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1 Limiting distribution for a Markov chain

In these Lecture Notes, we shall study the limiting behavior of Markov chains as time n→∞.
In particular, under suitable easy-to-check conditions, we will see that a Markov chain possesses
a limiting probability distribution, π = (πj)j∈S , and that the chain, if started off initially with
such a distribution will be a stationary stochastic process. We will also see that we can find π
by merely solving a set of linear equations.

1.1 Communication classes and irreducibility for Markov chains

For a Markov chain with state space S, consider a pair of states (i, j). We say that j is reachable
from i, denoted by i → j, if there exists an integer n ≥ 0 such that Pnij > 0. This means that
starting in state i, there is a positive probability (but not necessarily equal to 1) that the chain
will be in state j at time n (that is, n steps later); P (Xn = j|X0 = i) > 0. If j is reachable
from i, and i is reachable from j, then the states i and j are said to communicate, denoted by
i←→ j. The relation defined by communication satisfies the following conditions:

1. All states communicate with themselves: P 0
ii = 1 > 0.1

2. Symmetry: If i←→ j, then j ←→ i.

3. Transitivity: If i←→ k and k ←→ j, then i←→ j.

The above conditions imply that communication is an example of an equivalence relation,
meaning that it shares the properties with the more familiar equality relation “ = ”:

i = i. If i = j, then j = i. If i = k and k = j, then i = j.
Only condition 3 above needs some justification, so we now prove it for completeness:

Suppose there exists integers n, m such that Pnik > 0 and Pmkj > 0. Letting l = n + m,
we conclude that P lij ≥ PnikP

m
kj > 0 where we have formally used the Chapman-Kolmogorov

equations. The point is that the chain can (with positive probability) go from i to j by first
going from i to k (n steps) and then (independent of the past) going from k to j (an additional
m steps).

If we consider the rat in the open maze, we easily see that the set of states C1 = {1, 2, 3, 4}
all communicate with one another, but state 0 only communicates with itself (since it is an
absorbing state). Whereas state 0 is reachable from the other states, i→ 0, no other state can
be reached from state 0. We conclude that the state space S = {0, 1, 2, 3, 4} can be broken up
into two disjoint subsets, C1 = {1, 2, 3, 4} and C2 = {0} whose union equals S, and such that
each of these subsets has the property that all states within it communicate. Disjoint means
that their intersection contains no elements: C1 ∩ C2 = ∅.

A little thought reveals that this kind of disjoint breaking can be done with any Markov
chain:

Proposition 1.1 For each Markov chain, there exists a unique decomposition of the state space
S into a sequence of disjoint subsets C1, C2, . . .,

S = ∪∞i=1Ci,

in which each subset has the property that all states within it communicate. Each such subset
is called a communication class of the Markov chain.

1P 0
ii = P (X0 = i|X0 = i) = 1, a trivial fact.
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If we now consider the rat in the closed maze, S = {1, 2, 3, 4}, then we see that there is only
one communication class C = {1, 2, 3, 4} = S: all states communicate. This is an example of
what is called an irreducible Markov chain.

Definition 1.1 A Markov chain for which there is only one communication class is called an
irreducible Markov chain: all states communicate.

Examples

1. Simple random walk is irreducible. Here, S = {· · · − 1, 0, 1, · · · }. But since 0 < p < 1,
we can always reach any state from any other state, doing so step-by-step, using the fact
that Pi,i+1 = p, Pi,i−1 = 1 − p. For example −4 → 2 since P 6

−4,2 ≥ p6 > 0, and 2 → −4
since P 6

2,−4 ≥ (1− p)6 > 0; thus −4←→ 2. In general Pni,j > 0 for n = |i− j|.

2. Random walk from the gambler’s ruin problem is not irreducible. Here, the random walk
is restricted to the finite state space {0, 1, . . . , N} and P00 = PNN = 1. C1 = {0}, C2 =
{1, . . . N − 1}, C3 = {N} are the communication classes.

3. Consider a Markov chain with S = {0, 1, 2, 3} and transition matrix given by

P =


1/2 1/2 0 0
1/2 1/2 0 0
1/3 1/6 1/6 1/3
0 0 0 1

 .

