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Binomial lattice model for stock prices

Here we model the price of a stock in discrete time by a Markov chain of the recursive form
Sn+1 = SnYn+1, n ≥ 0, where the {Yi} are iid with distribution P (Y = u) = p, P (Y = d) =
1 − p. Here 0 < d < 1 + r < u are constants with r the risk-free interest rate ((1 + r)x is the
payoff you would receive one unit of time later if you bought $x worth of the risk-free asset
(a bond for example, or placed money in a savings account at that fixed rate) at time n = 0).
Given the value of Sn,

Sn+1 =
{

uSn, w.p. p;
dSn, w.p. 1− p,

n ≥ 0,

independent of the past. Thus the stock either goes up (“u”) or down (“d”) in each time period,
and the randomness is due to iid Bernoulli (p) rvs (flips of a coin so to speak) where we can
view “up=success”, and “down=failure”.

Expanding the recursion yields

Sn = S0 × Y1 × · · · × Yn, n ≥ 1, (1)

where S0 is the initial price per share and Sn is the price per share at time n. 1

It follows from (1) that for a given n, Sn = uidn−iS0 for some i ∈ {0, . . . n}, meaning that
the stock went up i times and down n − i times during the first n time periods (i “successes”
and n− i “failures” out of n independent Bernoulli (p) trials). The corresponding probabilities
are thus determined by the binomial(n, p) distribution;

P (Sn = uidn−iS0) =

(
n

i

)
pi(1− p)n−i, 0 ≤ i ≤ n,

which is why we refer to this model as the binomial lattice model (BLM). The lattice is the set
of points {uidn−iS0 : 0 ≤ i ≤ n < ∞}, which is the state space for this Markov chain. Note
that this lattice depends on the initial price S0 and the values of u, d.

Portfolios of stock and a risk-free asset

In addition to our stock there is a risk-free asset (money) with fixed interest rate 0 < r < 1 that
costs $1.00 per share; x shares bought now (at time t = 0) would be worth the deterministic
amount x(1 + r)n at time t = n, n ≥ 1 (interest is compounded each time unit). Buying this
asset is lending money. Selling this asset is borrowing money (shorting this asset).

We must have 1 + r < u for otherwise there would be no reason to invest in the stock: you
could instead obtain a riskless payoff of S0(1+r) ≥ S0u at time t = 1 by buying S0 shares of the

1This model is meant to approximate the continuous-time geometric Brownian motion (GBM) S(t) = S0e
X(t)

model for stock, where X(t) = σB(t)+µt is Brownian motion (BM) with drift µ and variance term σ2. The idea is
to break up the time interval (0, t] into n small subintervals of length h = t/n, (0, h], (h, 2h], . . . ((n−1)h, nh = t],
and re-write

S(t) = S(0) × H1 × · · · × Hn,

where Hi = S(ih)/S((i− 1)h), i ≥ 1 are the succesive price ratios, and are in fact iid (due to the stationary and
independent increments of the BM X(t)). Then we find an appropriate p, u, d so that the distribution of H is
well approximated by the two-point distribution of Y (typically done by fitting the first two moments of H with
those of Y ). As h ↓ 0 the approximation becomes exact.
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risk-free asset at time t = 0 and selling them at time t = 1, thus earning at least as much, with
certainty, than is ever possible from the stock. Similarly we have d < 1 + r for otherwise there
would be no reason to invest in the risk-free asset. (Inherent in our argument is the economic
assumption of non-arbitrage, meaning that it is not possible, with certainty, for people to make
a profit from nothing.)

A portfolio of stock and risk-free asset is a pair (α, β) describing our total investment at a
given time; α shares of stock and β shares of the risk-free asset. We allow the values of α and β
to be positive or negative or zero and they do not have to be integers. Negative values refer to
shorting (borrowing). For example (2.3,−7.4) means that we bought 2.3 shares of stock, and
shorted 7.4 shares of the risk free asset (meaning we borrowed 7 dollars and 40 cents at interest
rate r.)

Observe that a portfolio of stock and risk-free asset always has a well-defined price: a
portfolio’s price (cost) at time t = 0 is its worth, αS0 + β, and its price at time t = n, n ≥ 0
is its worth at that time, αSn + β(1 + r)n. For example at time t = 1 our (2.3,−7.4) portfolio
is worth 2.3S1 − 7.4(1 + r) meaning that we now have 2.3S1 dollars worth of stock and owe
7.4(1 + r) dollars.

