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ON EXACT SAMPLING OF STOCHASTIC PERPETUITIES

BY JOSE H. BLANCHET AND KARL SIGMAN

Abstract

A stochastic perpetuity takes the form D∞ =∑∞
n=0 exp(Y1 + · · · + Yn)Bn, where

(Yn : n ≥ 0) and (Bn : n ≥ 0) are two independent sequences of independent and
identically distributed random variables (RVs). This is an expression for the stationary
distribution of the Markov chain defined recursively by Dn+1 = AnDn + Bn, n ≥ 0,
whereAn = eYn ;D∞ then satisfies the stochastic fixed-point equationD∞

D= AD∞ + B,
where A and B are independent copies of the An and Bn (and independent ofD∞ on the
right-hand side). In our framework, the quantityBn, which represents a random reward at
time n, is assumed to be positive, unbounded with EBpn <∞ for some p > 0, and have a
suitably regular continuous positive density. The quantity Yn is assumed to be light tailed
and represents a discount rate from time n to n− 1. The RV D∞ then represents the net
present value, in a stochastic economic environment, of an infinite stream of stochastic
rewards. We provide an exact simulation algorithm for generating samples of D∞. Our
method is a variation of dominated coupling from the past and it involves constructing a
sequence of dominating processes.
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1. Introduction

Let (Yn : n ≥ 0) and (Bn : n ≥ 0) be two independent sequences of independent and
identically distributed (i.i.d.) random variables (RVs), with Y and B denoting generic such
copies. Suppose that the Bn are positive and denote the amount of reward obtained by running
a system at time n, and that the discount rate from time n to time n − 1 is precisely Yn, so
that the present value of Bn at time 0 is Bn exp(Yn + Yn−1 + · · · + Y1). The net present value
obtained by running the system over an infinite time horizon (starting with B0 at time 0) is then
given by the so-called stochastic perpetuity

D∞ =
∞∑
n=0

exp(Y1 + · · · + Yn)Bn.

This is an expression for the stationary distribution of the Markov chain defined recursively
by

Dn+1 = AnDn + Bn, n ≥ 0, (1)

where in our setup An = eYn ; the expression for D∞ is then derived by setting D0 = 0 and
iterating recursion (1) out to n = ∞ (while reversing the labeling of the RVs). Recursion (1)
is an example of an ARCH(1) model, an important time series model used in statistics and
econometrics; see [3, p. 469].
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When E logA < 0 and E log(1+ B) <∞ (see, for example, [18]), then this Markov chain
has a proper stationary distribution limit D that satisfies the stochastic fixed-point equation

D
D= AD + B,

where A and B are independent (and independent of D on the right-hand side).
We are interested in designing a simulation algorithm that allows us to obtain perfect samples

ofD∞ under assumptions that allow us to accommodate a wide range of models of interest given
the previous economic interpretation forD∞. In particular, we assume that Y (notA = eY ) has
a finite moment generating function in a neighborhood of the origin and that EY ∈ (−∞, 0).
(The latter assumption is assumed merely to ensure the finiteness of D∞.) We assume that B
is positive with EBp < ∞ for some p > 0. The most important assumption that we impose
concerns the existence of a suitably regular density for B, which is to be positive, continuous
on [0,∞), and have a tail decay that is not too light (see Section 2). The types of example that
are of most interest to us include situations in which B has a heavy-tailed distribution, such
as a Pareto distribution. However, light-tailed distributions, such as a mixture of exponentials,
are also tractable under our framework. We do not consider super-exponential tails, but we
believe that methods related to our development here could be adapted to the case in which B
has bounded support.

A situation that can be easily handled (hence, left out in the current paper) is that in which
p = P(Y = −∞) > 0 (equivalently, p = P(A = 0) > 0). For then, a simple direct
coupling from the past (CFTP) algorithm (a general method introduced in [21]) applies as
long as we can generate RVs distributed as A and B. Generate i.i.d. An, n ≥ 1, until time
T = min{n ≥ 0 : An = 0} (geometric with success probability p), and then, given T = n,
generate n i.i.d. copies B1, . . . , Bn and construct D0 recursively from the past (from time
−n + 1 up to 0), using (1) with D−n+1 = Bn, and using the T − 1 values (used to define T )
An−1, . . . , A1 and Bn−1, . . . , B1. For example, if T = 1 then set D0 = B1. If T = 2 then set
D0 = B2A1 + B1, and so on. Then D0 is distributed exactly as D∞.

The above economic interpretation ofD∞ is useful in areas such as pension fund dynamics;
in [8] a model was proposed based on stochastic perpetuities for the valuation of the pension
fund. In the context of insurance risk theory, it is known that the distribution of D∞ plays
a crucial role in the evaluation of ruin probabilities with investments; see, for instance, [14],
[19], and [23]. Explicit expressions for the distribution of D∞ are, however, very challenging
to obtain. Nevertheless, under very specific assumptions on the distributions of B and Y , such
explicit expressions have been found in [12] and [24]; see also [20]. We can also view D∞ as
the stationary distribution of a continuous-time ‘growth-collapse process’ right before collapse
epochs (see, for example, [16] and its many references). More general models in tree-like
structures are discussed in [1] and [15].

As discussed in [4],D∞ also plays a key role in applications arising in mathematical physics
and finance. Applications to communication systems are given in [22]. Finally, Embrechts
and Goldie [9] and Goldie and Grübel [13] mention applications in the complexity analysis of
algorithms related to the so-called ‘quickselect’ algorithm and also in analytic number theory.

