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1 Portfolio mean and variance

Here we study the performance of a one-period investment X0 > 0 (dollars) shared among
several different assets. Our criterion for measuring performance will be the mean and variance
of its rate of return; the variance being viewed as measuring the risk involved. Among other
things we will see that the variance of an investment can be reduced simply by diversifying,
that is, by sharing the X0 among more than one asset, and this is so even if the assets are
uncorrelated. At one extreme, we shall find that it is even possible, under strong enough
correlation between assets, to reduce the variance to 0, thus obtaining a risk-free investment
from risky assets. We will also study the Markowitz optimization problem and its solution,
a problem of minimizing the variance of a portfolio for a given fixed desired expected rate of
return.

1.1 Basic model

You plan to invest a (deterministic) total of X0 > 0 at time t = 0 in a portfolio of n ≥ 2 distinct
assets, and the payoff X1 comes one period of time later (at time t = 1 for simplicity). Apriori
you do not know how to distribute the amount X0 among the n assets, your objective being to
distribute X0 in such a way as to give you the best performance. If X0i is the amount to be
invested in asset i, i ∈ {1, 2, . . . , n}, then X0 = X01 + X02 + · · ·+ X0n. The portfolio chosen is
described by the vector (X01, X02, . . . , X0n) and its payoff is given by X1 = X11+X12+· · ·+X1n,
where X1i is the (random) payoff from investing X0i in asset i, that is, the cash flow you receive
at time t = 1. Ri, called the total return, is the payoff per dollar invested in asset i1,

Ri =
X1i

X0i
.

We define the rate of return as the corresponding rate

ri
def= Ri − 1 =

X1i −X0i

X0i
;

and it holds then that
X1i = (1 + ri)X0i.

But note that unlike fixed-income securities, here the rate ri is a random variable since X0i is
assumed so.

The expected rate of return (also called the mean or average rate of return) is given by
ri = E(ri), and since X0i is assumed deterministic (non-random) it also holds that

E(X1i) = (1 + ri)X0i.

Shorting is allowed, so some of the X0i can be negative (as well as positive or zero), as long as
X01 + X02 + · · ·+ X0n = X0 > 0.

It is convenient to define weights (also called proportions),

αi =
X0i

X0
= proportion of resources invested in asset i,

1The point here is that the assets are bought/sold in shares and any proportion thereof. So if one dollar buys
0.4 shares of an asset, and yields payoff 6 dollars, then 10 dollars buys 4 shares and yields payoff 60 dollars.
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and it follows that
n∑

i=1

αi = 1,

and the portfolio can equivalently be described by (α1, α2, . . . , αn) with rate of return, and
expected rate of return given by

r =
n∑

i=1

αiri (1)

r = E(r) =
n∑

i=1

αiri. (2)

Letting σ2
i = V ar(ri) = E(r2

i )− r2
i , and σij = Cov(ri, rj) = E(rirj)− rirj , the variance of

rate of return of the portfolio is given by

σ2 = V ar(r) =
n∑

i=1

α2
i σ

2
i + 2

∑
1≤i<j≤n

αiαjσij . (3)

σ2 is a measure of the risk involved for this portfolio; it is a measure of how far from the mean
r our true rate of return r could be. After all, r is an average, and the rate of return r is a
random variable that may (with positive probability) take on values considerably smaller than
r .

Note that the value of X0 is not needed in determining performance, only the proportions
(α1, α2, . . . , αn) are needed: Wether you invest a total of one dollar, or a million dollars, the
values of r, r and σ2 are the same when the proportions are the same. In effect, any portfolio
can simply be described by a vector (α1, α2, . . . , αn), where

∑n
i=1 αi = 1.

Clearly we could obtain σ2 = min{σ2
1, σ

2
2, . . . , σ

2
n} by investing all of X0 in the asset with

the smallest variance; thus it is of interest to explore how, by investing in more than one asset,
we can reduce the variance even further. We do so in the next sections.

