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1 Geometric Brownian motion

Note that since BM can take on negative values, using it directly for modeling stock prices is
questionable. There are other reasons too why BM is not appropriate for modeling stock prices.
Instead, we introduce here a non-negative variation of BM called geometric Brownian motion,
S(t), which is defined by

S(t) = S0e
X(t), (1)

where X(t) = σB(t) + µt is BM with drift and S(0) = S0 > 0 is the intial value. Taking
logarithms yields back the BM; X(t) = ln(S(t)/S0) = ln(S(t))−ln(S0). ln(S(t)) = ln(S0)+X(t)
is normal with mean µt + ln(S0), and variance σ2t; thus, for each t, S(t) has a lognormal
distribution.

As we will see in Section 1.4: letting r = µ + σ2

2 ,

E(S(t)) = ertS0 (2)

the expected price grows like a fixed-income security with continuously compounded
interest rate r.

In practice, r >> r, the real fixed-income interest rate, that is why one invests in stocks. But
unlike a fixed-income investment, the stock price has variability due to the randomness of the
underlying Brownian motion and could drop in value causing you to lose money; there is risk
involved here.

1.1 Lognormal distributions

If Y ∼ N(µ, σ2), then X = eY is a non-negative r.v. having the lognormal distribution; called
so because its natural logarithm Y = ln(X) yields a normal r.v.

X has density

f(x) =

{
1

xσ
√

2π
e
−(ln(x)−µ)2

2σ2 , if x ≥ 0;
0, if x < 0.

This is derived via computing d
dxF (x) for

F (x) = P (X ≤ x) = P (Y ≤ ln(x)) = Θ((ln(x)− µ)/σ),

where Θ(x) denotes the c.d.f. of N(0, 1).
Observing that E(X) = E(eY ) and E(X2) = E(e2Y ) are simply the moment generating

function (MGF) MY (s) = E(esY ) of Y ∼ N(µ, σ2) evaluated at s = 1 and s = 2 respectively
yields

E(X) = eµ+σ2

2

E(X2) = e2µ+2σ2

V ar(X) = e2µ+σ2
(eσ2 − 1).

As with the normal distribution, the c.d.f. F (x) = P (X ≤ x) = Θ((ln(x)− µ)/σ) does not
have a closed form, but it can be computed from the unit normal cdf Θ(x). Thus computations
for F (x) are reduced to dealing with Θ(x).
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We denote a lognormal µ, σ2 r.v. by

X ∼ lognorm(µ, σ2).

1.2 Back to our study of geometric BM, S(t) = S(0)eX(t)

For 0 = t0 < t1 < · · · < tn = t, the ratios Li
def= S(ti)/S(ti−1), 1 ≤ i ≤ n, are independent

lognormal r.v.s. which reflects the fact that it is the percentage of changes of the stock price
that are independent, not the actual changes S(ti)− S(ti−1). For example

L1
def=

S(t1)
S(t0)

= eX(t1),

L2
def=

S(t2)
S(t1)

= eX(t2)−X(t1),

are independent and lognormal due to the normal independent increments property of BM;
X(t1) and X(t2)−X(t1) are independent and normally distributed. Note how therefore we can
re-write

S(t) = S0L1L2 · · ·Ln, (3)

an independent product of n lognormal r.v.s. For example, suppose we wish to sample the
stock prices at the end of each day. Then we could choose ti = i so that Li = S(i)/S(i − 1),
the percentage change over one day, and then realize (3) as the independent product of such
daily changes. In this case the Li are also identically distributed since ti − ti−1 = 1 for each i:
ln(Li) is normal with mean µ and variance σ2.

Geometric BM not only removes the negativity problem but can (in a limited and approxi-
mate sense) be justified from basic economic principles as a reasonable model for stock prices
in an “ideal” non-arbitrage world. Roughly speaking, no one should be able to make a profit
with certainty, by observing the past values {S(u) : 0 ≤ u ≤ t} of the stock, and this forces us
to consider non-negative models possessing this property. The idea is to force a “level playing
field”, in which the evolution of the stock prices must be such that the activity of buying or
selling stock offers no arbitrage opportunities.