Applications to complexity analysis of sorting algorithms motivated the currently existing
exact simulation methods for sampling D∞. However, in those cases, B = 1 and A = U1/β ,
where U ∼ U [0, 1] and β > 0; these perpetuities are known as Vervaat perpetuities [24].
The existing algorithms in this setting are constructed to sample from Vervaat perpetuities
and related models. The first such sampling method based on a density approximation is given
in [6]. It presents a sequence of upper and lower bounds for the density ofD∞, and then applies
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acceptance rejection; see also [7]. Fill and Huber [11] recently developed a dominated-coupling-
from-the-past-based (DCFTP-based) procedure to sample Vervaat perpetuities. DCFTP is used
to deal with the problem of sampling the steady-state distribution of unbounded Markov chains;
see [17]. In turn, DCFTP was developed after the seminal paper [21], in which the CFTP
protocol was introduced. A recent exposition on CFTP is given in [2, p. 120]. A nice summary
of DCFTP is given in [11].

A generic class of DCFTP algorithms has been developed in [5] and [17]. There it was shown
that, under certain ergodicity assumptions, DCFTP can be constructed using a suitable Foster–
Lyapunov function and a suitable subsample scheme. While these procedures are substantially
general and are in principle applicable to our setting, there are important limitations that are
outlined by Connor and Kendall [5, p. 788]. In particular, in their algorithm they assumed that
appropriate information is available in terms of the transition kernel of a Markov chain that is
constructed based on k iterates of (1)—which is impractical in our setting. The value of k is
found in order to ensure ergodicity of a suitable dominating process which turns out to be the
workload system of a suitably defined D/M/1 queue.

In the present paper we will use a variation of DCFTP to generate our exact samples ofD∞.
Typically, DCFTP requires the construction of a dominating stationary Markov chain that
serves as a stochastic upper bound. Instead, we construct a sequence of upper bounds that
does not form a stationary Markov chain per se, but otherwise is used in the same way as the
dominating chain in DCFTP. We point out why our sequence of processes does not directly
induce a simulatable stationary Markov chain at the end of Section 2. For the construction of
our stochastic upper bounds, we also develop a simulation procedure to exactly sample from
the steady-state distribution of a suitable GI/G/1 queue, relaxing some of the assumptions of
an earlier algorithm given in [10].

The rest of the paper is organized as follows. In Section 2, we introduce our assumptions
and our basic strategy which is summarized at the end of the section. The stochastic upper
bounds required to implement our strategy are given in Sections 3 and 4. Finally, the remaining
proofs to guarantee a finite termination time of our algorithm are given in Section 5.

2. Assumptions and basic strategy

We impose the following assumptions on the distributional properties of Y and B (generic
copies of the Yns and the Bns, respectively). (Recall that Y = ln(A).)

(A) ψ(θ) = log E exp(θY ) <∞ for some θ > 0, where Y is not deterministic. Furthermore,
we assume that ψ ′(0) = E Y < 0; by the nondeterministic assumption we also have
ψ ′′(0) > 0.

(B) B is unbounded (i.e. P(B > x) > 0, x ≥ 0) with continuous positive density f (·) on
(0,∞) for which there exists a λκ ∈ (0,∞) such that

λκ ≤ inf
0≤z≤1, y≥κ

f (y − z)
f (y − κ) (2)

for each κ ≥ 1.

(C) EBp <∞ for some p > 0.

We assume that the tail, F̄ (·) := P(B > ·) = ∫∞
· f (s) ds, is available in closed form.

Finally, we assume that, for each κ > 0, we can find a constant C(κ) ∈ (0,∞) such that
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E[(B + κ)p] < C(κ) for some p > 1. Moreover, note that assumptions (A) and (C) imply the
existence of a κ0 ∈ (0,∞) satisfying

E log

(
1+ κ0 exp(Y )+ B

1+ κ0

)
<

1

2
E Y1 < 0. (3)

The previous observation will be used in the construction of a suitable Lyapunov bound to
guarantee a finite termination time of our algorithm. In the sequel, we will be interested in the
values of κ in (B) that are larger than κ0.

Remark 1. In (A) we have assumed that Y has exponential moments and is nondeterministic.
This is a mild assumption (recall thatA = eY ) because it allows us to accommodate virtually all
models of interest rate dynamics used in practice. The case of deterministic Y is substantially
easier and can be treated with methods similar to those we discuss here. The most important
assumption we impose is on B. The bound in (2) is naturally satisfied in applications in which
the distribution of B is known and can be chosen by the modeler. It allows us to accommodate
tails that are not too thin (typical tails that decrease at most exponentially fast satisfy (2)), for
instance exponential, gamma, Pareto, or Weibull. A tail decreasing like a Gaussian or faster,
for example, will typically not satisfy (2). Finally, assumption (C) is, we believe, also very
mild and natural if one is concerned, as we are, with rewards that have unbounded support.

As we indicated earlier, our development is based on a slight variation of DCFTP in order
to sample from the steady-state distribution of the Markov chain

Dn+1 = exp(Yn)Dn + Bn, (4)

with D0 = 0. In order to apply these techniques, we need the following elements.

2.1. Elements of DCFTP for a monotone chain

We need to construct the following elements.

(E1) A recursion that preserves the monotonicity implied by recursion (4), but which also
allows us to detect coalescence via coupling. This construction will require a suitable
minorization condition.

(E2) A sequence of stochastic upper bounds for the steady-state distribution at subsequent
deterministic times in the past, assuming that we have simulated the process starting
from an arbitrarily long time in the distant past. These stochastic upper bounds need to
be constructed jointly.

Typically DCFTP requires constructing a coupling and a suitable Markov chain that domi-
nates the Markov chain of interest. It also requires being able to sample the dominating Markov
chain in stationarity and being able to simulate the chain backwards in time. We use a slight
variation of DCFTP because we do not construct a dominating chain per se but only a suitable
sequence of stochastic upper bounds.