Notice how states 0, 1 keep to themselves in that whereas they communicate with each
other, no other state is reachable from them (together they form an absorbing set). Thus
C1 = {0, 1}. Whereas every state is reachable from state 2, getting to state 2 is not possible
from any other state; thus C2 = {2}. Finally, state 3 is absorbing and so C3 = {3}. This
example illustrates the general method of deducing communication classes by analyzing
the the transition matrix.

2 Recurrence and Stationary distributions

2.1 Recurrence and transience

Let τii denote the return time to state i given X0 = i:

τii = min{n ≥ 1 : Xn = i|X0 = i}, τii
def= ∞, if Xn 6= i, n ≥ 1.

It represents the amount of time (number of steps) until the chain returns to state i given that
it started in state i. Note how “never returning” is allowed in the definition by defining τii =∞,
so a return occurs if and only if τii <∞.

fi
def= P (τii < ∞) is thus the probability of ever returning to state i given that the chain

started in state i. A state i is called recurrent if fi = 1; transient if fi < 1. By the (strong)
Markov property, once the chain revisits state i, the future is independent of the past, and it is
as if the chain is starting all over again in state i for the first time: Each time state i is visited,
it will be revisited with the same probability fi independent of the past. In particular, if fi = 1,
then the chain will return to state i over and over again, an infinite number of times. That is
why the word recurrent is used. If state i is transient (fi < 1), then it will only be visited a

2



finite (random) number of times (after which only the remaining states j 6= i can be visited by
the chain). Counting over all time, the total number of visits to state i, given that X0 = i, is
given by an infinite sequence of indicator rvs

Ni =
∞∑
n=0

I{Xn = i|X0 = i} (1)

and has a geometric distribution,

P (Ni = n) = fn−1
i (1− fi), n ≥ 1.

(We count the initial visit X0 = i as the first visit.)
The expected number of visits is thus given by E(Ni) = 1/(1− fi) and we conclude that

A state i is recurrent (fi = 1) if and only if E(Ni) =∞,

or equivalently

A state i is transient (fi < 1) if and only if E(Ni) <∞.

Taking expected value in (1) yields

E(Ni) =
∞∑
n=0

Pni,i,

because E(I{Xn = i|X0 = i}) = P (Xn = i|X0 = i) = Pni,i.
We thus obtain

Proposition 2.1 A state i is recurrent if and only if

∞∑
n=0

Pni,i =∞,

transient otherwise.

Proposition 2.2 For any communication class C, all states in C are either recurrent or all
states in C are transient. Thus: if i and j communicate and i is recurrent, then so is j.
Equivalenly if i and j communicate and i is transient, then so is j. In particular, for an
irreducible Markov chain, either all states are recurrent or all states are transient.

Proof : Suppose two states i 6= j communicate; choose an appropriate n so that p = Pni,j > 0.
Now if i is recurrent, then so must be j because every time i is visited there is this same positive
probability p (“success” probability) that j will be visited n steps later. But i being recurrent
means it will be visited over and over again, an infinite number of times, so viewing this as
sequence of Bernoulli trials, we conclude that eventually there will be a success. (Formally, we
are using the Borel-Cantelli theorem.)

Definition 2.1 For an irreducible Markov chain, if all states are recurrent, then we say that
the Markov chain is recurrent; transient otherwise.
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The rat in the closed maze yields a recurrent Markov chain. The rat in the open maze yields a
Markov chain that is not irreducible; there are two communication classes C1 = {1, 2, 3, 4}, C2 =
{0}. C1 is transient, whereas C2 is recurrent.

Clearly if the state space is finite for a given Markov chain, then not all the states can be
transient (for otherwise after a finite number a steps (time) the chain would leave every state
never to return; where would it go?).

Thus we conclude that

Proposition 2.3 An irreducible Markov chain with a finite state space is always recurrent: all
states are recurrent.

Finally observe (from the argument that if two states communicate and one is recurrent
then so is the other) that for an irreducible recurrent chain, even if we start in some other state
X0 6= i, the chain will still visit state i an infinite number of times: For an irreducible recurrent
Markov chain, each state j will be visited over and over again (an infinite number of times)
regardless of the initial state X0 = i.

For example, if the rat in the closed maze starts off in cell 3, it will still return over and
over again to cell 1.