1.2 Reducing risk by diversification

One of the main advantages of investing in more than one asset is the possible reduction of risk.
Intuitively, by sharing your resources among several different assets, even if one of them has a
disasterous (very low) payoff due to its variability, chances are the others will not. To illustrate
this phenomina, let us consider n uncorrelated assets (e.g., Cov(ri, rj) = 0 for i 6= j) each having
the same expected value and variance for rate of return; ri = 0.20, σ2

i = 1. If you invest all your
resources in just one of them, then the performance of your investment is (r, σ2) = (0.20, 1).
Now suppose instead that you invest in all n assets in equal proportions, αi = 1/n. Then from
(1) and (3) and the fact that σij = 0, i 6= j, by the uncorrelated assumption, we conclude that
the mean rate of return remains at r = 0.20,

0.20 = 0.20
n∑

i=1

1
n

,

but the variance for the portfolio drops to σ2 = 1/n,

1
n

=
n∑

i=1

1
n2

=
n

n2
.
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Thus the risk tends to 0 as the number of assets n increases while the rate of return remains
the same. In essence, as n increases, our portfolio becomes risk-free.

Our example is important since it involves uncorrelated assets. But in fact by using corre-
lated assets it is possible (theoretically) to reduce the variance to zero thus obtaining a risk-free
investment!

To see this, consider two assets (i = 1, 2). Suppose further that the total return R1 for asset
1 is governed by some random event A (“weather is great” for example) with P (A) = 0.5: If A
occurs, then R1 = 2.5; if A does not occur then R1 = 0. Suppose that the total return for asset
2 is also governed by A but in the opposite way: If A occurs, then R2 = 0; if A does not occur
then R2 = 2.5. In essence, asset 2 serves as insurance against the event “A does not occur”.
Letting I{A} denote the indicator function for the event A (= 1 if A occurs; 0 if not), we see
that R1 = 2.5I{A} and R2 = 2.5(1 − I{A}). The rates of return can thus be expressed as
r1 = 2.5I{A} − 1, r2 = 2.5(1− I{A})− 1, and it is easily seen that σ2

1 = σ2
2 = (1.25)2.

Choosing equal weights α1 = α2 = 0.5, the rate of return becomes deterministic:

r = 0.5r1 + 0.5r2 = 0.5
(
2.5I{A} − 1 + 2.5(1− I{A})− 1

)
= 0.5(2.5− 2)
= 0.5(0.5)
= 0.25, w.p.1.

Thus σ2 = V ar(r) = 0 for this portfolio, and we see that this investment is equivalent to placing
your funds in a risk-free account at interest rate r = 0.25.

The key here is the negative correlation between r1 and r2:

σ12 = Cov(r1, r2)
= (2.5)2Cov(I{A}, 1− I{A})
= −(2.5)2Cov(I{A}, I{A})
= −(2.5)2V ar(I{A})
= −(2.5)2P (A)(1− P (A))
= −(1.25)2,

yielding a correlation coefficient ρ = σ12/σ1σ2 = −1; perfect negative correlation. This method
of making the investment risk-free is an example of perfect hedging; asset 2 was used to perfectly
hedge against the risk in asset 1.

The above examples were meant for illustration only; assets are typically correlated in more
complicated ways, as we know by watching stock prices fall all together at times. It thus is
important to solve, for any given set of n assets (with given rates of return, variances and
covariances), the weights corresponding to the minimum-variance portfolio. We start on this
problem next.

1.3 Minimal variance when n = 2

When n = 2 the weights can be described by one number α where α1 = α and α2 = 1 − α.
Because shorting is allowed, one of these weights might be negative. For example α = −1,
1−α = 2 is possible if X01 = −1, and X02 = 2: short one dollar of asset 1 and buy two dollars
of asset 2. The performance of our portfolio can then be described by

r = αr1 + (1− α)r2 (4)
r = E(r) = αr1 + (1− α)r2 (5)

f(α) = V ar(r) = α2σ2
1 + (1− α)2σ2

2 + 2α(1− α)σ12. (6)
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denoting the (random) rate of return, expected rate of return, and variance of return respec-
tively, when using weights α and 1− α.

Defining the correlation coefficient ρ between r1 and r2 via

ρ =
σ12

σ1σ2
,

we can rewrite
σ12 = ρσ1σ2,

and −1 ≤ ρ ≤ 1.
The variance of the portfolio can thus be re-written as

f(α) = α2σ2
1 + (1− α)2σ2

2 + 2α(1− α)ρσ1σ2. (7)

Our objective now is to find the value of α (denote this by α∗) yielding the minimum
variance. This would tell us what proportions of the two assets to use (for any amount X0 > 0
invested) to ensure the smallest risk. The portfolio (α∗, 1−α∗) is called the minimum-variance
portfolio. Our method is to solve f ′(α) = 0. Details are left to the reader who will carry out
most of the analysis in a Homework Set 3. We assume here that both assets are risky, by which
we mean that σ2

1 > 0 and σ2
2 > 0.