1.3 Geometric BM is a Markov process

Just as BM is a Markov process, so is geometric BM: the future given the present state is
independent of the past.

S(t + h) (the future, h time units after time t) is independent of {S(u) : 0 ≤ u < t} (the
past before time t) given S(t) (the present state now at time t). To see that this is so we note
that

S(t + h) = S0e
X(t+h)

= S0e
X(t)+X(t+h)−X(t)

= S0e
X(t)eX(t+h)−X(t)

= S(t)eX(t+h)−X(t).

Thus given S(t), the future S(t + h) only depends on the future increment of the BM,
X(t + h) − X(t). But BM has independent increments, so this future is independent of the
past; we get the Markov property.
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Also note that {X(t + h)−X(t) : h ≥ 0} is yet again BM with the same drift and variance.
This means that given S(t), the future process {S(t)eX(t+h)−X(t) : h ≥ 0} defines (in distribu-
tion) the same geometric BM but with new initial value S(t). (So the Markov process has time
stationary transition probabilities.)

1.4 Computing moments for Geometric BM

Recall that the moment generating function of a normal r.v. X ∼ N(µ, σ2) is given by

MX(s) = E(esX) = eµs+σ2s2

2 , −∞ < s < ∞.

Thus for BM with drift, since X(t) ∼ N(µt, σ2t),

MX(t)(s) = E(esX(t)) = eµts+σ2ts2

2 , −∞ < s < ∞.

This allows us to immediately compute the moments and variance of geometric BM, by
using the values s = 1, 2 and so on. For example, E(S(t)) = E(S0e

X(t)) = S0MX(t)(1), and
E(S2(t)) = E(S2

0e2X(t)) = S2
0MX(t)(2):

E(S(t)) = S0e
(µ+σ2

2
)t (4)

E(S2(t)) = S2
0e2µt+2σ2t (5)

V ar(S(t)) = S2
0e2µt+σ2t(eσ2t − 1). (6)

Similarly, any ratio, S(t)/S(s) = eX(t)−X(s), s < t, being lognormal (since X(t) −X(s) ∼
N(µ(t− s), σ2(t− s))) has mean and variance

E{S(t)/S(s)} = e(µ+σ2

2
)(t−s) (7)

E{S2(t)/S2(s)} = e2µ(t−s)+2σ2(t−s) (8)

V ar{S(t)/S(s)} = e2µ(t−s)+σ2(t−s)(eσ2(t−s) − 1). (9)

Letting r = µ + σ2

2 , we see that

E(S(t)) = ertS0,

and more generally

E{S(t)/S(s)} = er(t−s).

1.5 The Binomial model as an approximation to geometric BM

The binomial lattice model (BLM) that we used earlier is in fact an approximation to geometric
BM, and we proceed here to explain the details.

Recall that for BLM, Sn = S0Y1Y2 · · ·Yn, n ≥ 0 where the Yi are i.i.d. r.v.s. distributed as
P (Y = u) = p, P (Y = d) = 1−p. Besides the initial value S0, the parameters 0 < d < 1+r < u,
and 0 < p < 1 completely determine this model. Our objective here is to estimate what these
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parameters should be in order for this BLM to nicely approximate geometric BM over a given
time interval (0, t].

From (3) we can quickly see that for any fixed t we can re-write S(t) as a similar i.i.d. prod-
uct, by dividing the interval (0, t] into n equally sized subintervals (0, t/n], (t/n, 2t/n], . . . , ((n−
1)t/n, t], defining ti = it/n, 0 ≤ i ≤ n and defining Li = S(ti)/S(ti−1). Each ln(Li) has a nor-
mal distribution with mean µt/n and variance σ2t/n. Thus we can approximate geometric BM
over the fixed time interval (0, t] by the BLM if we appoximate the lognormal Li by the simple
Yi. To do so we will just match the mean and variance so as to produce appropriate values for
u, d, p:

Find u, d, p such that E(Y ) = E(L) and V ar(Y ) = V ar(L). This is equivalent to matching
the first two moments; E(Y ) = E(L) and E(Y 2) = E(L2).