2.2 Expected return time to a given state: positive recurrence and null
recurrence

A recurrent state j is called positive recurrent if the expected amount of time to return to state
j given that the chain started in state j has finite first moment:

E(τjj) <∞.

A recurrent state j for which E(τjj) =∞ is called null recurrent.

In general even for i 6= j, we define τij
def= min{n ≥ 1 : Xn = j |X0 = i}, the time (after

time 0) until reaching state j given X0 = i.

Proposition 2.4 Suppose i 6= j are both recurrent. If i and j communicate and if j is positive
recurrent (E(τjj) < ∞), then i is positive recurrent (E(τii) < ∞) and also E(τij) < ∞. In
particular, all states in a recurrent communication class are either all together positive recurrent
or all together null recurrent.

Proof : Assume that E(τjj) < ∞ and that i and j communicate. Choose the smallest n ≥ 1
such that Pnj,i > 0. With X0 = j, let A = {Xk 6= j, 1 ≤ k ≤ n, Xn = i}; P (A) > 0. Then
E(τj,j) ≥ E(τj,j |A)P (A) = (n+E(τi,j))P (A); hence E(τi,j) <∞ (for otherwise E(τj,j) =∞, a
contradiction).

WithX0 = j, let {Ym : m ≥ 1} be iid distributed as τj,j denote the interarrival times between
visits to state j. Thus the nth revisit of the chain to state j is at time tn = Y1 + · · ·+ Yn, and
E(Y ) = E(τj,j) <∞. Let

p = P ({Xn} visits state i before returning to state j | X0 = j).

p ≥ P (A) > 0, where A is defined above. Every time the chain revisits state j, there is,
independent of the past, this probability p that the chain will visit state i before revisiting state
j again. Letting N denote the number of revisits the chain makes to state j until first visiting
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state i, we thus see that N has a geometric distribution with “success” probability p, and so
E(N) <∞. N is a stopping time with respect to the {Ym}, and

τj,i ≤
N∑
m=1

Ym,

and so by Wald’s equation E(τj,i) ≤ E(N)E(Y ) <∞.
Finally, E(τi,i) ≤ E(τi,j) + E(τj,i) <∞.

Proposition 2.2 together with Proposition 2.4 immediately yield

Proposition 2.5 All states in a communication class C are all together either positive re-
current, null recurrent or transient. In particular, for an irreducible Markov chain, all states
together must be positive recurrent, null recurrent or transient.

Definition 2.2 If all states in an irreducible Markov chain are positive recurrent, then we say
that the Markov chain is positive recurrent. If all states in an irreducible Markov chain are null
recurrent, then we say that the Markov chain is null recurrent. If all states in an irreducible
Markov chain are transient, then we say that the Markov chain is transient.

2.3 Limiting stationary distribution

When the limits exist, let πj denote the long run proportion of time that the chain spends in
state j:

πj = lim
n→∞

1
n

n∑
m=1

I{Xm = j} w.p.1. (2)

Taking into account the initial condition X0 = i, this is more precisely stated as:

πj = lim
n→∞

1
n

n∑
m=1

I{Xm = j | X0 = i} w.p.1, for all initial states i. (3)

Taking expected values (E(I{Xm = j | X0 = i}) = P (Xm = j | X0 = i) = Pmij ) we see that
if πj exists then it can be computed alternatively by (via the bounded convergence theorem)

πj = lim
n→∞

1
n

n∑
m=1

P (Xm = j | X0 = i),

= lim
n→∞

1
n

n∑
m=1

Pmij , for all initial states i. (4)

For simplicity of notation, we assume for now that the state space S = N = {0, 1, 2, . . .} or
some finite subset of N.

Definition 2.3 If for each j ∈ S, πj exists as defined in (3) and is independent of the initial
state i, and

∑
j∈S πj = 1, then the probability distribution π = (π0, π1, . . .) on the state space S

is called the limiting or stationary or steady-state distribution of the Markov chain.
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Recalling that Pmij is precisely the (ij)th component of the matrix Pm, we conclude that (4)
can be expressed in matrix form by

lim
n→∞

1
n

n∑
m=1

Pm =

ππ
...

 =

π0, π1, . . .
π0, π1, . . .

...

 (5)

That is, when we average the m-step transition matrices, each row converges to the vector of
stationary probabilities π = (π0, π1, . . .). The ith row refers to the intial condition X0 = i in
(4), and for each such fixed row i, the jth element of the averages converges to πj .