We will now construct (E1) and (E2). Recursion (4) is convenient because it has a useful
monotonicity structure. In particular, the mapping

φ0(d, y, b) = exp(y)d + b
is monotone increasing in d . However, in addition to monotonicity, in our construction we
will need to introduce a coupling, as this is the tool that we will use to detect coalescence
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(as indicated in (E1)). Therefore, we will take advantage of the following minorization, which
is applicable to the RV B.

Condition 1. (Minorization condition.) Throughout our construction, we will set κ > 0. The
selection of κ will be given according to our running time analysis in the last section, depending
on a Lyapunov inequality. Suppose that z ∈ [0, κ]. Then, because of (2),

P(B + z ∈ y + dy) = f (y − z) 1(y ≥ z) dy ≥ λκf (y − κ) 1(y ≥ κ) dy.

Therefore, we have

P(B + z ∈ y + dy) = λk P(B + κ ∈ y + dy)+ (1− λk)R(z, dy), (5)

where

R(z, dy) = f (y − z) 1(y ≥ z) dy − λkf (y − κ) 1(y ≥ κ) dy

1− λk .

Note that

H̄z(t) :=
∫ ∞
t

R(z, dy) = F̄ (t − z)− λkF̄ (t − κ)
1− λk .

As a check, note that H̄z(z) = 1. In fact, in terms of the tail of the distribution of B + z we see
that the splitting in (5) yields the obvious identity

P(B + z > t) = λkF̄ (t − κ)+ (1− λk) F̄ (t − z)− λkF̄ (t − κ)
1− λk

= λkF̄ (t − κ)+ (1− λk)H̄z(t).

We now consider the Markov chain representation based on the splitting induced by the mi-
norization condition. If we let z = exp(y)d , representation (5) induces a mapping φ1(z, U,B)

such that

φ1(z, U,B)
D= φ0(d, y, B), (6)

where U and B are independent with U uniformly distributed over [0, 1]. In particular, we let

φ1(z, U,B) =
{
B + z if z := exp(y)d > κ,

1(U ≤ λk)(B + κ)+ H̄−1
z (F̄ (B)) 1(U > λk) if z := exp(y)d ≤ κ,

and define B ′(z, U,B) = φ1(z, U,B)− z. We can then write

φ1(z, U,B) = z+ B ′(z) = exp(y)d + B ′(exp(y)d).

The previous representation will allow us to deal with (E1). In order to see this, we need
to introduce some notation and verify monotonicity properties of the mapping φ1(·, U, B).
Assume that the RVs {(Un, Bn) : n ≥ 0} (with the i.i.d. uniforms (Un) independent of all else)
are given, together with the sequence {Yn : n ≥ 0}. In fact, we will require to set the Bn
according to (8) below, and the Yns will be simulated according to a suitable random walk
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construction as explained in Section 4. For j = 0, 1, . . . , n, set

D0(n,w) = w,
D1(n,w) = φ1(exp(Yn)D0(n,w), Un−1, Bn−1)

= exp(Yn)D0(n,w)+ B ′n−1(exp(Yn)w,Un−1, Bn−1),

D2(n,w) = φ1(exp(Yn−1)D1(n,w), Un−1, Bn−1)

= exp(Yn−1)D1(n,w)+ B ′n−2(exp(Yn−1)D1(n,w), Un−2, Bn−2),

...

Dj (n,w) = exp(Yn−j+1)Dj−1(n,w)+ B ′n−j (exp(Yn−j+1)Dj−1(n,w), Un−j , Bn−j ).

In simple words, the previous recursions are interpreted as follows. The value D0(n,w) = w
indicates an initial value equal tow at n units of time in the past. Then,Dj(n,w) represents the
value at n−j units of time in the past given that at n units of time in the past the position wasw.
Note that the value at n− j units of time in the past given the position at n− j +1 units of time
in the past depends only on Un−j and Bn−j , and that the driving sequence {(Ui, Bi) : i ≥ 0} is
kept fixed even if we start the iterations at arbitrarily long times n in the past. Clearly, if n ≥ n0
and 0 ≤ j ≤ n0,

Dn−j (n,w) = Dn0−j (n0,Dn−n0(n,w)).

We now show the following useful monotonicity property.

Proposition 1. If w ≤ v then
Dj(n,w) ≤ Dj(n, v)

for j = 0, . . . , n. Moreover,

z+ B ′(z, U,B) ≤ (B + κ)+ z.
Proof. Initially, we verify that if z0 ≤ z1 then

φ1(z0, U, B) ≤ φ1(z1, U, B).

First, if z0 ≤ z1 ≤ κ or κ ≤ z0 ≤ z1, the result is clear because H̄z0(t) ≤ H̄z1(t) for all t ≥ 0.
Now, if z0 ≤ κ ≤ z1 then we have two cases. If U ≤ λk then clearly the inequality holds
because B + z1 ≥ B + κ . If U > λk then we need to show that

B + z1 ≥ H̄−1
z0
(F̄ (B)).

Now, since H̄z0(·) is decreasing, H̄−1
z0
(·) is also decreasing and, therefore,

H̄z0(B + z1) ≤ F̄ (B).
In addition, we note that H̄z0(t) ≤ H̄z1(t). Therefore, we have

H̄z0(B + z1) ≤ H̄1(B + z1) ≤ H̄1(B + κ) = F̄ (B)− λk
1− λk ≤ F̄ (B).

Thus, the claim holds true. Now we proceed with the statement of the proposition using
induction. For j = 0, the claim holds by definition. Assume that the inequality holds for j −1.
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Then, by induction and monotonicity of φ1(·, Un−j , Bn−j ), we obtain

Dj(n,w) = exp(Yn−j+1)Dj−1(n,w)+ B ′n−j (Dj−1(n,w))

= φ1(exp(Yn−j+1)Dj−1(n,w), Un−j , Bn−j )
≤ φ1(exp(Yn−j+1)Dj−1(n, v), Un−j , Bn−j )
= exp(Yn−j+1)Dj−1(n, v)+ B ′n−j (Dj−1(n, v)),

verifying the claim for j . The second part of the proposition follows similar steps. If z ≤ κ
then z + B ′(z, U,B) ≤ B + κ and z ≥ κ implies that z + B ′(z, U,B) = B + z. In any case,
z+ B ′(z, U,B) ≤ (B + κ)+ z.