Noting that E(Y ) = pu + (1 − p)d and E(Y 2) = pu2 + (1 − p)d2, and (from Section 1.4)
E(L) = eµt/n+σ2t/2n and E(L2) = e2µt/n+2σ2t/n, we must solve the following two equations for
u, d, p:

pu + (1− p)d = eµt/n+σ2t/2n (10)

pu2 + (1− p)d2 = e2µt/n+2σ2t/n. (11)

Since we have only two equations, there is no unique solution; we have one degree of freedom
in the sense that we can apriori force one variable to take on a certain value (p = 0.5 for
example), and then solve for the other two. The most common relationship to force is

ud = 1,

which says that u = 1/d, and has the effect of making the stock price in the BLM have the nice
property that an up followed by a down (or vice versa) leaves the price alone: udS0 = duS0 = S0.
We shall assume this.

Then, letting ν = µ + σ2/2, we can re-write the equations as

ud = 1, (12)

pu + (1− p)d = eν(t/n), (13)

pu2 + (1− p)d2 = e(2ν+σ2)(t/n). (14)

(13) allows us to solve for p in terms of u and d,

p =
eν(t/n) − d

u− d
. (15)

Then using this formula for p together with ud = 1 to plug into the (14) allows us to solve for
u (and hence d) (see derivation below):

u =
1
2
(e−ν(t/n) + e(ν+σ2)(t/n)) +

1
2

√
(e−ν(t/n) + e(ν+σ2)(t/n))2 − 4 (16)

When n is large, so that t/n is small, the solution can be approximated by the more simple

u = eσ
√

t/n, (17)

d = e−σ
√

t/n. (18)
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(in the sense that the ratio of the two formulas for u tends to one as n → ∞). This is nice
because this formula does not depend upon knowing the true value of µ; only σ. Thus when
using the BLM to price an option, we only need to estimate σ for the stock in question (via
looking at past data) in order to get the necessary parameters (recall that the risk-neutral
probability, p∗ = (1 + r − d)/(u− d), does not depend at all on the actual value of p).

Derivation of u in (16)

Multiplying (13) by d yields
pud + (1− p)d2 = deν t

n .

But since ud = 1,
(1− p)d2 = deν t

n − p.

Thus from (14)
pu2 + (1− p)d2 = pu2 + deν t

n − p = e(2ν+σ2) t
n ,

or
p(u2 − 1) +

1
u

eν t
n = e(2ν+σ2) t

n . (19)

But

p =
eν t

n − d

u− d
=

eν t
n − 1

u

u− 1
u

=
eν t

n u− 1
u2 − 1

.

Plugging this formula for p into (19) yields

eν t
n u− 1 +

1
u

eν t
n = e(2ν+σ2) t

n .

Multiplying by u yields
eν t

n u2 − u + eν t
n = ue(2ν+σ2) t

n .

Dividing by eν t
n and rearanging terms yields the following quadratic equation in u,

u2 − u(e−ν t
n + e(ν+σ2) t

n ) + 1 = 0,

with solution (u > 1) given by (16).

1.6 Justification for the BLM approximation

The main idea throughout the BLM approximation is that when n is large,

ln(Y1Y2 · · ·Yn) =
n∑

i=1

ln(Yi) ≈ X(t) ∼ N(µt, σ2t),

due to the central limit theorem (CLT). Thus (raising both sides to the e power, and multiplying
by S0),

Sn = S0Y1Y2 · · ·Yn ≈ S0e
X(t) = S(t).

It can be shown that as n → ∞, the approximation becomes exact (in distribution): the
geometric BM can be obtained as a limit of the BLM approximation as the interval size gets
smaller and smaller: Sn −→ S(t) in distribution as n →∞.

The argument is based on the CLT and the fact that E(ln(Y1 · · ·Yn)) = nE(ln(Y )) −→ µt,
and V ar(ln(Y1 · · ·Yn)) −→ σ2t. (e.g., the first two moments of ln(Sn/S0) converge to those of
X(t) = ln(S(t)/S0).)
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1.7 Option pricing for geometric BM: Black-Scholes

Consider a European call option with expiration date t = T , strike price K; the payoff is given
by CT = (S(T ) −K)+. Our objective in this section is to determine the option’s price when
the stock price, in continuous time, follows a geometric BM. We do so by trying to extend to
continuous time the risk-neutral approach developed for the BLM. The formula derived is the
Black-Scholes option pricing formula, Theorem 1.1 below.

