
Copyright c© 2009 by Karl Sigman

1 IEOR 6711: Introduction to Martingales in discrete time

Martingales are stochastic processes that are meant to capture the notion of a fair game in
the context of gambling. In a fair game, each gamble on average, regardless of the past gam-
bles, yields no profit or loss. But the reader should not think that martingales are used just
for gambling; they pop up naturally in numerous applications of stochastic modeling. They
have enough structure to allow for strong general results while also allowing for dependencies
among variables. Thus they deserve the kind of attention that Markov chains do. Gambling,
however, supplies us with insight and intuition through which a great deal of the theory can be
understood.

1.1 Basic definitions and examples

Definition 1.1 A stochastic process X = {Xn : n ≥ 0} is called a martingale (MG) if

C1: E(|Xn|) <∞, n ≥ 0, and

C2: E(Xn+1|X0, . . . , Xn) = Xn, n ≥ 0.

Notice that property C2 can equivalently be stated as

E(Xn+1 −Xn|X0, . . . , Xn) = 0, n ≥ 0. (1)

In the context of gambling, by letting Xn denote your total fortune after the nth gamble, this
then captures the notion of a fair game in that on each gamble, regardless of the outcome of
past gambles, your expected change in fortune is 0; on average you neither win or lose any
money.

Taking expected values in C2 yields E(Xn+1) = E(Xn), n ≥ 0, and we conclude that

E(Xn) = E(X0), n ≥ 0, for any MG;

At any time n, your expected fortune is the same as it was initially.

For notational simplicity, we shall let Gn = σ{X0, . . . , Xn} denote all the events determined
by the rvs X0, . . . , Xn, and refer to it as the information determined by X up to and including
time n. Note that Gn ⊂ Gn+1, n ≥ 0; information increases as time n increases.

Then the martingale property C2 can be expressed nicely as

E(Xn+1|Gn) = Xn, n ≥ 0.

A very important fact is the following which we will make great use of throughout our study
of martingales:
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Proposition 1.1 Suppose that X is a stochastic process satisfying C1.
Let Gn = σ{X0, . . . , Xn}, n ≥ 0. Suppose that Fn = σ{U0, . . . , Un}, n ≥ 0 is information for
some other stochastic process such that it contains the information of X:
Gn ⊂ Fn, n ≥ 0. Then if E(Xn+1|Fn) = Xn, n ≥ 0, then in fact E(Xn+1|Gn) = Xn, n ≥ 0, so
X is a MG.

Gn ⊂ Fn implies that Fn also determines X0, . . . , Xn, but may also determine other things
as well. So the above Proposition allows us to verify condition C2 by using more information
than is necessary. In many instances, this helps us verify C2 in a much simpler way than would
be the case if we directly used Gn.
Proof :

E(Xn+1|Gn) = E(E(Xn+1|Fn))|Gn)
= E(Xn|Gn)
= Xn.

The first equality follows since Gn ⊂ Fn; we can always condition first on more information.
The second equality follows from the assumption that E(Xn+1|Fn) = Xn, and the third from
the fact that Xn is determined by Gn.

Because of the above, we sometimes speak of a MG X with respect to Fn, n ≥ 0, where Fn
determines X0, . . . , Xn but might be larger.

Examples

In what follows, we typically will define Fn from the start to be perhaps larger than is needed
inorder to check C2.

1. Symetric random walks. Let Rn = ∆1 + · · · + ∆n, n ≥ 1, R0 = 0 where {∆n : n ≥ 1}
is i.i.d. with E(∆) = 0, and E(|∆|) < ∞. That R is a MG is easily verified. C1:
E(|Rn|) ≤ nE(|∆|) <∞. C2: We choose Fn = σ{∆1, . . . ,∆n}, which clearly determines
all that we need. Rn+1 = Rn + ∆n+1 yielding E(Rn+1|Fn) = Rn + E(∆n+1|Fn)
= Rn + E(∆n+1)
= Rn + 0
= Rn

For simplicity we chose R0 = 0, and so E(Rn) = E(R0) = 0, n ≥ 0; but any initial
condition, R0 = x, will do in which case {Rn} is still a MG, and E(Rn) = E(R0) =
x, n ≥ 0.

