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1.1 Interest and compounded interest

Suppose that you place x0 ($) in an account that offers a fixed (never to change over time)
annual interest rate of r > 0 ($ per year). x0 is called the principle, and one year later at
time t = 1 you will have the amount y1 = x0(1 + r) (your payoff) having made a profit of rx0.
Everything here is deterministic, in that the amount y1 is not random; there is no uncertainty –
hence no risk – associated with this investment. This is an example of a risk-free investment1.
Formally, the variance of the payoff is zero; V ar(y1) = 0. If you reinvest y1 for another year,
then at time t = 2 you would have the amount y2 = y1(1+r) = x0(1+r)2. In general, if you keep
doing this year after year, then at time t = n years, your payoff would be yn = x0(1+r)n, n ≥ 0.

Reinvesting the payoff at the end of one time period for yet another is known as compounding
the interest. In our example interest was compounded annually, but compounding could be done
biannually, quarterly, monthly, daily and so on. For example, if done biannually, then after a
half a year, at time t = 0.5, we would earn interest at rate 0.5r yielding x0(1 + 0.5r). Then
a half a year later at time t = 1 interest would be earned again at rate 0.5r on the amount
x0(1 + 0.5r) finally yielding a payoff at time t = 1 of the amount

y1 = x0(1 + 0.5r)(1 + 0.5r)
= x0(1 + 0.5r)2

= x0(1 + 0.25r2 + r)
> x0(1 + r).

Thus as expected, biannual compounding is more profitable than annual compounding, and as
is easily seen, the profit increases as the time period for compounding get smaller. For example,
compounding quarterly yields payoff x0(1 + 0.25r)4 > x0(1 + 0.5r)2.

In general, if the time period is of size 1/k (k > 0 an integer), compounding takes place k
times per year at a rate r/k per period and yields a payoff at time t = 1 of the amount

y1(k) = x0(1 +
r

k
)k. (1)

If this payoff is reinvested for yet another year, then the payoff at time t = 2 is
x0(1 + r

k )k(1 + r
k )k = x0(1 + r

k )2k and in general, after n years yields x0(1 + r
k )nk. This is

important for monthly compounding in which the monthly rate is r/12 and the payoff after n
years is x0(1 + r

12)12n.
Over an arbitrary interval of time, (0, t], compounding a total of k times would mean

compounding every t/k units of time at rate rt/k and yielding a payoff at time t of

yt(k) = x0(1 +
rt

k
)k. (2)

1Investing in stocks on the other hand is an example of a risky investment because the price of stocks evolves
over time in a random way, apriori unknown to us and not possible to predict with certainty. The stock price
at a later time thus has a non-zero variance. As with gambling, when investing in stock there is even a risk of
losing some or all of your principle.
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Letting the compounding interval get smaller and smaller is equivalent to letting k → ∞,
in which case the compounding becomes continuous compounding yielding a payoff at time t of

lim
k→∞

yt(k) = lim
k→∞

x0(1 +
rt

k
)k

= x0e
rt, (3)

where l’Hospital’s rule is used to show that (1 + rt
k )k → ert as follows: First take the natural

logarithm so that equivalently, we need to show that as k →∞,

ln (1 + rt
k )

1
k

= rt.

Taking the derivative wrt k of numerator and denominator yields (after some cancellation)

rt(1 +
rt

k
)−1,

which indeed converges to rt as k →∞.
Thus:

An initial investment of x0 at time t = 0, under continuous compounded interest at
rate r, is worth x0e

rt at time t ≥ 0.

1.2 Doubling your money

If the annual interest rate is r, and you invest x0 under continuous compounding, then how
long will you have to wait until you have doubled your money?

We wish to find the value of t (years) for which x0e
rt = 2x0, or, equivalently, for which

ert = 2. Solving we conclude t = ln (2)/r = (.6931)/r. For example, if r = 0.04, then t ≈ 17
years.

Notice how then, we could double yet again in another 17 years and so on, concluding that
x0 would increase by a factor of 4 in 34 years; a factor of 8 in 51 years and so on. This is simply
an example of geometric growth, and corresponds to the steep rise in the graph of the function
f(t) = ert, t ≥ 0.

1.3 Effective and nominal interest rates

The annual rate r discussed previously is called the nominal interest rate. As we have seen, by
compounding we can do better, and this motivates computing the effective interest rate, that
is, the rate required without compounding to yield the same payment, at the end of one year,
with compounding at rate r. For example, if compounding is done biannually, then the effective
rate is the solution r′ to the equation 1 + r′ = (1 + 0.5r)2, or r′ = r + 0.25r2. So if r = 0.07,
then r′ = 0.0712.

