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1 Stationary sequences and Birkhoff’s Ergodic Theorem

A stochastic process X = {Xn : n ≥ 0} is called stationary if, for each j ≥ 0, the shifted
sequence θjX = {Xj+n : n ≥ 0} has the same distribution, that is, the same distribution as
X. In particular, this implies that Xn has the same distribution for all n ≥ 0, but stationarity
is much stronger than only that: It means that all joint distributions are the same: for any
n1 < n2 < · · · < nl, any l ≥ 1, the joint distribution of the vector
(Xj+n1 , Xj+n2 , · · · , Xj+nl

) is the same for all j ≥ 0, that is, the same as (Xn1 , Xn2 , · · · , Xnl
).

P (Xj+n1 ≤ x1, Xj+n2 ≤ x2, . . . , Xj+n2 ≤ xl) = P (Xn1 ≤ x1, Xn2 ≤ x2, . . . , Xn2 ≤ xl),

for all x1, . . . xl.
A very special case of a stationary sequence is an independent identically distributed se-

quence (iid), but much more complex examples exist in applications. A large class of exam-
ples is illustrated by positive recurrent (discrete-valued with state space S) Markov chains.
Such processes have a unique limiting/stationary distribution π = (πi), i ∈ S, and it is well
known that if the chain is started off initially with distribution π (independent of all else),
P (X0 = i) = πi, i ∈ S, then the chain is a stationary process, called a stationary version of
the chain.

It turns out that any stationary sequence X is either ergodic or not. Non-ergodic means that
the distribution of X can be expressed as the mixture of 2 distinct stationary sequences X(1) and
X(2) (say) distributions: For some p ∈ (0, 1), P (X ∈ ·) = pP (X(1) ∈ ·) + (1 − p)P (X(2) ∈ ·).
The idea is that you initially flip a coin (once) that lands H wp p and lands T wp 1 − p. If
it lands H then set X = X(1); if it lands T then set X = X(2). The point is that if no such
mixture can be found to exist, then X is ergodic.

Ergodic sequences (can be shown) to include all iid sequences, positive recurrent regenerative
sequences (such as positive recurrent Markov chains) and many others.

Non-ergodic sequences can of course easily be constructed from any 2 distinct stationary
(and ergodic) sequences. Here is a simple example: Let X(1) be an iid sequence of exponential
rate 1 rvs, and let X(2) be an iid sequence of exponential rate 2 rvs. In essence, each sequence
represents a Poisson process, but with different rates, 1 and 2 respectively. Now flip a p
coin and create the mixture X mentioned above. Then with probability p all sample paths
are that of a Poisson process at rate 1 and with probability 1 − p all all sample paths are
that of a Poisson process at rate 2. X = {Xn : n ≥ 0} is stationary with common mean
E(X) = (1/2)(1 + 0.5) = 0.75, n ≥ 0.

Note how now, the elementary renewal theorem does not hold: wp1, limt→∞N(t)/t = Λ,
where Λ is not a constant, but a random variable instead; P (Λ = 1) = P (Λ = 2) = 0.5. Also
note that it does not hold that E(Λ) = 1/E(X): E(Λ) = 3/2 while 1/E(X) = 4/3.

Similarly (equivalently) the SLLN does not hold: wp1

lim
n→∞

1
n

n∑
j=1

Xj = Y,
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where Y is a not a constant but a random variable: P (Y = 1) = P (Y = 0.5) = 0.5. The
sequence X is stationary, but it is not iid. It is, however, conditionally iid: Conditional on the
coin landing H, it is iid with exponential 1 interarrival times, while conditional on the coin
landing T it is iid with exponential 2 interarrival times. (The point process constructed using
X for interarrival times is not a Poisson process: Its counting process {N(t) : t ≥ 0} does not
have independent increments: Choosing t huge, and looking at the value of N(t)/t would allow
us to estimate which way the coin landed, via what the value of λ is (1 or 2) , thus biasing any
future increment’s distribution to have that value of λ.

It turns out that when ergodic, a stationary sequence exhibits limiting behavior as if it were
iid: If X is ergodic, and E|X| <∞, then wp1

lim
n→∞

1
n

n∑
j=1

Xj = E(X).

The formal statement of this result is much stronger than the classic SLLN, and includes it
as a very special case. It is called Birkhoff’s Ergodic Theorem. We deal with this next.

1.1 Birkhoff’s Ergodic Theorem

To prepare for it, we need to consider real-valued functions f = f(x) where x = {x0, x1, . . .} is
an infinite sequence. Examples include

1. f(x) = x0 or f(x) = x5.

2. Indicator functions such as f(x) = I{x0 ≤ y0} or more generally
f(x) = I{xn1 ≤ y1, . . . , xnl

≤ yl}.

3. f(x) = x2 + x7x100

4.

f(x) =
∞∑

n=0

anxn,

where {an} is a sequence of real numbers such that the sum converges.

In a stochastic setting, when X is a stochastic process, we get (for example) f(X) = X0, or
f(X) = I{Xn1 ≤ y1, . . . , Xnl

≤ yl}. Thus we can take expected values of such functionals;
E(f(X)) = E(X0) or E(f(X)) = P (Xn1 ≤ y1, . . . , Xnl

≤ yl).
The proof of this theorem is beyond the scope of these notes. But we state it here:

Theorem 1.1 (Birkhoff’s Ergodic Theorem) If X is stationary and ergodic, and f is such
that E|f(X)| <∞, then wp1

lim
n→∞

1
n

n∑
j=1

f(θjX) = E(f(X)). (1)
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Note how this includes the SLLN (extended to stationary ergodic sequences): Choosing
f(x) = x0 yields f(θjX) = Xj and thus we get wp1

lim
n→∞

1
n

n∑
j=1

Xj = E(X),

where we are letting X denote a generic Xn since they all have the same distribution by
definition of stationarity.

We finally point out that in fact a stationary sequence X is ergodic if and only if (1) holds
wp1 for all f such that E|f(X)| <∞.
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