A nice way of interpreting π: If you observe the state of the Markov chain at some random
time way out in the future, then πj is the probability that the state is j.

To see this: Let N (our random observation time) have a uniform distribution over the
integers {1, 2, . . . n}, and be independent of the chain; P (N = m) = 1/n, m ∈ {1, 2, . . . n}.
Now assume that X0 = i and that n is very large. Then by conditioning on N = m we obtain

P (XN = j) =
n∑

m=1

P (Xm = j|X0 = i)P (N = m)

=
1
n

n∑
m=1

Pmi,j

≈ πj ,

where we used (4) for the last line.

2.4 Connection between E(τjj) and πj

The following is intuitive and very useful:

Proposition 2.6 If {Xn} is a positive recurrent Markov chain, then a unique stationary dis-
tribution π exists and is given by

πj =
1

E(τjj)
> 0, for all states j ∈ S.

If the chain is null recurrent or transient then the limits in (2) are all 0 wp1; no stationary
distribution exists.

The intuition: On average, the chain visits state j once every E(τjj) amount of time; thus
πj = 1

E(τjj)
.

Proof : First, we immediately obtain the transient case result since by definition, each fixed
state i is then only visited a finite number of times; hence the limit in (2) must be 0 wp1.

Thus we need only consider now the two recurrent cases. (We will use the fact that for any
fixed state j, returns to state j constitute recurrent regeneration points for the chain; thus this
result is a consequence of standard theory about regenerative processes; but even if the reader
has not yet learned such theory, the proof will be understandable.)

First assume that X0 = j. Let t0 = 0, t1 = τjj , t2 = min{k > t1 : Xk = j} and in general
tn+1 = min{k > tn : Xk = j}, n ≥ 1. These tn are the consecutive times at which the chain
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visits state j. If we let Yn = tn − tn−1 (the interevent times) then we revisit state j for the nth
time at time tn = Y1 + · · ·+Yn. The idea here is to break up the evolution of the Markov chain
into iid cycles where a cycle begins every time the chain visits state j. Yn is the nth cycle-length.
By the Markov property, the chain starts over again and is independent of the past everytime
it enters state j (formally this follows by the Strong Markov Property). This means that the
cycle lengths {Yn : n ≥ 1} form an iid sequence with common distribution the same as the first
cycle length τjj . In particular, E(Yn) = E(τjj) for all n ≥ 1.

Now observe that the number of revisits to state j is precisely n visits at time tn = Y1 +
· · ·+Yn, and thus the long-run proportion of visits to state j per unit time can be computed as

πj = lim
m→∞

1
m

m∑
k=1

I{Xk = j}

= lim
n→∞

n∑n
i=1 Yi

=
1

E(τjj)
, w.p.1,

where the last equality follows from the Strong Law of Large Numbers (SLLN). Thus in the
positive recurrent case, πj > 0 for all j ∈ S, where as in the null recurrent case, πj = 0 for all
j ∈ S. Finally, if X0 = i 6= j, then we can first wait until the chain enters state j (which it will
eventually, by recurrence), and then proceed with the above proof. (Uniqueness follows by the
unique representation πj = 1

E(τjj)
.)

The above result is useful for computing E(τjj) if π has already been found: For example,
consider the rat in the closed off maze problem from HMWK 2. Given that the rat starts off
in cell 1, what is the expected number of steps until the rat returns to cell 1? The answer is
simply 1/π1. But how do we compute π? We consider that problem next.

2.5 Computing π algebraically

Theorem 2.1 Suppose {Xn} is an irreducible Markov chain with transition matrix P . Then
{Xn} is positive recurrent if and only if there exists a (non-negative, summing to 1) solution,
π = (π0, π1, . . .), to the set of linear equations π = πP , in which case π is precisely the unique
stationary distribution for the Markov chain.

For example consider state space S = {0, 1} and the matrix

P =
(

0.5 0.5
0.4 0.6

)
,

which is clearly irreducible. For π = (π0, π1), π = πP yields the two equations

π0 = 0.5π0 + 0.4π1,

π1 = 0.5π0 + 0.6π1.