In general, when compounding k times per year, it is the solution r′ to 1 + r′ = (1 + r/k)k,
or r′ = (1 + r/k)k − 1, and when compounding continuously it is the solution to 1 + r′ = er,
or r′ = er − 1. For example if r = 0.07 and the compounding is monthly, then r′ = (1 +
(0.07)/12)12 − 1 = 0.0723. If compounding is continuous, then r′ = e0.07 − 1 = 0.0725.
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1.4 Present value and the value of money

Any given amount of money, x, is worth more to us at present (time t = 0) than being promised
it at some time t in the future since we can always use x now as principle in a risk-free investment
at rate r guaranteeing the amount x(1+ert) > x at time t (we are using continuous compounding
here for illustrative purposes). Stated differently, an amount x promised to us later at time
t is only worth x0 = xe−rt < x at present, since using this x0 as principle yields exactly the
amount x at time t: x0e

rt = xe−rtert = x. We thus call xe−rt the present value (PV) of x. It
is less than x and represents the value to us now of being promised x at a later time t in the
future, if the interest rate is r. Sometimes this is referred to as discounting the amount x by
the discount rate r, and the factor (always less than 1) by which we multiply x to obtain its
present value is called the discount factor. Under the continuous compounding assumed above,
the discount factor is e−rt. As an immediate application, consider buying a certain kind of
Certificate of Deposit (CD) from your bank. You pay now for this which ensures you a payoff
of (say) 10, 000 two years later, using fixed interest rate r = 0.05. This means that you buy the
CD now at a price equal to the present value 10, 000e−(0.05)2 = 9, 048. Interest rates generally
change over time and different interest rates are used for different types of investments, but a
CD is an example where the rate is fixed over a period of time agreed upon in the contract
(6 months, 1 year, 2 years, 5 years, etc.). Other such examples are treasury bonds purchased
from the USA government. Your regular bank account, checking or savings, on the other hand,
has an interest rate that changes over long periods of time. Notice how if after you buy your
CD, a week later the bank’s interest rate goes up from your r = 0.05 to 0.060, then the price
of the same CD bought a week later goes down to 10, 000e−(0.060)2 = 8, 869, and your CD has
lost value. Although a CD is an example of you lending money to the bank, present value has
an analogous meaning in the context of borrowing: if you borrow x0 now, then you must pay
back x = x0e

rt > x0 at time t.
Present value can of course be computed whatever the compounding situation is. For

example if there is no compounding then the present value of x at time t = 1 is x/(1 + r),
and so the discount factor is 1/(1 + r). In general when compounding k times during (0, t] at
annual rate r the present value of x at time t is x/(1 + rt/k)k, and so the discount factor is
1/(1 + rt/k)k.

Examples for PV

1. You are to receive 10, 000 one year from now and another 10, 000 two years from now.
If the annual nomimal interest rate is r = 0.05, compounded yearly, what is the present
value of the total? What if compounded monthly? Continuously?

PV =
10, 000
(1 + r)

+
10, 000
(1 + r)2

,

derived as follows: 10, 000(1+r)−1 is the present value of the first payment (to be received
at time t = 1 year), and 10, 000(1 + r)−2 is the present value of the second payment (to
be received at time t = 2 years). Plugging in r = 0.05 yields PV = 18, 594.
If compounded monthly, then

PV =
10, 000

(1 + r/12)12
+

10, 000
(1 + r/12)24

.

Plugging in r = 0.05 yields PV = 18, 564.
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If compounded continuously, then

PV = 10, 000e−r + 10, 000e−2r.

Plugging in r = 0.05 yields PV = 18, 561.

2. Suppose today is January 1, and you move into a new apartment in which you must pay
a monthly rent of $1000 on the first of every month, starting January 1. You plan to
move out after exactly one year. Then at the end of your year you will have payed a total
of $12, 000. But suppose that you want to pay off all this 12 month future debt now on
January 1. How much should you pay assuming that the nominal annual interest rate is
r = 0.06 and interest will be compounded monthly? What if r = 0.10? Repeat when
compounding is continuous. We need to compute the present value of the 12 month debt,
where the monthly interest rate is r/12:

PV = 1000
(
1 +

11∑
i=1

1
(1 + r/12)i

)

= 1000
( 11∑

i=0

1
(1 + r/12)i

)
,

derived as follows:
You must pay 1000 on January 1, followed by 1000 on the first of every month for the
next 11 months. On February 1, the 1000 to be payed has present value 1000/(1 + r/12)
since this is one month in the future. On March 1, the 1000 to be payed has present
value 1000/(1 + r/12)2 since this is two months in the future. Continuing in this fashion
we finally get to the last monthly payment on December 1 (11 months from now) with
present value 1000/(1 + r/12)11. Summing up all 12 present values yields PV .
In effect, you could take the amount PV < 12000, pay your landlord 1000 from it now
(January 1), then place the rest, PV − 1000, in the bank at interest rate r (compounded
monthly): At the beginning of each month you would withdraw 1000 and pay your land-
lord. Then on December 1 there would be exactly 1000 left in the account, you would
pay this last month’s rent to your landlord and close the account.
Recalling the geometric series formula

n∑
i=0

ai =
1− an+1

1− a
,

we can simplify our formula for PV by letting a = 1/(1 + r/12), n = 11;

PV = 1000
(1− 1

(1+r/12)12

1− 1
(1+r/12)

)

= 1000
(1− 1

(1+r/12)12

r/12
(1+r/12)

)
= 1000(

12
r

+ 1)
(
1− 1

(1 + r/12)12
)
.
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Plugging in r = 0.06 yields 1000(201)(.05809) = 11, 677.
If r = 0.10 this amount drops to 1000(121)(.07664) = 11469.