0.1 Pricing the European call option when the expiration date is t = 1

Now consider a European call option for one share of the stock, with strike price K, and
expiration date t = 1. The payoff to the holder of this option at time t = 1 is a random
variable given by C1 = (S1 −K)+; the buyer of such an option is thus betting that the stock
price will be above K at the expiration date. This random payoff has only two possible values:
C1 = Cu = (uS0 − K)+ if the stock goes up, and C1 = Cd = (dS0 − K)+ if the stock moves
down. Both of these values are known since they depend only on the known values u, d, S0,
and K. We next proceed to determine what a fair price should be for this option and denote
this price by C0. Clearly C0 ≤ S0 because the payoff is less: C1 = (S1 −K)+ ≤ S1. That is
why people buy options, they are cheaper than the stock itself, but potentially can yield high
payoffs. Unlike a portfolio of stock and risk-free asset, however, it is not immediate what this
price should be, but we can use a portfolio to figure it out. To this end we will construct a
portfolio (α, β) of stock and risk free asset, which if bought at time t = 0, then goes on to
replicate, at time t = 1, the option payoff C1: a portfolio that at time t = 1 yields payoff Cu

if the stock goes up and Cd if it goes down. But the payoff of the portfolio at time t = 1 is
αS1 + β(1 + r), so we simply need to find the values α and β such that αS1 + β(1 + r) = C1:
find α and β such that αuS0 +β(1+ r) = Cu and αdS0 +β(1+ r) = Cd. Once we do this, since
the two investments yield the same payoff at time t = 1 they must have the same price at time
t = 0:

C0 = the price of the replicating portfolio = αS0 + β. (2)

The point is that, in effect, they are the same investment, and thus must cost the same.
The solution to the two equations with two unknowns, αuS0 + β(1 + r) = Cu and αdS0 +

β(1 + r) = Cd, is

α =
Cu − Cd

S0(u− d)
(3)

β =
uCd − dCu

(1 + r)(u− d)
. (4)

Plugging this solution into (2) yields

C0 =
Cu − Cd

(u− d)
+

uCd − dCu

(1 + r)(u− d)
,
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which when algabraically simplified (details left to the reader) yields:

C0 =
1

1 + r
(p∗Cu + (1− p∗)Cd) (5)

=
1

1 + r
(p∗(uS0 −K)+ + (1− p∗)(dS0 −K)+), where (6)

p∗
def=

1 + r − d

u− d
(7)

1− p∗ =
u− (1 + r)

u− d
. (8)

Since 1 + r < u (by assumption), we see that 0 < p∗ < 1 is a probability, and C0 as given
in (5) is expressed elegantly as the discounted expected payoff of the option if p = p∗ for the
underlying “up” probability p for the stock;

C0 =
1

1 + r
E∗(C1), (9)

where E∗ denotes expected value when p = p∗ for the stock price. p∗ is called the risk-neutral
probability, for reasons we shall take up in the next section.

The point here is that the real expected payoff is given by

E(C1) = pCu + (1− p)Cd,

where p is the underlying up probability for the stock. But when pricing the option, it is not the
real p that ends up being used in the pricing formula, it is the risk-neutral p∗ instead. Noticing
that p∗ in (7) only depends on r, u and d, we conclude that the price of the option does not
depend at all on p, only on S0, u, d and r. So to price the option we never need to know the
real p.2.

This irrelevancy of p will later, when we study stock models in continous time, express
itself in the famous Black-Scholes pricing formula which does not depend on the mean µ of the
underlying Brownian motion, but only on the variance σ2.

0.2 Pricing other European call options when the expiration date is t = 1

The option pricing method of the previous section goes thru for any option in which the payoff
(denoted by C1) occurs at the expiration date t = 1;

C0 =
1

1 + r
E∗(C1) =

1
1 + r

(p∗Cu + (1− p∗)Cd). (10)

It is only required that the payoff values Cu and Cd, whatever they are, are known; C1 = Cu if
the stock goes up, C1 = Cd if the stock goes down. Examples include a put option, with payoff
(K − S1)+, in which the holder has the option to sell a share of the stock at price K at the
expiration date t = 1; Cu = (K − uS0)+, Cd = (K − dS0)+.