2. (Continuation.) Assume further that σ2 = V ar(∆) <∞. Then

Xn = R2
n − nσ2, n ≥ 0 forms a MG.

C1: E(|Xn|) ≤ E(R2
n) + nσ2

= V ar(Rn) + nσ2 = nσ2 + nσ2 = 2nσ2 <∞.

C2: Xn+1 = (Rn + ∆n+1)2 − (n+ 1)σ2

= R2
n + ∆2

n+1 + 2Rn∆n+1 − (n+ 1)σ2.
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E(Xn+1|Fn) = R2
n + E(∆2

n+1) + 2RnE(∆n+1)− (n+ 1)σ2

= R2
n + σ2 − (n+ 1)σ2

= R2
n − nσ2 = Xn.

3. More general symetric random walks. The random walk from Example 1 can be gen-
eralized by allowing each increment ∆n to have its own mean 0 distribution; the MG
property C2 still holds: Letting {∆n : n ≥ 1} be an independent sequence of rvs (that is
not necessarily identically distributed) with E(∆n) = 0 and E(|∆n|) < ∞, n ≥ 1, again
yields a MG. If in addition, each ∆n has the same variance σ2 <∞, then R2

n − nσ2 from
Example 2 also remains a MG.

Starting with any MG {Xn}, by defining ∆n
def= Xn−Xn−1, n ≥ 1, and recalling from (1)

that E(∆n) = 0, n ≥ 1, we see that any MG can be rewritten as a symetric random walk,
Xn = X0 +

∑n
j=1 ∆j , in which the increments, while not independent, are uncorrelated

(you will prove this fact as a homework exercise on Homework 1): E(∆n∆m) = 0, n 6= m.

4. Let Xn = Y1 × · · · × Yn, X0 = 1 where {Yn : n ≥ 1} is i.i.d. with E(Y ) = 1 and
E(|Y |) <∞. Then X is a MG. C1: E(|Xn|) ≤ (E(|Y |))n <∞.

C2: We use Fn = σ{Y1, . . . , Yn}. Xn+1 = Yn+1Xn. E(Xn+1|Fn) = XnE(Yn+1|Fn)
= XnE(Yn+1) = Xn × 1 = Xn.

5. Doob’s Martingale:

Let X be any r.v. such that E(|X|) <∞. Let {Yn : n ≥ 0} be any stochastic process (on
the same probability space as X), and let Fn = σ{Y0, Y1, . . . , Yn}. Then Xn

def= E(X|Fn)
defines a MG called a Doob’s MG. C1: E(|Xn|) = E(|E(X|Fn)|) ≤ E(E(|X| |Fn)) =
E(|X|) <∞. (Note that E(Xn) = E(X), n ≥ 0.)

C2: E(Xn+1|Fn) = E(E(X|Fn+1)|Fn)
= E(X|Fn) (because Fn ⊂ Fn+1)
= Xn.

In essence, Xn approximates X, and as n increases the approximation becomes more
refined because more information has been gathered and included in the conditioning.
For example, if X is completely determined by

F∞ = lim
n→∞

Fn
def= ∪∞n=0Fn = σ{Y0, Y1, Y2, . . .}

then it seems reasonable that Xn → X, n → ∞, wp1. This is so, and in fact, it can be
shown that in general, Xn → E(X|F∞), n → ∞ wp1. The idea here is that F∞ is the
most information available, and so E(X|F∞) is the best approximation to X possible,
given all we know.

