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1 Fund theorems

In the Markowitz problem, we assumed that all n assets are risky; σ2
i > 0, i ∈ {1, 2, . . . , n}.

This lead to the efficient frontier as a curve starting from the minimum variance point.
We learned that in this case, this entire curve can be generated from just two distinct
portfolios (funds) each with points on the curve. This is known as the two-fund theorem
and will be reviewed again in the next section. Then, we will explore what happens
when we allow one of the assets to be risk-free, and show that then the efficient frontier
is simply a line connecting the risk-free asset to a particular fund of the risky assets. This
is called the one-fund theorem, and it will be presented too.

1.1 Two-fund theorem

In Lecture Notes 3, Section 1.8 we learned that the entire efficient frontier can be gen-
erated from only two portfolios (funds). In other words if we let w1 = (α1
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be a solution to the Markowitz problem for a given expected rate of return r1, and
w2 = (α2

1, α
2
2, . . . , α

2
n) be a solution to the Markowitz problem for a different given ex-

pected rate of return r2, then for any number α, the new portfolio αw1 + (1 − α)w2 is
itself a solution to the Markowitz problem for expected rate of return αr1 + (1 − α)r2.
As α varies, r = αr1 + (1− α)r2 takes on all feasible values for expected rate of return;
thus all solutions to the Markowitz problem can be constructed. This is known as the
two-fund theorem.

Treating each of the two fixed distinct solutions as portfolios and hence as “assets” in
their own right, we conclude that we all can obtain any desired investment performance
by investing in these two assets only. The idea is to think of each of these two assets
as mutual funds, and create your investment by investing in these two funds only. In
practice, one might first solve for the minimum variance portfolio as one such solution to
be used as one of the two funds.

1.2 Allowing for a risk-free asset

In the previous analysis, we assumed all assets were risky. In reality there is always the
opportunity to borrow/lend money at some fixed interest rate r. Lending refers to (say)
the buying of bond or placing cash in a savings account, whereas borrowing refers to
taking out a loan. For simplicity of analysis, we will imagine some fixed such rate rf for
both borrowing and lending. This type of risk-free investment can simply be treated as
yet another kind of asset to be used in a portfolio. A positive weight refers to lending and
a negative weight to borrowing: If you borrow x0 at time t = 0, then you must return
x1 = x0(1+rf ) at time t = 1 (or x0e

rf if compounding continuously). This risk-free asset
has σ2 = 0 and r = rf . Since σ2 = 0, our previous analysis for finding the minimum
variance portfolio makes no sense: The minimum variance is zero and can be obtained
by investing all of your resources in the risk-free asset. But the risk-free asset has a lower
rate of return than the risky assets which is why one would choose a portfolio combining
both types of assets: the risk-free asset helps keep the risk down, whereas the risky assets
help drive the expected rate of return up. Mixing the two still yields an efficient frontier
in which a desired expected rate of return can be obtained with minimum variance, but,
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as we shall see, this new effficient frontier turns out to be a line; its analysis is thus quite
easy, we discuss all this next.

1.3 New efficient frontier is a line

Consider n assets denoted by A1, . . . , An with rates of return ri having mean ri and
variance σ2

i . Now suppose the risk-free asset with (deterministic) rate rf , is joined in.
We denote this asset by A0.

How does this added risk-free asset effect the feasible region and efficient frontier? We
will refer to the feasible region and efficient frontier of only the n risky assets as the old
feasible region and the old efficient frontier, and the feasible region and frontier including
A0 as the new. Recall that the feasible region is by definition all achievable points (σ, r)
in the two-dimensional σ − r plane. By achievable we mean obtained by some portfolio.
We will use (β1, . . . , βn) to denote a portfolio of the n risky assets; β1 + · · · + βn = 1,
and we will refer to any such portfolio as a fund. We will use (α0, α1, . . . , αn) to denote
a portfolio of all n + 1 assets; α0 + α1 + · · ·+ αn = 1.

Clearly the new feasible region contains the old since by choosing α0 = 0 we obtain
all points in the old.

Since α0 + α1 + . . . + αn = 1, we can, noting that 1−α0 = α1 + . . . + αn, re-write the
portfolio as

(α0, (1− α0)(β1, . . . , βn)),

where
βi =

αi

1− α0

.

Since β1+· · ·+βn = 1 we conclude that the portfolio has been re-written as a portfolio
of only two “assets”: A0 and the given fund (β1, . . . , βn). The weights are α0 and 1−α0.
On the other hand, every fund (β1, . . . , βn) can be viewed as an asset and then used to
construct a portfolio of itself with A0. We conclude that the collection of all “two-asset”
portfolios made up of A0 and a fund is the same as all portfolios of A0, . . . , An. So we
can determine the new feasible set and efficient frontier by looking at the (σ, r) points of
all the two-asset (A0, fund) portfolios.