In words, the option pricing formula says

The price of the option is equal to the present value of the expected payoff of the
option under the risk-neutral probability.

2But hidden in here is the economic fact that a stock with a higher p would have a higher S0
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0.2.1 Risk-neutral measure

We saw that the price of the European call option can be expressed as an expected value (9) if
we use the risk-neutral probability p∗ defined in (7). Moreover, p∗ only depends on r, u and d,
but not on the real value of p underlying the stock’s randomness. We conclude that we never
need to know what the real p is to compute C0. We need to know the values of the payoff
outcomes, Cu and Cd, but not their probabilities of ocurrence.

p∗ has a nice interpretation as the unique probability p making the stock price move in a
“fair” way, meaning that given the initial price S0, the present value of the expected price at
time t = 1 is yet again S0: on average, the stock (when discounted) neither goes up nor down
in price, it is risk-neutral;

(1 + r)−1E(S1|S0) = S0, if p = p∗. (11)

To see that this is so, expanding the expected value in (11) yields the equation

(1 + r)−1(puS0 + (1− p)dS0) = S0,

or simply
(1 + r)−1(pu + (1− p)d) = 1,

with unique solution

p = p∗ =
1 + r − d

u− d
.

Thus by imagining that the stock price evolves “fairly” (that is, p = p∗), the price of the
option can be realized as the expected discounted payoff of the option at time t = 1. Changing
from p to p∗ is sometimes referred to as a change of measure, since we have changed the way
that the probabilities of stock outcomes are measured; P (S1 = uS0) has been changed from p
to p∗, and P (S1 = dS0) has been changed from 1−p to 1−p∗. We thus sometimes say that the
stock pricing is being considered under the “risk-neutral measure”, meaning that we are using
p∗.

Since {Sn : n ≥ 0} is a Markov process, (11) and the analysis that followed imply that

(1 + r)−(n+1)E∗(Sn+1|Sn, Sn−1, . . . , S0) = (1 + r)−nSn, n ≥ 0, (12)

which means that under the risk-neutral measure, the stochastic process {(1 + r)−nSn : n ≥ 0}
of discounted prices is a martingale3. Thus p∗ is the unique probability making the discounted
stock prices form a martingale. In particular, (1 + r)−nE∗(Sn) = E∗(S0), n ≥ 0, so if we buy
the stock now at time t = 0 at price S0, then (1 + r)−nE∗(Sn) = S0, meaning that under p∗

the PV of the expected value of the stock at any time is the same as the initial price we paid.

0.3 Pricing the European options when the expiration date is t ≥ 2

If the expiration date of a European style option is t = T , then we denote the payoff at time T
by the random variable CT . For example, CT = (ST −K)+ for the European call option. The
various payoff values at time T depend on the outcomes over the T time units. For example

3A martingale is a stochastic process {Xn : n ≥ 0} with the fundamental property that E(Xn+1|X0, . . . , Xn) =
Xn, n ≥ 0. Martingales capture the notion of a fair game in the context of gambling: Letting Xn denote your
total fortune right after your nth gamble, the martingale property states that regardless of your past gambles,
the next gamble will, on average, neither give you a gain or a loss; each gamble is fair. It immediately follows
that E(Xn) = E(X0), n ≥ 0: when you finish gambling, your expected total fortune is the same as what you
started with.
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if T = 2, then there are the four values C2,uu, C2,ud, C2,du, C2,dd reflecting the up and down
outcomes over the two time periods. The probabilities of these are p2, p(1−p), (1−p)p, (1−p)2
respectively, and so the expected payoff is given by

E(C2) = p2C2,uu + p(1− p)C2,ud + (1− p)pC2,du + (1− p)2C2,dd.

For the European call option, order does not matter; C2,ud = C2,du = (udS0 − K)+, but in
general, order will matter. More generally, for the European call option, the payoff at time T
is always of the form (uidT−iS0−K)+ and does not depend on the order in which the ups and
downs occurred; for other options order may matter; they are called path-dependent options.
Examples include an Asian call option with payoff ( 1

T

∑T
n=1 Sn −K)+.)