1.2 Optional Stopping

Here we study conditions ensuring that the MG property E(Xn) = E(X0), n ≥ 0 can be
extended to stopping times τ , E(Xτ ) = E(X0). As we will see, the conditions involve uniform
integrability (UI), and the main result Theorem 1.1 has many applications.
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1.2.1 Stopped Martingales

Recall that a stopping time τ with respect to a stochastic process {Xn : n ≥ 0} is a discrete
r.v. with values in {0, 1, 2, . . .} such that for each n ≥ 0, the event {τ = n} is determined by
(at most) {X0, . . . , Xn}, the information up to and including time n. Equivalently, the event
{τ > n} is determined by (at most) {X0, . . . , Xn}. Unless otherwise stated, we shall always
assume that all stopping times in question are proper, P (τ < ∞) = 1. (Of course, in some
examples, we must first prove that this is so.)

Let a ∧ b = min{a, b}.

Proposition 1.2 If X = {Xn : n ≥ 0} is a MG, and τ is a stopping time w.r.t. X, then the
stopped process X = {Xn : n ≥ 0} is a MG, where

Xn
def=

{
Xn if τ > n ,

Xτ if τ ≤ n.
= Xn∧τ ,

where
a ∧ b = min{a, b}.

Since X0 = X0, we conclude that E(Xn) = E(X0), n ≥ 0: Using any stopping time as a
gambling strategy yields at each fixed time n, on average, no benefit; the game is still fair.

Proof : (C1:) Since
|Xn| ≤ max

0≤k≤n
|Xk| ≤ |X0|+ · · ·+ |Xn|,

we conclude that E|Xn| ≤ E(|X0|) + · · ·+ E(|Xn|) <∞, from C1 for X.
(C2:) It is sufficient to use Fn = σ{X0, . . . , Xn} since σ{X0, . . . , Xn} ⊂ Fn by the stopping

time property that {τ > n} is determined by {X0, . . . , Xn}. Noting that both Xn = Xn and
Xn+1 = Xn+1 if τ > n, and Xn+1 = Xn if τ ≤ n yields

Xn+1 = Xn + (Xn+1 −Xn)I{τ > n}.

Thus

E(Xn+1|Fn) = Xn + E((Xn+1 −Xn)I{τ > n}|Fn)
= Xn + I{τ > n}E((Xn+1 −Xn)|Fn)
= Xn + I{τ > n} · 0
= Xn.

1.2.2 Martingale Optional Stopping Theorem

Since limn→∞ n ∧ τ = τ , wp1., we conclude that limn→∞Xn = Xτ , wp1. It is therefore of
interest to know when we can interchange the limit with expected value:

When does lim
n→∞

E(Xn) = E(Xτ ) ? (2)
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For if (2) holds, then since E(Xn) = E(X0), n ≥ 0, we would conclude that

E(Xτ ) = E(X0). (3)

We well know that uniform integrability (UI) of {Xn} is the needed condition for the desired
interchange, so we at first state this important result, and then give some reasonable sufficient
conditions (useful in many applications) ensuring the UI condition.

Theorem 1.1 (Martingale Optional Stopping Theorem) If X = {Xn : n ≥ 0} is a MG
and τ is a stopping time w.r.t. X such that the stopped process X is UI, then (3) holds: Your
expected fortune when stopping is the same as when you started; the stopping strategy does not
help to increase your expected fortune.

Proposition 1.3 If X is a MG and τ is a stopping time w.r.t. X, then each of the following
conditions alone ensures that X is (UI) and hence that (3) holds:

1. supn≥0 |Xn| ≤ Y, wp1., where Y is a r.v. such that E(Y ) <∞.

2. The stopping time τ is bounded: P (τ ≤ k) = 1 for some k ≥ 1.

3. E(|Xτ |) <∞ and E(|Xn|; τ > n)→ 0, n→∞.

4. E(τ) <∞ and supn≥0E(|Xn+1 −Xn| |Fn) ≤ B, some B <∞.

5. There exists a δ > 0 and a B > 0 such that supn≥0E(|Xn|1+δ) ≤ B. (e.g., X is bounded
in Lp for some p > 1).

Proof :

1. The dominated convergence theorem.

2. |Xn| ≤ Y
def= max{|X1|, . . . , |Xk|}, and thus the dominated convergence theorem applies

since E(Y ) ≤ E(|X1|) + · · ·+ E(|Xk|) <∞.