To complete the construction of the basic elements behind our algorithm, let us write Sn =
Y1 + · · · + Yn (S0 = 0). It follows from (6) that, for any w,

Dn(n,w)
D= exp(Sn)w +

n−1∑
j=0

exp(Sj )Bj ,

and, therefore, since exp(Sn)w→ 0 almost surely as n↗∞,

X
D= lim
n−→∞Dn(n,w),

where

X =
∞∑
n=0

exp(Sn)Bn.

Now let us define

B+n = Bn + κ,
W+n = B+n + exp(Yn+1)B

+
n+1 + exp(Yn+1 + Yn+2)B

+
n+2 + · · · ,

Wn = Bn + exp(Yn+1)Bn+1 + exp(Yn+1 + Yn+2)Bn+2 + · · · .

We actually have

X
D= Dn(n,Wn).

Now assume that we can find a sequence of RVs (V +k : k ≥ 0) such that V +k ≥ W+k ; this is
precisely (E2). The next basic result allows us to detect coalescence.

Proposition 2. If there exists an N0 <∞ with probability 1 such that, for some 1 ≤ j ≤ N0,

exp(Yj )DN0−j (N0, V
+
N0
) ≤ 1 and Uj−1 ≤ λk,

then Dn(n,W+n ) = DN0(N0, V
+
N0
) for all n ≥ N0. Moreover, DN0(N0, V

+
N0
)

D= X.

Proof. Note that, if n ≥ N0,

Dn−N0(n,W
+
n ) ≤ D+n−N0

(n,W+n ) = W+N0
≤ V +N0

.
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Therefore, for each 1 ≤ j ≤ N0, we have

Dn−j (n,W+n ) = DN0−j (N0,Dn−N0(n,W
+
n ))

≤ DN0−j (N0,D
+
n−N0

(n,W+n ))
= DN0−j (N0,W

+
N0
)

≤ DN0−j (N0, V
+
N0
).

So we have
exp(Yj )Dn−j (n,W+n ) ≤ exp(Yj )DN0−j (N0, V

+
N0
) ≤ 1

andUj−1 ≤ 1. This implies that the coalescence (coupling) occurs and, therefore, we must have
Dn(n,W

+
n ) = DN0(N0, V

+
N0
). To show that indeed DN0(N0, V

+
N0
)

D= X, we simply observe
that

Dn(n,W
+
n )

D= Dn(n,X+) D= exp(Sn)X
+ +

n−1∑
j=0

exp(Sj )Bj ,

where X+ is a copy of W+n which is independent of all the Bj s and Yj s. The right-hand
side converges to X almost surely as n ↗ ∞ and the left-hand side equals DN0(N0, V

+
N0
) for

n ≥ N0; the result follows.

The previous result is not very useful unless we are able to find a sequence of stochastic
upper bounds (the V +k s) and ensure that P(N0 < ∞) = 1. The construction of these upper
bounds will require first dealing with the maximum of an appropriate random walk and then
simulating the Bns in a suitable fashion. We will study the construction of the V +k s in the next
sections. Assuming that such a construction is in place and that N0 <∞, the basic algorithm
takes the following form. The proof that P(N0 < ∞) = 1 will be given in the last section of
the paper.

Algorithm 1. (Exact simulation of X.) Set κ > κ0, where κ0 satisfies (3).

Step 1. At iteration l ≥ 1 set k = 2l. Sample V +k , and let D0(k, V
+
k ) = V +k . (The definition

of V +k is given in (9) below.)

Step 2. Obtain Dj(k, V
+
k ) for j = 1, 2, . . . , k.

Step 3. If there exists a j such that exp(Yj )DN0−j (N0, V
+
N0
) ≤ κ and Uj−1 ≤ λk , then let

X = Dk(k, V +k ) and stop, otherwise let m← m+ 1 and go to step 1.

Remark 2. Note that we are using a Markov chain that has the same structure as Dn in order
to construct our DCFTP-type algorithm, namely, one in which Bn is replaced by B+n . The
standard application of DCFTP would therefore involve simulating a stationary version of
the dominating Markov chain. This problem, however, is basically equivalent to the original
problem. Nevertheless, we note that to carry over the basic ideas behind DCFTP, all we need
is the construction of a stochastic upper bound for the steady distribution of our dominating
chain; this is the role played by the V +k s and this is why our processes do not directly induce a
single stationary Markov chain.

3. Simulatable stochastic upper bounds for the steady-state distribution

For any a ∈ (0, 1), let us define

Sn(a) = Y1(a)+ · · · + Yn(a), where Yj (a) = Yj + a,
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and write

W+k =
∞∑
n=k

exp(Sn(a)− Sk(a)) exp(−(n− k)a)B+n

≤ exp(ka) exp(Mk(a))

∞∑
n=k

exp(−na)B+n , (7)

where
Mk(a) = −Sk(a)+max

n≥k Sn(a).

Our strategy for constructing and simulating a suitable upper bound V +k takes advantage of
representation (7). We need to explain how to simulate subsequent elements of the sequence
{Mk(a) : k ≥ 0}. We also need to sample an upper bound for the infinite sum that is present on
the right-hand side of (7); we first deal with this infinite sum and discuss the simulation of the
Mk(a)s in the next section.

A useful observation is that, by assumption, for each α ∈ (0, a/2),

P(B+n > exp(nα)) ≤ C(κ) exp(−nαp).