Recall that under the BLM, the price of the option (with expiration date t = n)is given by
a discounted expected value of payoff:

C0 =
1

(1 + r)n
E∗(Sn −K)+, (20)

where E∗ denotes expected value under the risk-neutral probability p∗ for the up and down
movement of the stock price. Under p∗, the expected rate of return of the stock equals the
risk-free interest rate r; E(S1) = (1 + r)S0, or (pu + (1 − p)d) = 1 + r. The solution is
p = p∗ = (1 + r − d)/(u − d). Another (more advanced) way of describing this is that under
p∗ the discounted stock prices {(1 + r)−nSn : n ≥ 0} are “fair”, that is, form a martingale.1 If
stock prices in continuous time follow a geometric BM, then we should (due to its derivation
as a limit of the BLM) expect a similar discounted-expected-value form for the option price:

C0 = e−rT E∗(S(T )−K)+, (21)

where E∗ denotes an appropriate risk-neutral expected value. This turns out to be so and we
proceed next to sketch the corresponding results.

Risk-neutral version of S(t)

Letting S(t) = S0e
X(t), where X(t) = σB(t) + µt is BM with drift µ, and variance σ2, we

solve for new values for µ and σ (denoted by µ∗, σ∗), under which the pricing is “fair”, that is,
such that the discounted prices {e−rtS(t) : t ≥ 0} form a martingale,2 which here means that
E(S(t)) = ertS0, t ≥ 0. But we know that E(S(t)) = ertS0, where r = µ+σ2/2 so we conclude
that we need

µ + σ2/2 = r.

This is accomplished by leaving σ alone, σ∗ = σ, but changing the drift term µ to

µ∗ = r − σ2/2 (the risk-neutral drift). (22)

In other words, when pricing the option we need to replace S(t) by its risk-neutral version
S∗(t) = S0e

X∗(t), where

X∗(t) = σB(t) + µ∗t

= σB(t) + (r − σ2/2)t.
1A discrete-time stochastic process {Xn : n ≥ 0} is a martingale if E(Xn+1 | X0, . . . Xn) = Xn, n ≥ 0.

On average, conditional on all values up to now (n), the value one unit of time later is the same as now: It
neither goes up or down. This is best understood in the context of gambling, where Xn denotes your total
fortune after gambling n times in a “fair” game. When Xn = (1 + r)−nSn the martingale property reduces to
E(S1) = (1 + r)S0 which is equivalent to having p = p∗.

2A continuous-time stochastic process {X(t) : t ≥ 0} is a martingale if E(X(t + h)|X(s) : 0 ≤ s ≤ t) =
X(t), h ≥ 0, t ≥ 0. When X(t) = e−rtS(t), the martingale property becomes E(e−r(t+h)S(t + h)|e−rsS(s) : 0 ≤
s ≤ t) = e−rtS(t), h ≥ 0, t ≥ 0.
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(21) then becomes

C0 = e−rT E∗(S(T )−K)+

= e−rT E(S∗(T )−K)+

= e−rT E(S0e
σB(T )+(r−σ2/2)T −K)+, (23)

and notice how it does not depend upon the real µ, but does depend on the real variance term
σ2, the volatility of the stock.

When µ is replaced by µ∗ we say that the geometric Brownian motion is being considered
under its risk-neutral measure. µ∗ serves us in continuous time the same way that the risk-
neutral probability p∗ does in discrete time.

The expected value in (23) can be computed in terms of the standard normal c.d.f. Θ(x) =
1√
2π

∫ x
−∞ e

−y2

2 dy. The formula obtained is the famous

Theorem 1.1 (Black-Scholes Option pricing formula) When the stock price follows a ge-
ometric BM, S(t) = S0e

σB(t)+µt, t ≥ 0, the price of a European call option with expiration date
t = T and strike price K is given by

C0 = S0Θ(c + σ
√

T )− e−rT KΘ(c),

where

c = − ln(K/S0)− (r − σ2/2)T
σ
√

T

=
ln(S0/K) + (r − σ2/2)T

σ
√

T
,

and r is the risk-free interest rate.