The following is a beautiful generalization of (10):

Theorem 0.1 Under the Binomial lattice model for stock pricing, the price of a European style
option with expiration date t = T is given by

C0 =
1

(1 + r)T
E∗(CT ). (13)

E∗ denotes expected value under the risk-neutral probability p∗ for stock price (defined in
(7)). In words: “the price of the option is equal to the present value of the expected payoff of
the option under the risk-neutral measure”.

Applying Theorem 0.1 to a European call option where the order of the ups and downs is
irrelevant yields the discrete-time analog of the famous Black-Scholes-Merton pricing formula
(for European call options):

Corollary 0.1 Under the Binomial lattice model for stock pricing, the price of a European call
option with strike price K and expiration date t = T is given by

C0 =
1

(1 + r)T
E∗(CT ) (14)

=
1

(1 + r)T
E∗(ST −K)+ (15)

=
1

(1 + r)T

T∑
i=0

(
T

i

)
(p∗)i(1− p∗)T−i(uidT−iS0 −K)+. (16)

We will prove Theorem 0.1 for T = 2, since the T > 2 case is analogous. To this end we
must show that

C0 =
1

(1 + r)2
E∗(C2) (17)

=
1

(1 + r)2
[
C2,uu(p∗2) + C2,ud(p∗(1− p∗)) + C2,du(p∗(1− p∗)) + (18)

C2,dd(1− p∗)2
]
. (19)

The key idea: Although we can’t exercise the option at the earlier time t = 1, we can sell
it, so it does have a ”price” at that time which we can view as a potential “payoff”. At time
t = 1, we would know what the new price of the stock is, S1, and we thus could sell the option
which then would have an expiration date of T = 1. For example, if S1 = uS0, then we use
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the T = 1 price formula in (10) with outcomes Cu = C2,u,u and Cd = C2,ud yielding the price
(denoted by C1,u, the price if the stock went up at t = 1)

C1,u =
1

1 + r
[p∗C2,u,u + (1− p∗)C2,ud].

Similarly, if S1 = dS0, then

C1,d =
1

1 + r
[p∗C2,du + (1− p∗)C2,dd].

But now we can go one more time step back to t = 0: We have these known “payoff” values
at time t = 1 of C1,u and C1,d, which we just computed, and thus we can now use them in the
T = 1 formula (10) again to obtain

C0 =
1

1 + r
[p∗C1,u + (1− p∗)C1,d] (20)

=
1

(1 + r)2
[
C2,uu(p∗2) + C2,ud(p∗(1− p∗)) + C2,du(p∗(1− p∗)) + (21)

C2,dd(1− p∗)2
]
. (22)

In general, the proof proceeds by starting at time T and moving back in time step-by-step
to each node on the lattice until finally reaching time t = 0. This procedure yields not only C0

but all the intermediary prices as well.

0.4 Pricing options that allow early exercise

Some options (other than European) allow one to exercise early. For example, in a American
put option with expiration date T , the holder has the right to exercise the option at any time
1 ≤ t ≤ T . If exercised at time t, the payoff is (K − St)+.

Although the pricing formula in Theorem 0.1 is no longer valid, the same method used in
its proof yields a method for pricing here too, and also yields the optimal time at which the
holder should exercise. We will illustrate here for the put option when T = 2.

Pricing an American put option with expiration date T = 2

At time t = 1 we need to decide wether to exercise or not. Suppose that the stock went up.
Then if we exercise we receive payoff (K − uS0)+. On the other hand the pricing formula (10)
yields the price if we hold on to it:

V1,u =
1

1 + r
[p∗(K − u2S0)+ + (1− p∗)(K − udS0)+].

Thus we need to compare and choose the one that is larger,

C1,u = max{V1,u, (K − uS0)+}.

Only if (K − uS0)+ > V1,u would we exercise early. C1,u is how much the option is worth at
time t = 1 if the stock went up.

Similarly, if the stock goes down at time t = 1, we have

V1,d =
1

1 + r
[p∗(K − udS0)+ + (1− p∗)(K − d2S0)+],
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and
C1,d = max{V1,d, (K − dS0)+}

is how much the option is worth. Only if (K − dS0)+ > V1,d would we exercise early. The two
values C1,u and C1,d are then the prices at time t = 1, and finally the price C0 is then given by
applying (10) to the two values

C0 =
1

1 + r
[p∗C1,u + (1− p∗)C1,d].