Theorem 1.1 If both assets are risky (and the case σ2
1 = σ2

2 with ρ = 1 is not included)2
then f ′(α) = 0 has a unique solution α∗ and since f ′′(α) > 0 for all α, f(α) is a strictly
convex function and hence the solution α∗ is the unique global minimum. This minimum and
the corresponding mimimum value f(α∗) are given by the formulas

α∗ =
σ2

2 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2
, (8)

σ2 = f(α∗) =
σ2

1σ
2
2(1− ρ2)

σ2
1 + σ2

2 − 2ρσ1σ2
. (9)

It follows that shorting is required for asset 1 if and only if ρ > σ2/σ1, whereas shorting is
required for asset 2 if and only if ρ > σ1/σ2. (Both of these cases require positive correlation.)

Corollary 1.1 If both assets are risky, then the variance for the minimal-variance portfolio is
strictly smaller than either of the individual asset variances, σ2 < min{σ2

1, σ
2
2}, unless

ρ =
min{σ1, σ2}
max{σ1, σ2}

,

in which case σ2 = min{σ2
1, σ

2
2}. (This includes the case σ2

1 = σ2
2 and ρ = 1.) In particular,

σ2 < min{σ2
1, σ

2
2} whenever ρ < 0.

Corollary 1.2 If both assets are risky, then

1. if ρ = 0 (uncorrelated case), then

α∗ =
σ2

2

σ2
1 + σ2

2

, (10)

σ2 = f(α∗) =
σ2

1σ
2
2

σ2
1 + σ2

2

. (11)

2If σ2
1 = σ2

2 and ρ = 1, then f(α) = σ2
1 = σ2

2 , for all α, and thus all portfolios have the same variance; there
is no unique mimimum-variance portfolio.
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2. if ρ = −1 (perfect negative correlation), then the minimum variance portfolio is risk-free,
σ2 = f(α∗) = 0, with deterministic rate of return given by (w.p.1.)

r = r =
σ2

2 + σ1σ2

σ2
1 + σ2

2 + 2σ1σ2
r1 +

σ2
1 + σ1σ2

σ2
1 + σ2

2 + 2σ1σ2
r2.

In this case no shorting is required: both α∗ > 0 and 1− α∗ > 0.

3. if ρ = 1 (perfect positive correlation) (and σ2
1 6= σ2

2), then the minimum variance portfolio
is risk-free, σ2 = f(α∗) = 0, with deterministic rate of return given by (w.p.1.)

r = r =
σ2

2 − σ1σ2

(σ1 − σ2)2
r1 +

σ2
1 − σ1σ2

(σ1 − σ2)2
r2.

In this case shorting is required: α∗ < 0 if σ1 > σ2; 1− α∗ < 0 if σ1 < σ2.

1.4 Investing in two portfolios: treating a portfolio as an asset itself

Suppose you can invest in two different portfolios, where each portfolio has its own rate of
return (that you have no control over). The idea here is that each portfolio is itself an “asset”
with its own shares that you can buy/sell and short. We have in mind here for example large
mutual fund portfolios such as the ones offered by TIAA-CREFF, or Vangard. Your objective
is to choose the weights invested in each so as to minimize the variance of the rate of return.
By treating each portfolio as an asset, our problem falls exactly in the n = 2 framework of the
previous section; we can apply Theorem 1.1.

As a specific example, let us consider the case when the first asset is a pure stock portfolio
and the second a less risky portfolio containing some bonds. The stock portfolio will have a
higher variance and a higher rate of return than the bond portfolio and the two will be somewhat
positively correlated. If you are very risk averse, then you might consider investing all in the
bond portfolio; but, you can do a bit better by diversifying among the two portfolios. Data
could be found to estimate r1, r2, σ

2
1, σ

2
2, ρ. Let us assume, for example, that

r1 = 0.25
r2 = 0.05
σ1 = 0.15
σ2 = 0.05
ρ = 0.25

Plugging into formulas (8) and (9), we obtain
α∗ = 0.0294, 1 − α∗ = 0.9706, σ = 0.0498, and r = ..05588. So the variance went down

very slightly and (of course) at the expense of yielding an average rate of return to about that
of the bond portfolio.

Thus far in our study of portfolios, we have ignored our preference for a high average rate
of return over a low one; we address this next.