Since p > 1, the Borel–Cantelli lemma ensures that the event {B+n > nα} occurs just finitely
many times. Let us define T0 = 0 and Tj = inf{n > Tj−1 : Bn + κ > exp(nα)} for j =
1, 2, . . . . We note that if J = max{j ≥ 0 : Tj <∞} then, as indicated earlier, J <∞ almost
surely and 1 ≤ χ := max{n ≥ 0 : Bn + κ > exp(nα)} <∞ = TJ .

We will explain how to simulate the Bns jointly with the Tj s. To do this, first define
two sequences of independent RVs, namely (B̂n : n ≥ 0) and (B̄n : n ≥ 0). The corresponding
distributions are as follows: B̂n follows the distribution of Bn given that Bn + κ > exp(nα),
and B̄n follows the distribution ofBn given thatBn+κ ≤ exp(nα). We also define (In : n ≥ 0)
to be a sequence of independent Bernoulli RVs (independent of the B̂ns and the B̄ns) such that
P(In = 1) = p(n) := P(Bn + κ ≥ exp(αn)). We can then write

Bn = B̂nIn + B̄n(1− In), (8)

and Tj = inf{n > Tj−1 : In = 1} for j = 1, 2, . . . with T0 = 0. Moreover, we have

∞∑
n=k

exp(−na)B+n ≤
∞∑
n=k

exp(−na)B̂nIn + exp(−ka/2)
1− exp(−a/2)

=
χ∑
n=k

exp(−na)B̂nIn + exp(−ka/2)
1− exp(−a/2) .

Therefore, if we define

V +k = exp(ka) exp(Mk(a))

χ∑
n=k

exp(−na)B̂nIn + exp(Mk(a)+ ka/2)
1− exp(−a/2) (9)

then it clearly follows from (7) that V +k ≥ W+k .
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We now explain how to sample T1, T2, T3 . . . . We will consider T1 as only sampling Tj ,
since the sampling of Tj given Tj−1 is entirely analogous. Note that T1 > T0 = 0 and

P(T1 = k) = p(k)
k−1∏
j=1

(1− p(j))

for k ≥ 1. Moreover, we have P(T1 = ∞) = ∏∞
j=1(1 − p(j)) ∈ (0, 1). We note that, by

assumption, using Chebyshev’s inequality,

p(n) ≤ min{C(κ) exp(−nαp), 1}.
Therefore, if m is such that 1

2 > C(k) exp(−map),
m−1∏
j=1

(1− p(j)) ≥ P(T1 = ∞)

=
∞∏
j=1

(1− p(j))

≥
m−1∏
j=1

(1− p(j)) exp

(
−
∞∑
j=m

2C(κ)

exp(mαp)

)

=
m−1∏
j=0

(1− p(j)) exp

(
− 2C(κ)

exp(map)(1− exp(αp))

)
. (10)

Consequently, in order to sample a Bernoulli RV Z with parameter P(T1 = ∞), we can simply
let

Z = 1(U ≤ P(T1 = ∞)),
where U is uniformly distributed in [0, 1]. Note that, with probability 1, the condition that
U ≤ P(T1 = ∞) can be obtained from the bounds of (10) by making m sufficiently large
without computing the infinite product in the definition of P(T1 = ∞).

Now, if T1 <∞, we need to simulate an RV with probability mass function

P(T1 = k | T1 <∞) = p(k)
∏k−1
j=1(1− p(j))∏∞
j=1(1− p(j))

≤ 1∏∞
j=0(1− p(j))

min{C(κ) exp(−kαp), 1}.

Once again, we apply an acceptance-rejection procedure. A suitable proposal RV K , with
probability mass function

P(K = k) = exp(−[k − 1]αp)(1− exp(αp))

for k ≥ 1 works in this case. This type of procedure allows us to simulate the sequence
(In : n ≥ 0). Simulating the sequences (B̂n : n ≥ 0) and (B̄n : n ≥ 0) is immediate.



Exact sampling of stochastic perpetuities 175

4. The maxima of a negative drift random walk

Our goal is to simulate theMk(a)s jointly with the random walk (Sn(a) : n ≤ k). The design
of our algorithm is based on importance sampling. We first need the next lemma, which follows
easily from the strict convexity of ψ(·) and so its proof is omitted.

Lemma 1. Suppose that the moment generating function of the nondegenerate RV Y is finite
in a neighborhood of the origin, so that ψ ′(0) < 0 and ψ ′′(0) > 0. Define ψa(θ) =
log E exp(θY (a)) = ψ(θ) + aθ . Then we can always find a > 0 and η = η(a) > 0 such
that ψa(η) = 0.

Remark 3. In the so-called Cramer case, that is, when there exists θ∗ > 0 such thatψ(θ∗) > 0,
then, for any a ∈ (0, |ψ ′(0)|/2), we can find the required η(a).

Lemma 1 guarantees that there exist a > 0 and η > 0 such that ψa(η) = 0, ψ ′a(0) < 0, and
ψ ′a(η) > 0. The root η allows us to define a convenient change of measure which we will use
repeatedly in our sampling strategy. In particular, if Ln = exp(ηSn(a)) then (Ln : n ≥ 0) is a
positive martingale and induces a probability measure Pη defined for eachA ∈ σ(Sj (a) : j ≤ k)
(the σ -field generated by S1(a), . . . , Sk(a)) via Pη(A) = E[exp(−ηSk(a));A]. It is well known
that, under Pη(·), the random walk has positive drift equal toψ ′a(0) > 0. In fact, if we let ξ > 0
and set Tξ = inf{n ≥ 0 : Sn(a) > ξ}, then we have

P(Tξ <∞) = Eη[exp(−ηSTξ )].
Moreover, if ξ1 > ξ0 then

P(Tξ0 <∞, Tξ1 = ∞) = Eη[exp(−ηSTξ0 )PSTξ0
(Tξ1 = ∞)].

