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Abstract We present an exact simulation algorithm for the stationary distribution of
customer delay for FIFO M/G/c queues in which ρ = λ/μ < c. In Sigman (J. Appl.
Probab. 48A:209–216, 2011) an exact simulation algorithm was presented but only
under the strong condition that ρ < 1 (super stable case). We only assume that the
service-time distribution G(x) = P(S ≤ x), x ≥ 0, with mean 0 < E(S) = 1/μ <

∞, and its corresponding equilibrium distribution Ge(x) = μ
∫ x

0 P(S > y)dy are
such that samples of them can be simulated. Unlike the methods used in Sigman
(J. Appl. Probab. 48A:209–216, 2011) involving coupling from the past, here we use
different methods involving discrete-time processes and basic regenerative simula-
tion, in which, as regeneration points, we use return visits to state 0 of a correspond-
ing random assignment (RA) model which serves as a sample-path upper bound.

Keywords Exact simulation · Queueing theory · Multi-server queues · Regenerative
processes

Mathematics Subject Classification (2000) 60K25 · 65C05 · 68U20 · 90B22 ·
60J05 · 60K05

1 Introduction

Consider a first-in-first-out (FIFO) M/G/c queue (c ≥ 2), with Poisson arrival times
{tn : n ≥ 1} at rate λ, in which the independent and identically distributed (iid) service
times {Sn : n ≥ 0} are distributed as G(x) = P(S ≤ x), x ≥ 0, with finite mean
E(S) = 1/μ.
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With iid interarrival times An = tn+1 − tn (t0
def= 0), let Wn = (Wn(1), . . . ,Wn(c))

denote the Kiefer–Wolfowitz workload vector (see for example, p. 341 in Chap. 12
of [1]). It satisfies the recursion

Wn+1 = R(Wn + Sne − Anf)+, n ≥ 0, (1)

where Wn = (Wn(1), . . . ,Wn(c)), e = (1,0, . . . ,0), f = (1,1, . . . ,1), R places a vec-
tor in ascending order, and + takes the positive part of each coordinate. Dn = Wn(1)

is then the customer delay in queue (line) of the nth customer. Recursion (1) defines
a Markov chain due to the given iid assumptions, and whenever Wn = 0, the chain
regenerates in the sense of a regenerative stochastic process with initial condition
W0 = 0. The event Wn = 0 is equivalent to “the nth arrival finds the entire system

empty.” With ρ
def= λ/μ < c (stability), it is well known that Wn converges in distri-

bution to a proper stationary distribution. Let π denote this stationary distribution.
Our objective in the present paper is to provide a simulation algorithm for sampling
exactly from π .

In [6], an exact simulation algorithm was presented but only under the strong
assumption that ρ = λ/μ < 1. The method involves ideas/methods of coupling from
the past, dominated coupling from the past. Here, we present a different algorithm
that works for any ρ < c. It is based on general methods of simulating stationary
distributions of regenerative processes. Also, we will work in discrete time (e.g., from
arrival epochs) instead of continuous time as was the case in [6]. Our only assumption
is that we can simulate from both G and its equilibrium distribution Ge.

The main idea involves using, as a sample-path upper bound, the random assign-
ment (RA) model (for total number of customers in the system), and using its returns
to state 0 (empty state) as regeneration points which also then serve as regeneration
points for the FIFO model.

2 Preliminaries on regenerative simulation

Suppose one can simulate a non-delayed version of a positive recurrent regenerative
process. Here we quickly present the basic method of simulating exactly from the
stationary distribution of this process if one is able to simulate exactly from the equi-
librium distribution (stationary excess distribution) of a cycle length. The result given
below, presented in discrete time, with a simple proof provided for completeness, is
from [3] (also see the more recent exposition in [2], Sect. 8, p. 420, in particular
Proposition 8.4).