1.5 The Markowitz Problem

Clearly, just as a rational investor wishes for a low variance on return, a high expected rate of
return is also desired. For example, you can always keep variance down by investing in bonds
over stocks, but you do so at the expense of a decent rate of return. Thus an investor’s optimal
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portfolio could be best described by performing as (r, σ), where r is a desired (and feasible)
average rate of return, and σ2 the minimal variance possible for this given r. (Put differently,
an investor might wish to find the highest rate of return possible for a given acceptable level of
risk.) Thus it is of interest to compute the weights corresponding to such an optimal portfolio.

This problem and its solution is originally due to Harry Markowitz in the 1950’s.3
Using the notation from Section 1.1 for portfolios of n risky assets (and allowing for shorting)

we want to find the solution to:

minimize
n∑

i=1

α2
i σ

2
i + 2

∑
1≤i<j≤n

αiαjσij

subject to
n∑

i=1

αiri = r

n∑
i=1

αi = 1.

Here, r is a fixed pre-desired level for expected rate of return, and a solution is any portfolio
(α1, α2, . . . , αn) that minimizes the objective function (variance) and offers expected rate r. This
is an example of what is called a quadratic program, an optimization problem with a quadratic
objective function, and linear constraints. Fortunately, our particular quadratic program can
be reduced to a problem of merely solving linear equations, as we will see next.

Since the objective function is non-negative, it can be multiplied by any non-negative con-
stant without changing the solution. Moreover, we can simplify notation by using the fact that
σii = σ2

i . The following equivalent formulation is the most common in the literature:

minimize
1
2

n∑
i,j=1

αiαjσij (12)

subject to
n∑

i=1

αiri = r (13)

n∑
i=1

αi = 1. (14)

The solution is obtained by using the standard technique from calculus of introducing two
more variables called Lagrange multipliers, λ and µ (one for each “subject to” constraint), and
forming the Lagrangian

L =
1
2

n∑
i,j=1

αiαjσij − λ
( n∑

i=1

αiri − r
)
− µ

( n∑
i=1

αi − 1
)
. (15)

Setting ∂L
∂αi

= 0 for each of the n weight variables αi yields n equations;

n∑
j=1

αjσij − λri − µ = 0, i ∈ {1, 2, . . . , n}.

3Markowitz is one of three economists who won the Nobel Prize in Economics in 1990.The others are Merton
Miller and William Sharpe.
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Each such equation is linear in the n + 2 variables (α1, α2, . . . , αn, λ, µ) and together with the
remaining two “subject to” linear constraints, yields a set of n + 2 linear equations with n + 2
unknowns.

Thus a solution to the Markowitz problem is found by finding a solution (α1, α2, . . . , αn, λ, µ)
to the set of n + 2 linear equations,

n∑
j=1

αjσij − λri − µ = 0, i ∈ {1, 2, . . . , n} (16)

n∑
i=1

αiri = r

n∑
i=1

αi = 1,

and using the weights (α1, α2, . . . , αn) as the solution.
In the end, the problem falls into the standard framework of linear algebra, and amounts to

computing the inverse of a matrix: solve Ax = b; solution x = A−1b. The student will have
had much practice of such methods in Linear Programming (LP) from Operations Research.
There are various software packages for dealing with such computations.

We point out in passing that the Markowitz problem will of course only have a solution for
values of r that are feasible, that is, can be achieved via

n∑
i=1

αiri = r,

from some portfolio (α1, α2, . . . , αn).
Over all, we are considering the set of all feasible pairs (r, σ); those pairs for which there

exists a portfolio (α1, α2, . . . , αn) such that

n∑
i=1

αiri = r,

and
n∑

i,j=1

αiαjσij = σ2.

The set of all feasible pairs is a subset of the two-dimensional σ − r plane, and is called the
feasible set.

For each fixed feasible r the Markowitz problem yields that feasible pair (r, σ) with the
smallest σ. As we vary r to obtain all such pairs, we obtain what is called the minimum-
variance set, a subset of the feasible set. In general σ will increase as you increase your desired
level of expected return r.