Each fund has its own rate of return β1r1 + · · ·+ βnrn and hence its own mean

m =
n∑

i=1

βiri

and variance

γ2 = V ar(β1r1 + · · ·+ βnrn) =
n∑

i,j=1

βiβjσij.

Thus a portfolio (α0, α1, . . . , αn) has mean and variance of the form

r = α0rf + (1− α0)m

σ2 = (1− α0)
2γ2.

Risk-free A0 did not contribute to the variance since rf is deterministic (a constant);
ρ = 0 between rf and any ri. The portfolio thus yields point

(σ, r) = (|1− α0|γ, α0rf + (1− α0)m).
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For α0 ≤ 1, |1− α0| = 1− α0 so the point can be re-written as

(1− α0)(γ, m) + α0(0, rf ).

As α0 varies from 1 down to 0, the point spans out the line connecting point (0, rf ) to
point (γ, m), corresponding to the two extremes of investing all in A0 or all in the fund.
The line is given by the equation

r =
(m− rf )

γ
σ + rf ,

and has slope
(m− rf )

γ
. (1)

Assuming that m > rf (as it must be for a rational investor; why invest in the fund
otherwise?) the line has a positive slope and continues off to +∞ as α → −∞ (this
corresponds to borrowing more and more of the risk-free asset so as to invest it in the
fund). By choosing funds yielding a higher slope, we get a more efficient line (higher
rate of return for the same given variance). From (1) we see that the slope can be made
steepest by choosing funds with points lying on the old efficient frontier (smallest variance
γ for a given mean m). Thus the line from (0, rf ) to that point F = (γ, m) which yields
a line tangent to the old efficient frontier is the most efficient (see Figure 6.14 on Page
167 in the Text). We thus conclude that:

The new efficient frontier is the line connecting the point (0, rf ) to the unique1

point F (on the old efficient frontier) yielding a line tangent to the old efficient
frontier.

The beauty of this is that in an open market (everyone has the same assets to choose
from and the same rf ) we conclude that every individual’s portfolio can be obtained as
a mixture of the same unique fund F and the risk-free asset. (All that differs are the
weights for the mixture; different people have a different risk tolerance.) This is called
the one-fund theorem

Note that we need not worry about the α0 > 1 case since this yields a line (starting
at (0, rf )) with negative slope:

r =
(rf −m)

γ
σ + rf .

This is the lower boundary of the new feasible region and involves shorting of the fund
so as to invest in the risk free asset; an inefficient (and irrational) thing to do since it
raises the variance while lowering the expected rate of return.

It is apparent that we must figure out how to compute this special fund F , we do so
next.

1Uniqueness is ensured if no two of the n risky assets are perfectly correlated; e.g. as long as |ρij | < 1
for all i 6= j.

3



1.4 Determining F

To find F we simply need to find the fund (β1, . . . , βn) that corresponds to the pair (γ, m)
that maximizes the slope (1). In other words we must maximize the function

f(β1, . . . , βn) =
(m− rf )

γ
,

where

m =
n∑

i=1

βiri, (2)

γ =
√

V ar(β1r1 + · · ·+ βnrn)

=
( n∑

i,j=1

βiβjσij

)1/2
. (3)

Since the βj sum to 1, rf = β1rf + · · ·+ βnrf and we can re-write f as

f(β1, . . . , βn) =

∑n
i=1 βi(ri − rf )(∑n
i,j=1 βiβjσij

)1/2
. (4)

Noting that for any c > 0, replacing βi by cβi would not change the value of f
(c would cancel from numerator and denominator), we conclude that the constraint
β1 + · · · + βn = 1 can be dealt with later by normalizing; we need not use a Lagrange
multiplier to accommodate this constraint. The differentiation, ∂f

∂βi
= 0, i ∈ {1, . . . n},

yields n linear equations

n∑
j=1

vjσji = ri − rf , i ∈ {1, . . . n},

where vi = cβi with (unknown) constant c given by

c =

∑n
i=1 βi(ri − rf )(∑n

i,j=1 βiβjσij

) , (5)

where the βi are from the optimal solution. Summarizing:

Theorem 1.1 The fund F = (β1, . . . , βn) in the one-fund theorem is given by

βi =
vi∑n

j=1 vj

, i ∈ {1, 2 . . . n},

where (v1, . . . , vn) is the solution to the set of n linear equations

n∑
j=1

vjσji = ri − rf , i ∈ {1, . . . n}.

4



The equations are particularly simple to solve when all assets are uncorrelated, for
then they reduce to

viσ
2
i = ri − rf , i ∈ {1, . . . n},

with solution

vi =
ri − rf

σ2
i

,

yielding weights

βi =

ri−rf

σ2
i∑n

j=1
rj−rf

σ2
j

.

5