We can also utilize the “probability” condition that π0 +π1 = 1. Solving yields π0 = 4/9, π1 =
5/9. We conclude that this chain is positive recurrent with stationary distribution (4/9, 5/9).
The long run proportion of time the chain visits state 0 is equal to 4/9 and the long run
proportion of time the chain visits state 1 is equal to 5/9. Furthermore, since πj = 1/E(τjj),
we conclude that the expected number of steps (time) until the chain revisits state 1 given that
it is in state 1 now is equal to 9/5.
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How to use Theorem 2.1

Theorem 2.1 can be used in practice as follows: if you have an irreducible MC, then you can try
to solve the set of equations: π = πP ,

∑
j∈S πj = 1. If you do solve them for some π, then this

solution π is unique and is the stationary distribution, and the chain is positive recurrent. It
might not even be necessary to “solve” the equations to obtain π: suppose you have a candidate
π for the stationary distribution (perhaps by guessing), then you need only plug in the guess
to verify that it satisfies π = πP . If it does, then your guess π is the stationary distribution,
and the chain is positive recurrent.2

Proof of Theorem 2.1

Proof : Assume the chain is irreducible and positive recurrent. Then we know from Proposi-
tion 2.6 that π exists (as defined in Equations (3), (4)), has representation πj = 1/E(τjj) >
0, j ∈ S, and is unique.

On the one hand, if we multiply (on the right) each side of Equation (5) by P , then we
obtain

lim
n→∞

1
n

n∑
m=1

Pm+1 =

ππ
...

P.

But on the other hand,

lim
n→∞

1
n

n∑
m=1

Pm+1 = lim
n→∞

1
n

n∑
m=1

Pm + lim
n→∞

1
n

(Pn+1 − P )

=

ππ
...

+ lim
n→∞

1
n

(Pn+1 − P ) (from (5))

=

ππ
...

 ,

because for any k ≥ 1, limn→∞
1
nP

k = 0 (since pkij ≤ 1 for all i, j).
Thus, we obtain ππ

...

 =

ππ
...

P,

yielding (from each row) π = πP .
Summarizing: If a Markov chain is positive recurrent, then the stationary distribution π

exists as defined in Equations (3), (4), is given by πj = 1/E(τjj), j ∈ S, and must satisfy
π = πP . Now we prove the converse : For an irreducible Markov chain, suppose that π = πP
has a non-negative, summing to 1 solution π; that is, a probability solution. We must show
that the chain is thus positive recurrent, and that this solution π is the stationary distribution
as defined by (4). We first will prove that the chain cannot be either transient or null recurrent,

20 = (0, 0, . . . , 0) is always a solution to π = πP , but is not a probability. Moreover, for any solution π, and
any constant c, cπ = cπP by linearity, so cπ is also a solution.
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hence must be positive recurrent from Proposition 2.5. To this end assume the chain is either
transient or null recurrent. From Proposition 2.6, we know that then the limits in (4) are
identically 0, that is, as n→∞,

1
n

n∑
m=1

Pm → 0. (6)

But if π = πP , then (by multiplying both right sides by P ) π = πP 2 and more generally
π = πPm, m ≥ 1, and so

π
[ 1
n

n∑
m=1

Pm
]

=
1
n

n∑
m=1

πPm = π, n ≥ 1,

yielding from (6) that π0 = π, or π = (0, . . . , 0), contradicting that π is a probability distribu-
tion. Having ruled out the transient and null recurrent cases, we conclude from Proposition 2.5
that the chain must be positive recurrent. For notation, suppose π′ = π′P denotes the non-
negative, summing to 1 solution, and that π denotes the stationary distribution in (4), given
by πj = 1/E(τjj), j ∈ S. We now show that π′ = π. To this end, multiplying both sides of (5)
(on the left) by π′, we conclude that

π′ = π′

ππ
...

 = π′

π0, π1, . . .
π0, π1, . . .

...

 .

Since
∑

i∈S π
′
i = 1, we see that the above yields π′j = πj , j ∈ S; π′ = π as was to be shown.

2.6 Finite state space case

When the state space of a Markov chain is finite, then the theory is even simpler:

Theorem 2.2 Every irreducible Markov chain with a finite state space is positive recurrent
and thus has a stationary distribution (unique probability solution to π = πP ).