If all we wanted was to simulate M0(a), we could take advantage of the following idea of
Ensor and Glynn [10]. They observed that if an artificial RV τ , exponentially distributed with
unit mean and independent of the random walk under Pη, is introduced then

P(M0(a) > x) = Eη[exp(−ηSTx )] = Pη

(
τ

η
> STx

)
.

Then, if we define the (random) functionG(u) = inf{x ≥ 0 : STx > u}, we obtainG(STx ) = x
for almost every x with respect to the Lebesgue measure and, therefore, we conclude that

P(M0(a) > x) = Pη

(
G

(
τ

η

)
> x

)
. (11)

In other words, we haveM0(a)
D= G(τ/η), and, therefore, we can sampleM0(a) in finite time by

sampling τ and then computing G(τ/η), which requires simulating S1(a), . . . , STτ/η (a) under
Pη(·). Our problem, however, is to jointly simulate the Mk(a)s and the underlying random
walk and for this reason we will require a sequential procedure.

Fix m ≥ 1 so that exp(−3ηm) < 1
2 . This is a technical constraint on m whose nature will

become evident momentarily. Define the sequence of times 1 = inf{n ≥ 0 : Sn(a) < −2m},
�1 = inf{n ≥ 1 : Sn(a) − S1(a) > m}, and, for j ≥ 2, j = inf{n ≥ �j−1 1(�j−1 <

∞)∨j−1 : Sn < Sj−1−2m} and�j = inf{n ≥ j : Sn−Sj > m}. We use the convention
that if �j−1 = ∞ then �j−1 1(�j−1 < ∞) = 0, so we have �j−1 1(�j−1 < ∞) > j−1 if
and only if �j−1 <∞. We will sequentially simulate the random walk at the times1,2, . . .
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jointly with the sequence �1, �2, . . . . Note that P(�1 = ∞ | S1(a)) > 0, so simulating 2
sequentially given �1 requires being able to simulate the random walk conditional on �1 = ∞,
and similarly for subsequentj s. We will explain how to simulate thej s and�j s sequentially
jointly with the underlying random walk. However, first we note that indeed this sequential
simulation procedure is all that is needed to simulate the Mk(a)s jointly with the random walk
(Sn(a) : n ≥ 0).

Proposition 3. We have n < ∞ with probability 1 for each n ≥ 1 and n ↗ ∞ as
n ↗ ∞ also with probability 1. Furthermore, if exp(−3ηm) < 1

2 then the event P(�n = ∞
infinitely often) = 1. Consequently, for each k ≥ 0, we can find N0(k) = inf{n ≥ 1 : n ≥ k}
and T (k) = inf{j ≥ N0(k) + 1 : �j = ∞}, both finite RVs such that Mk(a) = −Sk(a) +
maxk≤n≤T (k) Sn(a).

Proof. The first statement of the proposition follows easily from the law of large numbers
since EY1(a) < 0. Now we show that P(�n = ∞ infinitely often) = 1. First it follows from
the definition of �1 that P(�1 = ∞ | S1(a)) = P(Tm = ∞) > 0. We claim that, for j ≥ 2,
we can find a δ > 0 such that

P(�j = ∞ | S1, . . . , Sj , �1, . . . , �j−1) ≥ δ > 0.

To see this, first suppose that �l <∞ for each l = 1, 2, . . . , j −1. Then, by the strong Markov
property we have

P(�j = ∞ | S1, . . . , Sj , �1, . . . , �j−1) = P(Tm = ∞) > 0.

Now suppose that �l = ∞ for some l ≤ j − 1, and let l∗ = max{l ≤ j − 1 : �l = ∞}. Define
K = Sl∗ +m− Sj ≥ 3m, and note that

P(�j <∞ | S1, . . . , Sj , �1, . . . , �j−1) = P(Tm <∞ | TK = ∞).
Keep in mind that in the conditional probability that appears on the right-hand side we regard
K as a deterministic constant. Now we have

P(Tm <∞ | TK <∞) = P(Tm <∞, TK = ∞)
1− P(TK <∞) = Eη[exp(−ηSTm)PSTm (TK = ∞)]

1− P(TK <∞) .

Since K ≥ 3m, we have P(TK = ∞) = 1 − P(TK < ∞) ≥ 1 − exp(−3ηm). Therefore, the
previous expression implies that

P(�j = ∞ | S1, . . . , Sj , �1, . . . , �j−1) ≥ 1− exp(−3ηm)

1− exp(−3ηm)
.

The right-hand side is strictly positive if exp(−3ηm) < 1
2 . Since the right-hand side is nonran-

dom, it follows from the Borel–Cantelli lemma that P(�n = ∞ infinitely often) = 1. Finally,
the fact thatMk(a) = −Sk(a)+maxk≤n≤T (k) Sn(a) follows easily by construction. Note that
it is important, however, to define T (k) ≥ N0(k) + 1, so that N0(k)+1 is computed first and
we can make sure that the maximum of the sequence {Sn(a) : n ≥ k} is achieved between k
and T (k).

The next three lemmas provide the basis to simulate the random walk (Sn(a) : n ≥ 0)
jointly with the j s and the �j s. First, in Lemma 2 we provide a representation that allows
us to simulate a Bernoulli RV with success parameter P(Tξ0 < ∞ | Tξ1 = ∞). The result is
straightforward and so the proof is omitted.
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Lemma 2. Let 0 < ξ0 < ξ1 ≤ ∞. Then we have

P(M0(a) > ξ0 | M0(a) ≤ ξ1) = P(Tξ0 <∞ | Tξ1 = ∞).
In particular, we can simulate a Bernoulli RV with parameter P(Tξ0 < ∞ | Tξ1 = ∞) if we
just sample M0(a) given that M0(a) ≤ ξ1 and then output 1(M0(a) > ξ0).

Next we describe how to simulate the random walk conditional on Tξ0 <∞ and Tξ1 = ∞.