When compounding is continuous, 1000 at time i months from now has present value
1000ert with t = i/12; 1000e−

ri
12 . Thus

PV = 1000
( 11∑

i=0

e−
ri
12

)
= 1000

( 1− e−r

1− e−
r
12

)
.

Plugging in r = 0.06 yields PV = 11, 676. Plugging in r = 0.10 yields PV = 11, 467.

3. You win a very special lottery which agrees to pay you $100 each year forever starting
today. Even after you die, the payments will continue to your relatives/friends. Assuming
an interest rate of r = 0.08 compounded annually (and assumed constant forever), what
is the present value of this lottery? What if compounded continuously?
For any interest rate r compounded annually, the present value of this lottery is given by
the infinite sum

PV =
∞∑
i=0

100
(1 + r)i

= 100(1 + 1/r).

via the sum of a geometric series (see The Appendix.) Thus PV = 100/(0.08) + 100 =
1350.
The point here is that $100 to be earned i years from now has a present value of only
100/(1 + r)i. (Note how the present value of the $100 becomes worthless as i tends to
infinity.)
This means that if you are given the amount x0 = 1350 now all at once, you could arrange
to receive the $100 lottery amounts each year by simply placing x0 in an account earning
interest at rate r = 0.08 and withdrawing $100 each year. The account would never go
broke.
Under continuous compounding

PV =
∞∑
i=0

100e−ri

= 100/(1− e−r),

via the sum of a geometric series. Thus PV = 100/(1− e−0.08) = 1300.
Contracts like this with a forever into the future payment scheme are called perpetual
annuities. For obvious reasons, such contracts are not common.
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1.5 Net present values

Assessing the present value of an investment, for purposes of comparison with another invest-
ment, involves allowing for negative amounts (money spent). In this case we call the present
value the net present value (NPV). The investment with the largest NPV (but of course posi-
tive) is the better investment using this criterion. Letting xi denote the money earned/spent
at year i yields a vector (x0, x1, x2, . . . , xn) representing the investment up to time t = n, and
its NPV (when interest is compounded yearly at rate r) is given by

NPV =
n∑

i=0

xi(1 + r)−i.

For example (−5, 1, 3, 0,−1) means you spent 5 initially (at time t = 0) then earned 1 at
t = 1, 3 at t = 2, nothing at t = 4 and spent 1 at t = 5. The NPV for this is −5 + (1 + r)−1 +
3(1 + r)−2 − (1 + r)−4.

Examples for NPV

1. (Opening a winery:) Suppose you plan to open your own winery. An initial investment of
1 (millions of dollars), is required. There are two possibilities to choose from: wait 2 years
later to sell your first batch of wine earning 3, or earn 5 by waiting until 4 years later
(aging the wine makes it more valuable). Annual interest rate is r = .10 compounded
yearly. What should you do?
1 + r = 1.1, and thus (−1, 0, 3) versus (−1, 0, 0, 0, 5) in terms of NPV yields:
NPV1 = −1 + 3/(1.1)2 = 1.479.

NPV2 = −1 + 5/(1.1)4 = 2.41. Thus it is better to wait 4 years, since this has a higher
NPV.

APPENDIX: Geometric series

For any number a, and any integer n ≥ 0,

n∑
i=0

ai =
1− an+1

1− a
, (4)

as is easily derived via algebra; (1 + a + a2 + · · ·+ an)(1− a) = 1− an+1.
If |a| < 1, then limn→∞ an = 0, thus

∞∑
i=0

ai =
1

1− a
. (5)

In our interest rate examples, a = 1/(1 + r) in which case 1
1−a = 1 + 1/r, yielding

n∑
i=0

=
1

(1 + r)i
= (1 +

1
r
)
(
1− 1

(1 + r)n+1

)
, (6)

and ∞∑
i=0

=
1

(1 + r)i
= 1 +

1
r
. (7)
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In many applications, n starts at n = 1 instead of n = 0, the difference being

n∑
i=1

ai = −1 +
n∑

i=0

ai.

This leads to the modified formulas

n∑
i=1

1
(1 + r)i

=
1
r

(
1− 1

(1 + r)n

)
, (8)

and ∞∑
i=1

1
(1 + r)i

=
1
r
. (9)

1.6 Loan Application; Annuity formulas

As an application of the previous section, suppose you wish to take out a loan for $P , at
monthly interest rate r requiring you to make payments each month (starting 1 month from
now), for n months. How much must you pay per month? Denoting this by A. Since the sum
of the PV’s of your n monthly payments must equal $P we conclude that

P =
n∑

i=1

A
1

(1 + r)i
=

A

r

(
1− 1

(1 + r)n

)
,

so that we can solve for A

A =
r(1 + r)nP

(1 + r)n − 1
.

In a perpetual situation, where n = ∞ (e.g., payments must be made each month forever),
then P = A/r, so A = rP .
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