Proof : From Prop 2.3, we know that the chain is recurrent. We will now show that it can’t be
null recurrent, hence must be positive recurrent by Proposition 2.5. To this end, note that for
any fixed m ≥ 1, the rows of Pm = P (m) (m-step transition matrix) must sum to 1, that is,∑

j∈S
Pmi,j = 1, i ∈ S. (7)

Moreover, if null recurrent, we know from Proposition 2.6, that for all i ∈ S,

lim
n→∞

1
n

n∑
m=1

Pmi,j = 0, j ∈ S. (8)

Summing up (8) over j then yields

∑
j∈S

lim
n→∞

1
n

n∑
m=1

Pmi,j = 0, i ∈ S.
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But since the state space is finite, we can interchange the outer finite sum with the limit,

lim
n→∞

1
n

∑
j∈S

n∑
m=1

Pmi,j = 0, i ∈ S.

But then we can interchange the order of summation and use (7), to obtain a contradiction:

0 = lim
n→∞

1
n

∑
j∈S

n∑
m=1

Pmi,j = lim
n→∞

1
n

n∑
m=1

∑
j∈S

Pmi,j = 1, i ∈ S.

Thus the chain must be positive recurrent.

This is a very useful result. For example, it tells us that the rat in the maze Markov chain,
when closed off from the outside, is positive recurrent, and we need only solve the equations
π = πP to compute the stationary distribution.

2.7 Stationarity of positive recurrent chains

The use of the word “stationary” here means “does not change with time”, and we now proceed
to show why that describes π.

For a given probability distribution ν = (νj) on the state space S, we use the notation
X ∼ ν to mean that X is a random variable with distribution ν: P (X = j) = νj , j ∈ S.

Given any such distribution ν = (νj), and Markov chain with transition matrix P , note that
if X0 ∼ ν then the vector νP is the distribution of X1, that is, the jth coordinate of the vector
νP is

∑
i∈S Pi,jνi, which is precisely P (X1 = j): For each j ∈ S,

P (X1 = j) =
∑
i∈S

P (X1 = j|X0 = i)P (X0 = i)

=
∑
i∈S

Pi,jνi.

In other words if the initial distribution of the chain is ν, then the distribution one time unit
later is given by νP and so on:

Lemma 2.1 If X0 ∼ ν, then X1 ∼ νP , X2 ∼ νP 2, . . . , Xn ∼ νPn, n ≥ 1.

Proposition 2.7 For a positive recurrent Markov chain with stationary distribution π, if X0 ∼
π, then Xn ∼ π for all n ≥ 0. In words: By starting off the chain initially with its stationary
distribution, the chain remains having that same distribution for ever after. Xn has the same
distribution for each n. This is what is meant by stationary, and why π is called the stationary
distribution for the chain.

Proof : From Theorem 2.1, we know that π satisfies π = πP , and hence by multiplying both
sides (on the right) by P yields π = πP 2 and so on yielding π = πPn, n ≥ 1. Thus from
Lemma 2.1, we conclude that if X0 ∼ π, then Xn ∼ π, n ≥ 1.
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Definition 2.4 A stochastic process {Xn} is called a stationary process if for every k ≥ 0,
the process {Xk+n : n ≥ 0} has the same distribution, namely the same distribution as {Xn}.
“same distribution” means in particular that all the finite dimensional distributions are the
same: for any integer l ≥ 1 and any integers 0 ≤ n1 < n2 < . . . < nl, the joint distribution of
the l− vector (Xk+n1 , Xk+n2 , . . . , Xk+nl

) has the same distribution for each k, namely the same
distribution as (Xn1 , Xn2 , . . . , Xnl

).

It is important to realize (via setting l = 1 in the above definition) that for a stationary
process, it of course holds that Xn has the same distribution for each fixed n, namely that of
X0; but this is only the marginal distribution of the process. Stationarity means much more
and in general is a much stronger condition. It means that if we change the time origin 0 to
be any time k in the future, then the entire process still has the same distribution (e.g., same
finite dimensional distributions) as it did with 0 as the origin. For Markov chains, however,
stationarity is the same as for the marginals only:

Proposition 2.8 For a positive recurrent Markov chain with stationary distribution π, if X0 ∼
π, then the chain is a stationary process.