3.
|Xn| = |Xτ |I{τ ≤ n}+ |Xn|I{τ > n}.

Thus if E(|Xn|; τ > n)→ 0, then limn→∞E(|Xn|) = limn→∞E(|Xτ |I{τ ≤ n}).
But |Xτ |I{τ ≤ n} → |Xτ | and |Xτ |I{τ ≤ n} ≤ |Xτ | with E(|Xτ |) < ∞ by assumption.
Thus from the dominated convergence theorem we obtain limn→∞E(|Xn|) = E(|Xτ |) =
E(limn→∞ |Xn|) which is equivalent to UI.

(We note in passing that the condition E(|Xn|; τ > n)→ 0 is satisfied if {Xn} is UI.)

4. Follows from (3):
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E(|Xτ |) ≤ E(|X0|) +
∞∑
n=1

E(|Xn −Xn−1|I{τ > n− 1})

= E(|X0|) +
∞∑
n=1

E{E(|Xn −Xn−1|I{τ > n− 1}|Fn−1)}

= E(|X0|) +
∞∑
n=1

E{I{τ > n− 1}E(|Xn −Xn−1| |Fn−1)}

≤ E(|X0|) +B

∞∑
n=1

P (τ > n− 1)

= E(|X0|) +BE(τ)
< ∞.

Similarly, E(|Xn|; τ > n) ≤ E(|X0|+Bn; τ > n) ≤ E(|X0|+Bτ ; τ > n)→ 0.

5. From Markov’s inequality,

P (|Xn| > x) ≤ x−(1+δ)E(|Xn|1+δ) ≤ Bx−(1+δ),

yielding

sup
n≥0

E(|Xn|I{|Xn| > x}) = sup
n≥0

{
xP (|Xn| > x) +

∫ ∞
x

P (|Xn| > y)dy
}

≤ Bx−δ +
∫ ∞
x

By−(1+δ)dy = 2Bx−δ,

which tends to 0, as x→∞, uniformly in n.

1.3 Applications

1. Wald’s equation. Let {Yn : n ≥ 1} be i.i.d. with finite mean µ = E(Y ). Let ∆n = Yn−µ,
so that the ∆n are i.i.d. with mean 0. Now let Rn = ∆1 + · · ·+∆n, n ≥ 1, R0 = 0, denote
the associated symetric random walk, which we know is a MG. Let τ be any stopping time
w.r.t. {Yn} such that E(τ) < ∞. If the required UI condition is met, then we conclude
from Theorem 1.1 that E(Rτ ) = 0 = E(R0). Since

Rτ = −τµ+
τ∑
j=1

Yj ,

taking expected values then yields the well-known Wald’s equation,

E
{ τ∑
j=1

Yj

}
= E(τ)E(Y ).
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The UI condition is met via (4) of Proposition 1.3: E(τ) <∞ is assumed, and

E(|Rn+1 −Rn| |Fn) = E(|∆|) <∞; B = E(|∆|).

2. Hitting times for the simple symetric random walk. Let {Rn} denote the simple symetric
random walk, with R0 = 0; the increment distribution is P (∆ = 1) = P (∆ = −1) = 0.5.
For fixed integers a > 0 and b > 0, let

τ = min{n ≥ 0 : Rn ∈ {a,−b}}, (4)

the first passage time of the random walk to level a or −b. (We already know from basic
random walk theory that P (τ < ∞) = 1.) If the required UI condition is met, then
E(Rτ ) = 0. But by definition of τ , Rτ = a or Rτ = −b.
Letting pa = P (Rτ = a) and p−b = P (Rτ = −b) = 1− pa, we conclude that 0 = E(Rτ ) =
apa − b(1− pa), or

pa =
b

a+ b
, (5)

and we have computed the probability that the random walk goes up by a units before
dropping down by b units. This gives the solution to the gambler’s ruin problem when
p = 0.5.

