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1 IEOR 6711: Introduction to Renewal Theory

Here, we will present some basic results in renewal theory such as the elementary renewal
theorem and the inspection paradox (Section 1), and the renewal reward theorem (Section 2).
Our emphasis is on sample-path methods. The reader interested in the renewal reward theorem
need not read all of Section 1 beforehand, only Sections 1.1-1.3 suffice.

1.1 Point Processes

Definition 1.1 A simple point process ψ = {tn : n ≥ 1} is a sequence of points

0 < t1 < t2 < · · · , (1)

with tn−→∞ as n−→∞. With N(0) def= 0, N(t) max{n : tn ≤ t} denotes the number of points
that fall in the interval (0, t], and {N(t) : t ≥ 0} is called the counting process for ψ. (If t1 > t,
then N(t) def= 0.) If the tn are random variables then ψ is called a random point process. We
sometimes allow a point at the origin and define t0

def= 0. Xn = tn − tn−1, n ≥ 1 is called the
nth interarrival time.

We view t as time and view tn as the nth arrival time or nth arrival epoch. The word simple
refers to the fact that we are not allowing more than one arrival to ocurr at the same time (as is
stated precisely in (1)). When the tn are random variables, ψ is called a random point process.

Note that
tn = X1 + · · ·+Xn, n ≥ 1.

Also note that the event {N(t) = 0} can be equivalently represented by the event {t1 > t},
and more generally

{N(t) = n} = {tn ≤ t, tn+1 > t}, n ≥ 1.

In particular, for a random point process, P (N(t) = 0) = P (t1 > t).

1.2 Renewal process

A random point process ψ = {tn} for which the interarrival times {Xn} form an i.i.d. sequence
is called a renewal process. tn is then called the nth renewal epoch and F (x) = P (X ≤ x), x ≥ 0,
denotes the common interarrival time distribution. To avoid trivialities we always assume that
F (0) < 1, hence ensuring that wp1, tn → ∞. The rate of the renewal process is defined as
λ

def= 1/E(X) which is justified by

Theorem 1.1 (Elementary Renewal Theorem (ERT)) For a renewal process,

lim
t→∞

N(t)
t

= λ w.p.1.

and
lim
t→∞

E(N(t))
t

= λ.
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Proof : Observing that tN(t) ≤ t < tN(t)+1 and that tN(t) = X1 + · · ·XN(t), yields after division
by N(t):

1
N(t)

N(t)∑
j=1

Xj ≤
t

N(t)
≤ 1
N(t)

N(t)+1∑
j=1

Xj .

By the Strong Law of Large Numbers (SLLN), both the left and the right pieces converge
to E(X) as t−→∞. Since t/N(t) is sandwiched between the two, it also converges to E(X),
yielding the first result after taking reciprocals.

For the second result, we must show that the collection of rvs {N(t)/t : t ≥ 1} is uniformly
integrable (UI)1, so as to justify the interchange of limit and expected value,

lim
t→∞

E(N(t))
t

= E
(

lim
t→∞

N(t)
t

)
.

We will show that P (N(t)/t > x) ≤ c/x2, x > 0 for some c > 0 (not depending on t) hence
proving UI. To this end, choose a > 0 such that 0 < F (a) < 1 (if no such a exists then
the renewal process is deterministic and the result is trival). Define new interarrival times
via truncation X̂n = aI{Xn > a}. Thus X̂n = 0 with probability F (a) and equals a with
probability 1 − F (a). Letting N̂(t) denote the counting process obtained by using these new
interarrival times, it follows that N(t) ≤ N̂(t), t ≥ 0. Moreover, arrivals (which now occur
in batches) can now only occur at the deterministic lattice of times {na : n ≥ 0}. Letting
p = 1−F (a), and letting Kn denote the number of arrivals that occur at time na, we conclude
that {Kn} is iid with a geometric distribution with success probability p. Letting [x] denote
the smallest integer ≥ x, we have the inequality

N(t) ≤ N̂(t) ≤ S(t) =
[t/a]∑
n=1

Kn, t ≥ 0.

Observing that E(S(t)) = [t/a]E(K) and V ar(S(t)) = [t/a]V ar(K), we obtain E(S(t)2) =
V ar(S(t) + E(S(t))2 = [t/a]V ar(K) + [t/a]2E2(K) ≤ c1t + c2t

2, for constants c1 > 0, c2 > 0.
Finally, when t ≥ 1, Chebychev’s inequality implies that P (N(t)/t > x) ≤ E(N2(t))/t2x2 ≤
E(S2(t))/t2x2 ≤ c/x2 where c = c1 + c2.