Proof : This result follows immediately from Proposition 2.7 because of the Markov property:
Given Xk, the future is independent of the past; its entire distribution depends only on the
distribution of Xk and the transition matrix P . Thus if Xk has the same distribution for each
k, then it’s future {Xk+n : n ≥ 0} has the same distribution for each k.

The above result is quite intuitive: We obtain π by choosing to observe the chain way out in
the infinite future. After doing that, by moving k units of time further into the future does not
change anything (we are already out in the infinite future, going any further is still infinite).

2.8 Convergence to π in the stronger sense πj = limn→∞ P (Xn = j); aperiod-
icity.

For a positive recurrent chain, the sense in which it was shown to converge to its stationary
distribution π was in a time average or Cesàro sense (recall Equations (3), (4)). If one wishes to
have the convergence without averaging, πj = limn→∞ P (Xn = j), j ∈ S (regardless of initial
conditions X0 = i), then a further condition known as aperiodicity is needed on the chain; we
will explore this in this section. Since P (Xn = j|X0 = i) = Pni,j , we need to explore when it
holds for each j ∈ S that Pni,j → πj for all i ∈ S.

For simplicity of notation in what follows we assume that S = {0, 1, 2, . . .} or some subset.
It is easily seen that for any probability distribution ν, the matrix

M =

ππ
...

 =

π0, π1, . . .
π0, π1, . . .

...

 ,

satisfies νM = π. Thus from Lemma 2.1, we see that in order to obtain πj = limn→∞ P (Xn =
j), j ∈ S, regardless of initial conditions, we equivalently need to have Pn → M as n → ∞.
We already know that the averages converge, 1

n

∑n
m=1 P

n → M , and it is easily seen that in
general the stronger convergence Pn →M will not hold. For example take S = {0, 1} with

P =
(

0 1
1 0

)
,
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yielding an alternating sequence: If X0 = 0, then {Xn : n ≥ 0} = {0, 1, 0, 1, . . .}; if X0 = 1,
then {Xn : n ≥ 0} = {1, 0, 1, 0, . . .}. Clearly, if X0 = 0, then P (Xn = 0) = 1, if n is even, but
P (Xn = 0) = 0, if n is odd; P (Xn = 0) does not converge as n → ∞. In terms of P , this is
seen by noting that for any n ≥ 1,

P 2n =
(

1 0
0 1

)
,

whereas

P 2n+1 =
(

0 1
1 0

)
.

So, although π = (1/2, 1/2) and indeed 1
n

∑n
m=1 P

n → M =
(

1/2 1/2
1/2 1/2

)
, it does not

hold that Pn →M .
The extra condition needed is explained next.
For a state j ∈ S, consider the set Q = {n ≥ 1 : Pnj,j > 0}. If there exists an integer d ≥ 2

such that Q = {kd : k ≥ 1}, then state j is said to be periodic of period d. This implies that
Pnj,j = 0 whenever n is not a multiple of d. If no such d exists, then the state j is said to be
aperiodic. It can be shown that periodicity is a class property: all states in a communication
class are either aperiodic, or all are periodic with the same period d. Thus an irreducible
Markov chain is either periodic or aperiodic. In the above two-state counterexample, d = 2;
the chain is periodic with period d = 2. Clearly, if a chain is periodic, then by choosing any
subsequence of integers nm → ∞, as m → ∞, such that nm /∈ Q, we obtain for any state j
that P (Xnm = j | X0 = j) = Pnm

j,j = 0 and so convergence to πj > 0 is not possible along this
subsequence; hence convergence of P (Xn = j) to πj does not hold. The converse is also true,
the following is stated without proof:

Proposition 2.9 A positive recurrent Markov chain converges to π via πj = limn→∞ P (Xn =
j), j ∈ S, if and only if the chain is aperiodic.

Remark 1 For historical reasons, in the literature a positive recurrent and aperiodic Markov
chain is sometimes called an ergodic chain. The word ergodic, however, has a precise meaning in
mathematics (ergodic theory) and this meaning has nothing to do with aperiodicity! In fact any
positive recurrent Markov chain is ergodic in this precise mathematical sense. (So the historical
use of ergodic in the context of aperiodic Markov chains is misleading and unfortunate.)

Remark 2 The type of convergence πj = limn→∞ P (Xn = j), j ∈ S, is formally called weak
convergence, and we then say that Xn converges weakly to π.
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