting thinned process. We need to show that
{N(t)} has independent increments and that the increments are Poisson distributed with the
correct m(t) function. First note that {N(t)} has independent increments since {M(t)} does

7



and the thinning is done independently; {N(t)} inherits independent increments from {M(t)}.
So what is left to prove is that for each t > 0, N(t) constructed by this thinning has a Poisson
distribution with mean m(t) =

∫ t
0 λ(s)ds. We know that for each t > 0, M(t) has a Poisson

distribution with mean λ∗t. We will partition M(t) into two types: N(t) (the accepted ones),
and R(t) (the rejected ones), and conclude that N(t) has the desired Poisson distribution (recall
Theorem 1.2). To this end recall that conditional on M(t) = n, we can treat the n unordered
arrival times as iid unif (0, t) rvs. Thus a typical arrival, denoted by V ∼ Unif(0, t), will be
accepted with conditional probability λ(v)/λ∗, conditional on V = v. Thus the unconditional
probability of acceptance is p = p(t) = E[λ(V )/λ∗] = (1/λ∗)(1/t)

∫ t
0 λ(s)ds, and we conclude

from partitioning (Theorem 1.2) that N(t) has a Poisson distribution with mean λ∗tp = m(t),
as was to be shown.

1.8 Simulating a compound Poisson process

Another restriction we want to relax is the assumption that arrivals occur strictly one after the
other. Buses and airplanes, for example, hold more than one passenger. This is easily remedied
by assuming the bus arrival times form a Poisson process, but independently each bus holds a
random number of passengers (generically denoted by B) with some probability mass function
P (k) = P (B = k), k ≥ 0, and mean E(B). Letting B1, B2, . . . denote the iid sequential bus
sizes, the number of passengers to arrive by time t, X(t) is given by

X(t) =
N(t)∑
n=1

Bn, (4)

where N(t) is the counting process for the Poisson process; N(t) = the number of buses to
arrive by time t. This is known as a compound or batch Poisson arrival process.

It is easily shown (using Wald’s equation) that E(X(t)) = E(N(t))E(B) = λtE(B).
We could also take the bus arrival times as a non-stationary Poisson process, in which case we

would have a non-stationary compound Poisson process, and then E(X(t)) = E(N(t))E(B) =
m(t)E(B). Finally, there are applications where we want to allow B to be a continuous rv
with a density. For example, consider an insurance company to which claims are made at times
forming a Poisson process, and iid claim sizes B1, B2, . . .. The claim sizes are amounts of money,
and (4) denotes the total amount of money paid out by the insurance company during the time
interval (0, t].

Suppose that we wish to simulate a stationary compound Poisson process at rate λ with iid
Bi distributed as (say) G (could be continuous or discrete). Suppose that we already have an
algorithm for generating from G.

Algorithm for generating a compound Poisson process up to a desired time T to get X(T )

1. t = 0, N = 0, X = 0.

2. Generate a U

3. t = t+ [−(1/λ) ln (U)]. If t > T , then stop.

4. Generate B distributed as G.

5. Set N = N + 1 and set X = X +B

6. Go back to 2.

8



In the non-stationary case the algorithm becomes (using thinning):

1. t = 0, N = 0, X = 0.

2. Generate a U

3. t = t+ [−(1/λ∗) ln (U)]. If t > T , then stop.

4. Generate a U .

5. If U ≤ λ(t)/λ∗, then set N = N +1 and generate B distributed as G and set X = X+B.

6. Go back to 2.

9