Lemma 3. Let 0 < ξ0 < ξ1 ≤ ∞, consider any sequence of bounded positive measurable
functions fk+1 : Rk+1 → [0,∞), and define ζ(ξ0, ξ1) = exp(−ηSTξ0 )PSTξ0

(Tξ1 = ∞). Then
we obtain

E[fTξ0 (S0(a), . . . , STξ0 (a)) | Tξ0 <∞, Tξ1 = ∞] =
Eη[fTξ0 (S0(a), . . . , STξ0 (a))ζ(ξ0, ξ1)]

Eη[ζ(ξ0, ξ1)] .

So, if P∗(·) = P(· | Tξ0 <∞, Tξ1 = ∞), we conclude that

dP∗

dPη
= ζ(ξ0, ξ1)

Eη[ζ(ξ0, ξ1)] ≤
1

Eη[ζ(ξ0, ξ1)] . (12)

Consequently, we can apply acceptance rejection. In particular, we propose a sample S1(a),

. . . , STξ0 (a) from Pη(·) and accept with probability

exp(−ηSTξ0 )PSTξ0
(Tξ1 = ∞).

Finally, we observe that acceptance occurs with probability precisely equal to P(Tξ0 < ∞,
Tξ1 = ∞). In particular, if ξ1 = ∞, we have PSTξ0

(Tξ1 = ∞) = 1 and P(Tξ0 < ∞, Tξ1 =
∞) = P(Tξ0 < ∞), so in this case the acceptance step yields a Bernoulli with parameter
P(Tξ0 < ∞), and if the Bernoulli is successful, the sample path follows the law S1(a), . . . ,

STξ0 (a) given that Tξ0 <∞.

Proof. Martingale theory and the strong Markov property yield

E[fTξ0 (S0(a), . . . , STξ0 (a)), Tξ0 <∞, Tξ1 = ∞]
= Eη[fTξ0 (S0(a), . . . , STξ0 (a)) exp(−ηSTξ0 )PSTξ0

(Tξ1 = ∞)].

Letting fk = 1 we conclude that

P(Tξ0 <∞, Tξ1 = ∞) = Eη[ζ(ξ0, ξ1)],
and, therefore, we arrive at the likelihood ratio in (12). The rest of the proof follows using
standard results for acceptance-rejection algorithms.

Finally, given ξ0 ∈ (0,∞), define T−ξ0 = inf{n ≥ 0 : Sn < −ξ0}. We will explain how to
simulate a path up to time T−ξ0 conditional on Tξ1 = ∞ for any ξ1 ∈ (0,∞].
Lemma 4. Let 0 < ξ0 < ξ1 ≤ ∞, and consider any sequence of bounded positive measurable
functions fk+1 : Rk+1 → [0,∞). Then

E[fTξ0 (S0(a), . . . , ST−ξ0 (a)) | Tξ1 = ∞] =
E[fTξ0 (S0(a), . . . , STξ0 (a))PST−ξ0

(Tξ1 = ∞)]
P(Tξ1 = ∞)

.
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So, if P∗(·) = P(· | Tξ1 = ∞), we conclude that

dP∗

dP
=

PST−ξ0
(Tξ1 = ∞)

P(Tξ1 = ∞)
≤ 1

P(Tξ1 = ∞)
.

Consequently, we can apply acceptance rejection to sampleS0(a), . . . , ST−ξ0 (a)givenTξ1 = ∞.
In particular, we propose a sample S1(a), . . . , ST−ξ0 (a) from S0(a), . . . , ST−ξ0 (a) under the
nominal (unconditional probability) and accept the path with probability PST−ξ0 (a)

(Tξ1 = ∞).
Proof. The result follows directly from the strong Markov property and basic facts of

acceptance rejection.

We conclude the section with a summary of the sequential procedure for the random walk.

Algorithm 2. (Sequential simulation of the random walk.) Selectm such that exp(−3ηm) < 1
2 .

Set s0 = s = 0, ξ1 = ∞, and t = 0.
Output the random walk (s0, s1, . . .) and the times (1,2, . . .), (�1, �2, . . .).
At iteration k ≥ 1 proceed as follows.

Step 1. Sample S1(a), . . . , ST−2m(a), T−2m given that Tξ1 = ∞ and S0(a) = 0 (apply Lemma 4
and (11)).

Step 2. Letk = t+T−2m, st+1 = s+S1(a), . . . , sk = s+ST−2m(a), t ← k , and s ← sk .

Step 3. Simulate a Bernoulli RV J with parameter P(Tm <∞ | Tξ1 = ∞) (apply Lemma 2).

Step 4. If J = 1 then sample S1(a), . . . , STm(a), Tm given that Tm <∞ and Tξ1 = ∞ (apply
Lemma 3). Let �k = t + Tm, st+1 = s + S1(a), . . . , s�k = s + STm(a), t ← k , and
s ← s�k . Else (J = 0) let ξ1 = s +m and �k = ∞.

Step 5. Set k← k + 1 and go to step 1.

5. Finite termination time

All the elements of our algorithm for the exact simulation of X are in place now. The
simulation of the Bns has been discussed in Section 3, how to simulate Yn = Yn(a) − a for
n ≥ 1 has been discussed in Section 4, and how to construct and simulate the V +n s have also
been discussed in these two sections. The only remaining issue is to make sure that N0 < ∞
with probability 1.

Let � be the number of iterations that are required to terminate the algorithm. In order to
show that E� <∞, we will take advantage of the following bound:

V +k = exp(ka) exp(Mk(a))

χ∑
n=k

exp(−na)B̂nIn + exp(Mk(a)+ ka/2)
1− exp(−a/2)

≤ D+

:= exp(χa) exp(M0(2a))
χ∑
n=0

exp(−nα)B̂n + exp(M0(2a))

1− exp(−a/2) .