Notice how, in order to compute our option price, the only parameters we need are: r, σ,
K, and S0. Of these the only one we need to estimate (from past stock data) is σ; the others
would be known.

The pricing formula immediately extends to the price Ct of the same option at any time 0 ≤
t ≤ T : just replace S0 by S(t) and T by T −t. For at time t we would know the stock price S(t),
and with T−t time units remaining until the expiration date, the price would be the same as for
an option with initial price S(t) and expiration date T − t. More formally, the future evolution
of the stock price h time units after time t would follow S̃(h) = S(t)eX(t+h)−X(t), h ≥ 0. From
the Markov property (recall Section 1.3) S̃(h) is the same geometric BM but with initial price
S(t) instead of S0. The original expiration date occurs when h = T − t. Thus computing Ct is
the same as computing C0 in which T is changed to T − t and S0 is changed to S(t).

This makes perfect sense: Suppose now is time t < T . You could buy a new call option with
expiration date T − t time units from now, namely at time T , and same strike price K. Clearly
now at time t this new option is equivalent to your old one: they both have the same payoff at
time T . Thus they must have the same price (or an arbitrage opportunity would arise).

The proof of (23) (that is, the proof that C0 can indeed be computed as a discounted
expected value when µ is changed to µ∗) is not trivial, but there are two methods of deriving
it. The first method takes limits in (20) (as n → ∞) when the BLM is used to approximate
geometric BM during (0, T ]; the limit converges exactly to (23). The second method deals with
the geometric BM directly, and offers deep insight into continuous-time option pricing by using
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stochastic calculus as the main mathematical tool. The idea is to derive a partial differential
equation that must be satisfied by Ct = Ct(S(t), t), the cost of the option at time 0 ≤ t ≤ T . It
does so by trying to construct a “replicating portfolio” (of stock and risk-free asset) at each time
0 ≤ t ≤ T with value the same as Ct. This yields the famous Black-Scholes partial differential
equation for the pricing of any derivative of the stock; the European call option being only a
special case. We will sketch over the two methods in a later section.

1.8 Doing the integration in (23)

Here we carry out the integration to evaluate E∗(S(T ) − K)+ in (23) thereby yielding the
Black-Scholes option pricing formula. Recalling that X∗(T ) ∼ N(µ∗T, σ2T ) and hence has
density

1
σ
√

2πT
e
−(x−µ∗)2

2Tσ2 ,

we compute

E∗(S(T )−K)+ = E((S∗(T )−K)+)

=
∫ ∞

−∞
(S0e

x −K)+
1

σ
√

2πT
e
−(x−µ∗T )2

2Tσ2 dx

=
∫ ∞

ln(K/S0)
(S0e

x −K)
1

σ
√

2πT
e
−(x−µ∗T )2

2Tσ2 dx

=
∫ ∞

ln(K/S0)
S0e

x 1
σ
√

2πT
e
−(x−µ∗T )2

2Tσ2 dx−K

∫ ∞

ln(K/S0)

1
σ
√

2πT
e
−(x−µ∗T )2

2Tσ2 dx

=
∫ ∞

ln(K/S0)
S0e

x 1
σ
√

2πT
e
−(x−µ∗T )2

2Tσ2 dx− K√
2π

∫ ∞

ln(K/S0)−µ∗T

σ
√

T

e
y2

2 dy

=
∫ ∞

ln(K/S0)
S0e

x 1
σ
√

2πT
e
−(x−µ∗T )2

2Tσ2 dx−KΘ
( ln(K/S0)− µ∗T

σ
√

T

)
=

∫ ∞

ln(K/S0)
S0e

x 1
σ
√

2πT
e
−(x−µ∗T )2

2Tσ2 dx−KΘ(c).

where Θ(x) = 1 − Θ(x) is the tail of the unit normal distribution, and by symmetry Θ(x) =
Θ(−x). Note that we changed variables in the second integral, y = (x − µ∗T )/σ

√
T so as to

reduce it in terms of the standard normal density. Notice that Θ(c) = Θ
(

ln(K/S0)−µ∗T

σ
√

T

)
=

P (S∗(T ) > K) (the risk-neutral probability that you excercise the option) which is a nice way
of remembering what the value for c is.