1.6 Finding the minimum-variance portfolio

If we look at the set of all pairs (r, σ) in the minimum-variance set, we could find one with
the smallest σ, that is, corresponding to the so-called minimum-variance portfolio that we
considered in earlier sections. This pair denoted by (r∗, σ∗) is called the minimum-variance
point.
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We can modify the Markowitz problem to find the minimum-variance portfolio as follows:
If we leave out our requirement that the expected rate of return be equal to a given level r,
then the Markowitz problem becomes

minimize
1
2

n∑
i,j=1

αiαjσij (17)

subject to
n∑

i=1

αi = 1, (18)

and its solution yields the minimum-variance portfolio for n risky assets.
Lagrangian methods once again can be employed where now we need only introduce one

new variable µ,

L =
1
2

n∑
i,j=1

αiαjσij − µ
( n∑

i=1

αi − 1
)
, (19)

and the solution reduces to solving n + 1 equations with n + 1 unknowns:

n∑
j=1

αjσij − µ = 0, i ∈ {1, 2, . . . , n} (20)

n∑
i=1

αi = 1. (21)

1.7 Efficient Frontier

Suppose (r∗, σ∗) is the minimum variance point. Then we can go ahead and graph all pairs
(r, σ) in the minimum-variance set satisfying r ≥ r∗. This set of pairs is called the efficient
frontier and corresponds to what are called efficient portfolios. As r increases, σ increases also:
A higher rate of return involves higher risk. The efficient frontier traces out a nice increasing
curve in the σ − r plane; see Figure 6.11 of the Text, Page 157.

We view the efficient frontier as corresponding to those portfolios considered by a rational
investor.

When shorting is allowed, and there are at least two distinct values for ri (e.g., not all
are the same), then the efficient frontier is unbounded from above: You can obtain as high a
expected return as is desirable. (The problem, however, is that you do so with increasing risk
that tends to ∞.)

To see that it is unbounded: Select any two of the assets (say 1, 2) with different rates
of return. Assume that r1 > r2. Invest only in these two yielding r = αr1 + (1 − α)r2 =
α(r1 − r2) + r2. As α →∞ so does r; any high rate is achievable no matter how large. Notice
that to do this though, (1− α) becomes negative and large; we must short increasing amounts
of asset 2.

1.8 Generating the efficient frontier from only two portfolios

Let w1 = (α1
1, α

1
2, . . . , α

1
n, λ1, µ1) be a solution to the Markowitz problem for a given expected

rate of return r1, and w2 = (α2
1, α

2
2, . . . , α

2
n, λ2, µ2) be a solution to the Markowitz problem for

a different given expected rate of return r2. From the linearity of the solution, it is immediate
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(reader should verify) that for any number α, the new point αw1 +(1−α)w2 is itself a solution
to the Markowitz problem for expected rate of return αr1 + (1− α)r2. Here,

αw1 = (αα1
1, αα1

2, . . . , αα1
n, αλ1, αµ1)

(1− α)w2 = ((1− α)α2
1, (1− α)α2

2, . . . , (1− α)α2
n, (1− α)λ2, (1− α)µ2),

and thus αw1 + (1 − α)w2 is of the form (α1, α2, . . . , αn, λ, µ) with αi = αα1
i + (1 − α)α2

i ,
λ = αλ1 + (1− α)λ2, and µ = αµ1 + (1− α)µ2.

This new point (α1, α2, . . . , αn, λ, µ) is a solution to the n+2 linear equations following (16)
for r = αr1 + (1− α)r2.

We conclude that knowing two distinct solutions allows us to generate a whole collection of
new solutions, and hence a whole bunch of points on the efficient frontier. It turns out that the
entire minimum-variance set can be generated from two such distinct solutions. In particular,
one can generate the entire efficient frontier from any two distinct solutions.

Treating each of the two fixed distinct solutions as portfolios and hence as “assets” in their
own right, we conclude that we can obtain any desired investment performance by investing in
these two “assets” only. The idea is to think of each of these two “assets” as mutual funds as
in Section 1.4, and create your investment by investing in these two funds only; we are back to
the n = 2 case.

If we imagine the entire asset marketplace as our potential investment opportunity, then
we conclude that it suffices to only invest in two distinct (and excellent) mutual funds, in the
sense that we can obtain any point on the efficient frontier by doing so.

1.9 Ruling out shorting

The Markowitz problem assumed shorting was allowed, but if shorting is not allowed, then the
additional n constraints, αi ≥ 0, i ∈ {1, 2, . . . , n}, must be included as part of the “subject to”.
This complicates matters because now, instead of only equalities, there are inequalities in the
constraints; the solution to this quadratic program is no longer obtained by simply inverting
a matrix. But the problem can be handled by using the methods of LP, where n additional
Lagrange multipliers must be utilized, and the problem becomes one of finding a feasible region
for a LP. This problem will be discussed later.
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