Suppose that {Xn : n ≥ 0} is a positive recurrent non-delayed discrete-time re-
generative process, with iid cycle lengths generically denoted by T distributed as
F(n) = P(T ≤ n), n ≥ 0, with finite and nonzero mean E(T ) = 1/λ. A generic
length T cycle is thus C = {Xn : 0 ≤ n < T }. From regenerative process theory, the
(marginal) stationary distribution π is given by (expected value over a cycle divided
by the expected cycle length)

π(·) = λE

T −1∑

n=0

I {Xn ∈ ·} = λE

T∑

n=1

I {Xn ∈ ·}. (2)
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Proposition 2.1

1. Suppose we can and do sequentially simulate iid copies of C = {Xn : 0 ≤ n < T }
(the first cycle), denoted by Cj = {Xn(j) : 0 ≤ n < Tj }, j ≥ 1, having iid cycle
lengths {Tj } distributed as F .

2. Suppose further that we can and do simulate (independently) one copy T e dis-
tributed as the (discrete-time) equilibrium distribution of F having probability
mass function P(T e = n) = λP (T ≥ n), n ≥ 1. (This is the stationary excess
distribution for the underlying renewal process of regeneration times.)

3. Let τ = min{j ≥ 1 : Tj ≥ T e}.
4. Use cycle Cτ to construct X∗ = XT e(τ ) (e.g., if T e = n and τ = j , then X∗ =

Xn(j)).

Then the simulated random element X∗ is distributed as π .

Proof Conditional on T e = n, it holds that τ = min{j ≥ 1 : Tj ≥ n}, and thus Cτ

simply has the distribution of a first cycle given that its length is greater than or equal
to n:

P
(
X∗ ∈ · |T e = n

) = P(Xn ∈ · |T ≥ n) = P(Xn ∈ · , T ≥ n)

P (T ≥ n)
.

Since P(T e = n) = λP (T ≥ n), we obtain

P(X∗ ∈ ·) =
∞∑

n=1

P(Xn ∈ · , T ≥ n)

P (T ≥ n)
λP (T ≥ n)

= λ

∞∑

n=1

P(Xn ∈ · , T ≥ n)

= λE

T∑

n=1

I {Xn ∈ ·}

= π(·). �

Remark 2.1 Proposition 2.1 is also valid for continuous-time regenerative processes
in which case T e is a continuous random variable with probability density function
λP (T > x), x ≥ 0. In the present paper, however, we are only using the discrete-time
framework.

3 Random assignment model (RA) as a sample-path upper bound

Given a c-server queueing model, the random assignment model (RA) is the case
when each of the c servers forms its own FIFO single-server queue, and each arrival to
the system, independent of the past, randomly chooses queue i to join with probability
1/c, i ∈ {1,2, . . . , c}. In the M/G/c case, we refer to this as the RA M/G/c model.

The following is a special case of Lemma 1.3, p. 342 in [1]. (Such results and
others that are even more general are based on [4, 8], and [5].)
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Lemma 3.1 Let QF (t) denote total number of customers in system at time t ≥ 0 for
the FIFO M/G/c queue, and let QRA(t) denote total number of customers in system
at time t for the corresponding RA M/G/c model in which both models are initially
empty and fed exactly the same input of Poisson arrivals {tn} and iid service times
{Sn}. Assume further that for both models the service times are used by the servers
in the order in which service initiations occur (Sn is the service time used for the nth
such initiation). Then

P
(
QF (t) ≤ QRA(t), for all t ≥ 0

) = 1. (3)

The importance of Lemma 3.1 is that it allows us to jointly simulate versions of
the two stochastic processes {QF (t) : t ≥ 0} and {QRA(t) : t ≥ 0} while achieving a
coupling such that (3) holds. In particular, whenever an arrival finds the RA model
empty, the FIFO model is found empty as well. These consecutive epochs in time
constitute regeneration points (for both models) due to the iid assumptions on the
input. We explain how to use these facts to our advantage in the next section.

Remark 3.1 Under FIFO, customers enter service in the same order that they arrive
and so assigning Sn for the nth service initiation is the same as assigning Sn to the nth
arriving customer. For the RA model this is not so, since customers can enter service
in a different order from their order of arrival. Reordering the service times, however,
does not change the distribution of {QRA(t) : t ≥ 0} because of the iid assumptions.