The following lemma allows us to provide a bound on E� based on a bound on the mean of
�κ = inf{n ≥ 0 : Dn < κ}, given that D0 is selected as an independent copy of D+. The fact
that N0 <∞ with probability 1 clearly follows from the fact that E� <∞.
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Lemma 5. Let gκ(d) = Ed�κ . Then

Egκ(D
+) ≤ 1

1− λκ
{

Egκ(D
+)+ sup

0≤x≤1
Ex[gκ(exp(Y )x + B)]

}
.

Proof. First, for convenience, let us extend the construction {Dj(2l, V +2l ) : 0 ≤ j ≤ 2l} to
values of j > 2l using the dynamics of the Markov chain with an independent sequence of
Bns, Yns, and Uns. Now let A2l (1, V

+
2l ) = inf{j ≥ 0 : Dj(2l, V +2l ) ≤ 1}, and set

A2l (i + 1, V +2l ) = inf{j > A2l (i, V
+
2l ) : Dj(2l, V +2l ) ≤ 1}.

We then define N(k, V +2l ) = max{m ≥ 0 : A2l (m, V
+
2l ) ≤ k}. We note that

P(� > l) ≤ E[(1− λ)N(2l,V+2l )].
The previous inequality simply says that � > l implies that the process {Dj(2l, V +2l ) : 0 ≤ j ≤
2l} either does not visit the interval [0, κ] or, when it does visit [0, κ], a successful coupling
does not occur. Now we introduce an artificial RV τ , geometrically distributed with success
parameter λ. Then

E[(1− λ)N(2l,V+2l )] = P(τ > N(2l, V +2l )) ≤ P(A2l (τ, V
+
2l ) > 2l).

Consequently,
E� ≤ EA2l (τ, V

+
2l ).

By monotonicity and a submartingale argument, we obtain

EA2l (τ, V
+
2l ) ≤

1

1− λκ
{

Egκ(D
+)+ sup

0≤x≤1
Ex[gκ(exp(Y )x + B)]

}
,

thereby concluding the result.

In order to obtain a bound on gκ(d), we will take advantage of the following well-known
Foster–Lyapunov criterion.

Proposition 4. Suppose that we can find a nonnegative function hκ(·) such that

E[hκ(d exp(Y1)+ B1)] − hκ(d) ≤ −1

for all d ≥ κ . Then gκ(d) ≤ hκ(d).
The following lemma provides the construction of a suitable Lyapunov function from the

previous proposition.

Lemma 6. Given κ > κ0, we can find a c ∈ (0,∞) such that h(x) = c log(1 + x) is an
appropriate Lyapunov function. In particular, for each d ≥ κ , we have Ed�κ ≤ hκ(d).

Proof. Note that

0 ≤ log

(
1+ d exp(Y1)+ B1

1+ d
)
≤ log(1+ B1 + exp(Y1)).
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In addition, for each δ > 0, we can find a Cδ ∈ (0,∞) such that log(1+ r) ≤ Cδrδ . Therefore,

log

(
1+ B1 + exp(Y1)

1+ B1

)
= log

(
1+ exp(Y1)

1+ B1

)
≤ Cδ exp(δY1),

and we conclude that

0 ≤ log

(
1+ d exp(Y1)+ B1

1+ d
)
≤ log(1+ B1)+ Cδ exp(δY1).

We then recall bound (3) and the fact that κ > κ0 to conclude that if c > 2/|EY1| and d ≤ κ ,
then

E[hκ(d exp(Y1)+ B1)] − hκ(d) = c E log

(
1+ d exp(Y1)+ B1

1+ d
)
≤ c E Y1

2
≤ −1,

thereby concluding the result.

Lemma 7. We have

Egκ(D
+) <∞ and sup

0≤x≤1
Ex[gκ(exp(Y )x + B)] <∞.

Therefore, E� <∞ and, thus, the algorithm terminates in finite time with probability 1.

Proof. It suffices to show that E log(1+D+) <∞ to show the first part of the result. The
second part is straightforward, following a similar argument as in the proof of Lemma 6. Note
that

E log(1+D+)

≤ EM0(2a)+ E

{
log

[
1+ exp(χa)

χ∑
n=0

exp(−nα)B̂n + 1

1− exp(−a/2)
]}

≤ EM0(2a)+ log

(
3

1− exp(−a/2)
)
+ a E χ + E log

(
χ max
n=0,...,χ

exp(−nα)B̂n
)
.

It is well know that M0(a) has exponentially decaying tails, so, in particular, EM0(a) < ∞.
Now we have

P(χ = k) ≤ P(κ + Bk ≥ exp(kα)).

Since we are assuming that EBpk < ∞ for some p > 0 we clearly obtain Eχ < ∞. Observe
that

E log
(

max
n=0,...,χ

exp(−nα)B̂n
)
≤ E

[ χ∑
n=0

{−nα + log(B̂n)}
]
,

and also note that, for each δ > 0, there exists a constant C(δ, n) such that C(δ, n) → 0 as
n↗∞. Then

E[−nα + log(Bn + κ) | Bn + κ ≥ exp(na)] =
∫ ∞
na

P(log(Bn + κ) > t)

P(log(Bn + κ) > nα)
dt

≤ C(δ, n)P(log(Bn + κ) > nα)−δ.
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Therefore, if α ∈ (0, a/2),

E

[ χ∑
n=0

{−nα + log(B̂n)}
]
≤ E{χ P(log(Bn + κ) > χ)−δ}.

We then conclude that

E[χ P(log(Bn + κ) > χ | χ)−δ] ≤
∞∑
k=1

k P(log(Bn + κ) > k)1−δ <∞,

where the last inequality follows from Chebyshev’s bound again using the fact that E(Bk+κ)p <
∞ for some p > 0. The result then follows from Lemma 5.
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