The same change of variables (together with algebra, etc.) yields the first integral as

erT S0Θ(c + σ
√

T ).

Thus we conclude that

e−rT E∗(S(T )−K)+ = S0Θ(c + σ
√

T )−Ke−rT Θ(c),

the Black-Scholes option pricing formula.
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1.9 Sketch of the proof of (23)

When the BLM, Sn = S0Y1Y2 · · ·Yn, is used to approximate S(T ), the interval (0, T ] is divided
into n subintervals of size T/n, and the interest rate over each subinterval is rT

n and compounded
n times yielding the discount factor 1

(1+ rT
n

))n at time T .

Thus (20) for the approximation becomes

C0 =
1

(1 + rT/n)n
E∗(Sn −K)+,

where E∗ denotes expected value under the risk-neutral probability p∗ = p∗n, for the approxi-
mation.

But the discount factor 1
(1+rT/n)n −→ e−rT as n →∞, so we will obtain (23) in the limit if

we can show that as n →∞,

E∗(Sn −K)+ −→ E(S∗(T )−K)+. (24)

As pointed out in Section 1.6, Sn −→ S(T ) in distribution. This convergence, however, is
under the actual probability p = pn. Fortunately, under the risk-neutral probability p∗, the
same convergence holds: Let S∗n = S0Y

∗
1 Y ∗2 · · ·Y ∗n denote the BLM approximation when using

the risk-neutral probability p∗ = p∗n; P (Y ∗ = u) = p∗, P (Y ∗ = d) = 1 − p∗. (In particular,
E∗(Sn − K)+ = E(S∗n − K)+.) Then S∗n −→ S∗(T ) in distribution, and so (S∗n − K)+ −→
(S∗(T ) −K)+ in distribution too. The argument is once again based on the CLT, where one
needs to instead verify that E(ln(Y ∗1 · · ·Y ∗n )) = nE(ln(Y ∗)) −→ µ∗T where µ∗ = r − σ2/2, and
V ar(ln(Y ∗1 · · ·Y ∗n )) −→ σ2T . (e.g., the first two moments of ln(S∗n/S0) converge to those of
X∗(T ) = ln(S∗(T )/S0).) Finally, from this it can be shown that (24) holds (straightforward
uniform integrability argument).

The details involve going back, plugging in the approximating values u = eσ
√

T/n, d = u−1,
p∗ = ((1 + rT

n )− d)/(u− d) for S∗n and then taking the various limits.

1.10 Pricing other derivatives

As with the BLM, we can also express the price of other derivative as a discounted expected
payoff under the risk-neutral measure:

C0 = e−rT E∗(CT ), (25)

where CT is the payoff to be received at the expiration time T . In general, the expected value
E∗(CT ) can not be computed explicitely as was the case for the European call, and numerical
methods (such as Monte Carlo simulation, or using the BLM) must be employed.

1.11 Black-Scholes PDE

Let f(t, x) denote the price of a derivative (of a stock with price S(t) as geometric BM) at time
t if S(t) = x. We assume that t ∈ [0, T ]. Initial boundary conditions would have to be specified
for each specific derivative. For example, f(t, 0) = 0, t ∈ [0, T ] and f(T, x) = (x−K)+, x ≥ 0
are the initial conditions for the European call option.

Without proof we state the
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Theorem 1.2 (Black-Scholes Partial Differential Equation (PDE)) Let f(t, x) denote
the price at time t of a derivative of stock (such as a European call option) when S(t) = x.
Then f must satisfy the partial differential equation:

∂f

∂t
+

∂f

∂x
rx +

1
2

∂2f

∂x2
σ2x2 = rf.

As a trivial example, suppose the derivative is the stock itself. Then we know that f(t, x) =
x. Let’s check: ∂f

∂t = 0, ∂f
∂x = 1, and ∂2f

∂x2 = 0. The PDE becomes rx = rf which indeed is
correct.
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