4 Using regeneration points from the RA model for the FIFO model:
simulating copies of a cycle C for the FIFO model

For the RA M/G/c model, let Q(t) = (Q1(t), . . . ,Qc(t)), where Qi(t) denotes the
number of customers in the ith queue at time t (including the customer in service, if
any), and let Qn = (Q1,n, . . . ,Qc,n) = Q(tn−) denote the number in system at the
nodes as found by the nth arriving customer (to the entire RA model and not including
themselves). We will simulate the discrete-time process Qn, starting empty, Q0 = 0,
until it empties again. Consecutive visits of Qn to the empty state 0 constitute positive
recurrent regeneration points for the RA model. (See the discussion right after (7).)
These also serve as positive recurrent regeneration points for the FIFO model due
to Lemma 3.1. Any arrival finding the RA model empty, will find the FIFO model
empty as well: If QRA(tn−) = 0, then QF (tn−) = 0 and hence Wn = 0 (recall the
Markov chain defined in (1)).1 We will now proceed to take advantage of this so as
to employ Proposition 2.1.

A generic cycle length T is defined by initializing Q0 = 0 and setting

T = min{n ≥ 1 : Qn = 0}. (4)

This yields a generic cycle for the RA model. To generate a sample of T requires
a standard discrete-event simulation of {Q(t) : t ≥ 0}, where the events are an arrival

1These are different than consecutive visits of the FIFO model to state 0, which would occur more often.
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versus a service completion, and a service time S is generated only when it is needed
for processing by a server to ensure that Lemma 3.1 applies. The sequentially gen-
erated input random variables (rv’s) required are the iid service times {Sn : n ≥ 0}
distributed as G, the iid interarrival times {An : n ≥ 0} distributed as exponential
at rate λ, and the iid random selection rv’s {Un : n ≥ 0} distributed as the discrete
uniform distribution over {1,2, . . . , c}. (If Un = i, then the nth arrival joins the ith
queue.)

At time t0 = 0, the rv U0 is generated, and a server is randomly selected according
to U0 and begins servicing a generated service time S0 (e.g., the system is found
empty at time t0 = 0 by an initial customer who then starts the cycle). The number
in system at queue U0 is increased to 1. A0 is then generated so as to schedule the
next arrival. The simulation continues into the future analogously until an arriving
customer finds the entire system empty, thus ending the RA cycle.

We do not simulate the FIFO model until the RA cycle is complete (because we
want to efficiently use Step 3 of Proposition 2.1), at which time we use the input that
was used for the RA cycle to construct the FIFO cycle for the workload vector in (1):

We store the T service times used in simulating T ((S0, . . . , ST −1)) as well as the
T interarrival times ((A0, . . . ,AT −1)) so they can be used to construct the FIFO cycle
C = {W1, . . . ,WT } by using recursion (1) with W0 = 0, from n = 0 up to n = T −1.

5 Simulating a copy of T e

To fully employ Proposition 2.1, we need to be able to simulate a copy of T e. Here
we show how to do this. The main idea is to take advantage of the basic fact that T e

has the stationary excess distribution (stationary forward recurrence time distribution)
of the (discrete-time) renewal process of visits of the RA model to the empty state
(this renewal process has iid cycle lengths distributed as T ). Letting A(n) denote
the excess at time n, that is, the amount of time units starting from n until the next
renewal occurs (it forms an aperiodic positive recurrent Markov chain), we have that
A(n) ⇒ T e in distribution, as n → ∞. But in our case, by the definition of the RA
regeneration points, we also have that A(n) = min{k ≥ 1 : Qn+k = 0}. Thus, taking
n → ∞, we see that if we take a stationary version of {Qn : n ≥ 0}, denoted by
{Q∗

n : n ≥ 0}, then T e = min{n ≥ 1 : Q∗
n = 0}.

Since to obtain a stationary version of the RA model we only need to consider
the RA model by itself, independently of the FIFO model (recall Step 2 of Proposi-
tion 2.1), we do not need to couple the service times as in Lemma 3.1; we can assign
service times upon arrival. Also, because arrivals are Poisson, and we independently
partition them into c independent Poisson processes each at rate λ/c, we can sim-
ply treat each server as its own independent stable FIFO M/G/1 queue with Poisson
arrivals at rate λ/c < μ. Moreover, we can model workload instead of number in
system since they both empty together and thus share the same regeneration times.