In general, when the expiration date is T , one computes all the prices at all the intermediary
points step-by-step in an analogous way. The optimal time to exercise is then determined as
follows: at time t = 1 , when the new value of the stock is known, one checks to see if the
payoff from exercising exceeds the computed V value (using (10)) at that node. If it does then
exercise, otherwise wait one more unit of time and check again, and so on until (if at all) finding
the first time for which it is optimal to exercise.

It is never optimal to exercise early for an American call option

For the American call option with T = 2,

V1,u =
1

1 + r
[p∗(Ku2S0 −K)+ + (1− p∗)(udS0 −K)+],

and it is easily seen that V1,u ≥ (uS0 −K)+. Similarly

V1,d =
1

1 + r
[p∗(KudS0 −K)+ + (1− p∗)(d2S0 −K)+],

and V1,d ≥ (dS0 −K)+. So it is always optimal to wait until the end at time T = 2. One can
generalize easily to see that this is so for any expiration date T . This means that the two call
options (European, American) are really identical, and have the same price.

0.5 Monte Carlo simulation for pricing options

As a motivating example, suppose we wish to compute the expected payoff of some option
E∗(CT ) (using the risk-free measure), so as to get the price C0 = (1 + r)−T E∗(CT ). CT is a
random variable and under the binomial lattice model, Sn = S0Y1×· · ·×Yn, it is some function
h of S0 and Y1, . . . , YT ; CT = h(S0, Y1, . . . , YT ). For example, if CT = (ST −K)+, the payoff
for the European call, then h(S0, Y1, . . . , YT ) = (S0Y1 × · · · × YT −K)+.

Note that if U is uniformly distributed over the continuous interval (0, 1), then Y defined
by Y = uI{U ≤ p∗} + dI{U > p∗} has the correct distribution of the iid Yi; P (Y = u) =
p∗, P (Y = d) = 1− p∗.

Thus we can ask our computer to hand us T iid uniforms U1, . . . , UT ; construct the iid
Yi = uI{Ui ≤ p∗} + dI{Ui > p∗}, and then compute a first sample X1 = h(S0, Y1, . . . , YT ).
Then, independently, we do this again to obtain a second sample, X2, and keep on doing so a
total of n times where n is “large”, obtaining n iid copies X1, . . . , Xn. Then we use the estimate

E∗(CT ) ≈ 1
n

n∑
i=1

Xi, (23)

which is justified via the strong law of large numbers which asserts that wp1, the approximation
becomes exact as n →∞.

We illustrate with some simple examples:

7



1. (Down and out call option)
Suppose that we start with a European call option but we also introduce a level 0 < b < S0

and some pre-specified times 0 < n1 < n2 < · · · < nk < T at which it must hold that
Sni > b, i ∈ {1, . . . , k}. If at any one such time ni is holds that Sni ≤ b, then the option
becomes worthless. Thus the payoff at time T is given by

CT = (ST −K)+I{Sn1 > b, Sn2 > b, . . . , Snk
> b}.

Computing exactly the expected value of this payoff is not possible in general, so we will
estimate it via Monte Carlo. For concreteness, let’s assume that T = 10, and there are
three checking times n1 = 2, n2 = 4, n3 = 7. First we generate Y1 and Y2 so as to simulate
the first needed value, S2 = S0Y1Y2. If S2 ≤ b, stop and set CT = 0; otherwise generate
(independently) Y3, Y4, to obtain S4 = S2Y3Y4. If S4 ≤ b, stop and set CT = 0; otherwise
generate (independently) Y5, Y6, Y7, to obtain S7 = S4Y5Y6Y7. If S7 ≤ b, stop and set
CT = 0; otherwise generate (independently) Y8, Y9, Y10, to obtain S10 = S7Y8, Y9, Y10 and
set CT = (S10 − K)+. This would give us our first copy of CT , denote by X1. Now
repeat this procedure independently again and again until finally obtaining n such copies
X1, . . . , Xn, finally using (23) as our estimate of the desired expected value.

2. (Asian call option)
Here the payoff involves the entire average over all T time periods instead of only ST :

CT = (
1
T

T∑
i=1

Si −K)+.

In this case we need to sequentially generate all T of the Yi and use them to construct
the sum 1

T

∑T
i=1 Si, and our copy of CT = ( 1

T

∑T
i=1 Si−K)+. Then we repeat this n times

and so on.
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