UI: Noting that up to time τ , the random walk is restricted within the bounded interval
[−b, a], the UI condition is obtained via (1) of Proposition 1.3:

supn≥0 |Rn| ≤ max{a, b}.

3. Continuation. Xn = R2
n− n defines yet another MG since σ2 = V ar(∆) = 1. Let τ be as

in (4). If UI holds, then 0 = E(X0) = E(Xτ ) = E(R2
τ ) − τ , or E(τ) = E(R2

τ ). Using pa
and p−b from (5), we conclude that

E(τ) =
b

a+ b
a2 +

a

a+ b
b2 = ab. (6)

UI:

|Xn∧τ | = |R2
n∧τ − n ∧ τ |

≤ R2
n∧τ + n ∧ τ

≤ Y
def= (a+ b)2 + τ.

Thus the UI condition can obtained via (1) of Proposition 1.3 if we can show that E(τ) <
∞. Since E(Xn∧τ ) = E(X0) = 0, we have E(τ ∧ n) = E(R2

n∧τ ) ≤ (a + b)2, n ≥ 0. The
monotone convergence theorem then yields E(τ ∧ n) ↑ E(τ) ≤ (a+ b)2.

Another way to deduce that E(τ) < ∞: Consider the random walk with R0 = 0 but
restricted to the states −b, . . . , a, where the transition probabilities for the boundaries are
changed to P (X1 = −b|X0 = −b) = 1 = P (X1 = a|X0 = a); a and −b are now absorbing
states. Then τ can be interpreted for the Markov chain as the time until absorption
when initially starting at the origin; thus from finite state space Markov chain theory,
E(τ) <∞.
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4. Hitting times for the simple non-symetric random walk. We now consider the simple
random walk {Rn} in which P (∆ = 1) = p, P (∆ = −1) = q and p 6= q; E(∆) = p − q.
Although {Rn} is no longer a MG, the transformed process Xn = (q/p)Rn is readily verfied
to be a MG, with X0 = 1. (It is a special case of a MG of the form Xn = Y1 × · · · × Yn
in which {Yn} is i.i.d. with E(Y ) = 1; here Yn = (q/p)∆n .) Let τ be defined as (4), and
observe that 0 ≤ Xn∧τ ≤ (q/p)a, if p < q, and 0 ≤ Xn∧τ ≤ (p/q)b, if p > q; yielding the
fact that Xn∧τ is bounded hence UI. Let pa and p−b defined as before. Thus we conclude
that

1 = E{(q/p)Rτ },

yielding
1 = (q/p)apa + (q/p)−bp−b

or

pa =
1− (q/p)−b

(q/p)a − (q/p)−b
. (7)

This gives the solution to the gambler’s ruin problem when p 6= 0.5.

If q > p then random walk {Rn} is negative drift transient; limn→∞Rn = −∞ wp1., and
Rn reaches a finite maximum M

def= maxnRn before drifting towards −∞. Thus pa in (7)
increases to P (M ≥ a) as b→∞ yielding

P (M ≥ a) = lim
b→∞

pa = (p/q)a, a ≥ 0, (8)

and we conclude that

The maximum, M , of the simple random walk with negative drift has a geometric distri-
bution with parameter p/q.

Note that P (M = 0) = 1− P (M ≥ 1) = 1− p/q > 0; there is a positive probability that
the random walk will never go above the origin.

1.4 Sub and super martinagles

Relaxing the equality in C2 for the definition of a MG allows for superfair and subfair games,
yielding the notions of submartingales and supermartingales:

Definition 1.2 A stochastic process X = {Xn : n ≥ 0} is called a submartingale (SUBMG) if

C1: E(|Xn|) <∞, n ≥ 0, and

(SUB)C2: E(Xn+1|X0, . . . , Xn) ≥ Xn, n ≥ 0.

Similarly, X is called a supermartingale (SUPMG) if C1 holds and the inequality in (SUB)C2
is replaced by ≤, referred to as Condition (SUP)C2.
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