The stationary workload distribution at each queue i is thus given by the clas-
sic Pollaczek–Khintchine formula. In terms of a random variable D, the stationary
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distribution has representation

D =
L∑

j=1

Yj , (5)

where the {Yj } are iid distributed as the equilibrium distribution of service, with cu-
mulative distribution function given by Ge(x) = μ

∫ x

0 P(S > y)dy, x ≥ 0, and in-
dependently L has a geometric distribution, P(L = k) = ρk

1 (1 − ρ1), k ≥ 0, where

ρ1
def= λ/cμ (see, for example, Theorem 5.7(b), p. 237, in [1]).
To put this to use: Letting Vn = (Vn(1), . . . , Vn(i)) denote workload (at each node)

as found by the nth arriving customer to the RA model (from the rate λ Poisson
process with arrival times {tn}), we have, for each node i ∈ {1,2, . . . , c},

Vn+1(i) = (
Vn(i) + SnI {Un = i} − An

)+
, n ≥ 0, (6)

where here, Sn is the iid service time of the nth (Poisson rate λ) arriving customer,
and independently {Un : n ≥ 0} denotes an iid sequence of random variables with
the discrete uniform distribution over {1,2, . . . , c}. (I {B} is the indicator rv for the
event B .)

{Vn : n ≥ 0} forms a Markov process due to the iid assumptions on the input. De-
note the corresponding continuous-time process (also Markov because of the Poisson
arrivals) by V(t) = (V (t,1), . . . , V (t, i)), where V (t, i) denotes the workload at the
ith node at time t ≥ 0, and Vn = V(tn−), n ≥ 1. From Poisson arrivals see time
averages (PASTA) (see [7], and Theorem 6.7, p. 218 in [1]), the limiting stationary
distribution of Vn, as n → ∞, is identical with that of V(t), as t → ∞. But the
coordinates of V(t), namely V (t,1), . . . , V (t, i), are iid copies of workload for the
M/G/1 queue (as was pointed out in the beginning of this section). Thus, the joint
time-stationary distribution of workload is given by

(
D(1), . . . ,D(c)

)
, (7)

where the D(i) here are iid distributed as D in (5).
We conclude that the stationary distribution for {Vn : n ≥ 0} is the same as in

(7) and thus the proportion of arrivals who find the RA system empty is given by
P(D = 0)c = (1 − ρ1)

c > 0; visits to the empty state constitute positive recurrent
regeneration points; E(T ) < ∞.

With V0 = 0, we have an identically distributed version of a cycle length (4) given
by T = min{n ≥ 1 : Vn = 0}. {Vn : n ≥ 0} is a Markov process, so if we start it off
with V0 distributed as in (7), then the process will be a stationary version, denoted
by {V∗

n : n ≥ 0}. As was explained in the beginning of this section, we conclude that
T e = min{n ≥ 1 : V∗

n = 0}.
The above analysis immediately leads to the following algorithm for simulating

T e , where we only need to assume that we can simulate from both G and Ge .

Algorithm for simulating T e

1. Initialize V0 = (D(1), . . . ,D(c)) as distributed as in (7).
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2. Simulate sequentially {Vn : n ≥ 1} using the recursion in (6) until time

T e = min{n ≥ 1 : Vn = 0}.

6 The algorithm

We only need to assume that we can simulate from both G and Ge .

Algorithm for simulating W distributed as the stationary distribution π for the
stable FIFO M/G/c queue

1. Simulate a copy of T e using the algorithm from Sect. 5. Set k = T e.
2. Independently generate T using the method in Sect. 4.
3. If T < k, then go back to step (2).
4. Construct the FIFO cycle C = {W1, . . . ,WT } as described (at the end) in Sect. 4.

Set W = Wk .
5. Output W.

Remark 6.1 Our assumption that we can simulate from G and Ge is not very re-
strictive in applications. G is a basic primitive of the model; one would not be able
to simulate the M/G/c queue at all (even starting empty) if service times could not
be simulated. One would typically know explicitly what G is (exponential, Erlang,
phase-type, Pareto, etc.). One would also typically have significant further informa-
tion about G, such as several of its moments, or reasonable bounds on them or bounds
on G itself, in which case simulation from Ge is indeed possible, using, for example,
acceptance-rejection methods. (See [2], Corollary 8.2 and Example 8.6, pp. 421–422
for further details.)
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