Remark 1 In the elementary renewal theorem, the case when λ = 0 (e.g., E(X) = ∞) is
allowed, in which case the renewal process is said to be null recurrent. In the case when
0 < λ <∞ (e.g., 0 < E(X) <∞ ) the renewal process is said to be positive recurrent.

1.3 Forward recurrence time

Since tN(t) ≤ t < tN(t)+1, we define the forward recurrence time as the time until the next point
strictly after time t:

A(t) def= tN(t)+1 − t, t ≥ 0. (2)

1A collection of rvs {Xt : t ∈ T} is said to be uniformly integrable (UI), if supt∈T E(|Xt|I{|Xt| > x}) → 0,
as x →∞.
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A(t) is also called the excess at time t.
If the arrival times {tn} denote the times at which subways arrive to a platform, then A(t)

is the amount of time you must wait for the next subway if you arrive at the platform at time
t. If {tn} is a Poisson process at rate λ, then by the memoryless property of the exponential
distribution, we know that A(t) ∼ exp(λ), t ≥ 0. But for a general renewal process, the
distribution of A(t) is complicated and depends on the time t.

But by taking the limit as t−→∞, we can derive nice formulas for the mean and limiting
distribution of A(t):

Proposition 1.1

lim
t→∞

1
t

∫ t

0
A(s)ds =

E(X2)
2E(X)

w.p.1.

lim
t→∞

1
t

∫ t

0
I{A(s) > x}ds = λE(X − x)+ w.p.1.

lim
t→∞

1
t

∫ t

0
P (A(s) > x)ds = λE(X − x)+,

where a+ def= max{0, a} (called the positive part of a).

Proof : The proof is based on the same kind of sample-path analysis as used in proving the
elementary renewal theorem. For example, for the first statement, we need to compute the area
under the graph of A(s), from 0 to t; the sum of the area of triangles with sides Xj . Each
triangle has area X2

j /2, and there are N(t) of them by time t; thus,

∫ t

0
A(s)ds ≈ 1

t

N(t)∑
j=1

X2
j

2
.

To be precise, we have upper and lower bounds

1
t

N(t)∑
j=1

X2
j

2
≤ 1
t

∫ t

0
A(s)ds ≤ 1

t

N(t)+1∑
j=1

X2
j

2
.

Re-writing
1
t

=
N(t)
t
× 1
N(t)

,

and using the elementary renewal theorem, and the strong law of large numbers, then yields
the first statement in the Proposition. The second statement is similar with

∫ t

0
I{A(s) > x}ds ≈

N(t)∑
j=1

(Xj − x)+;

the length of time during the jth interarrival time that A(s) > x is precisely (Xj − s)+. The
third statement is obtained by taking the expected value of the second by using the bounded
convergence theorem (the bound = 1.)
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1.4 Equilibrium distribution

In terms of the tail, F (x) = 1− F (x) = P (X > x), we can compute

λE(X − x)+ = λ

∫ ∞
x

F (x)dx, (3)

by integrating (over y) the tail P ((X − x)+ > y) = P (X > x+ y).
As x ≥ 0 varies, this defines the tail of a distribution, the cdf of which we denote by Fe and

call it the equilibrium distribution of F :

Fe(x) def= λ

∫ x

0
F (x)dx. (4)

In the subway example, this then gives us the probability distribution for your waiting time
if you were to arrive at the platform way out in the (infinite) future at random. (The mean of
Fe yields average waiting time which is the first part of Proposition 1.1.)

In general for X ∼ F , we let Xe denote a r.v. with distribution Fe: P (Xe ≤ x) = Fe(x).

Note that Xe is always a continuous random variable because the density function

fe(x) def=
d

dx
Fe(x) = λF (x),

always exists (even if X is not continuous).

For example, if P (X = c) = 1, that is, X is a constant c, then Fe is the uniform distribution
on (0, c) as derived as follows: λ = 1/c, F (x) = 1, x ∈ (0, c) and so

fe(x) = λF (x) =
1
c
, x ∈ (0, c),

the uniform density on (0, c).
As another nice example of forward recurrence time, consider lightbulbs with i.i.d. lifetimes

{Xn}, and a single lamp that is always turned on operating as follows: At time 0 the initial
bulb is placed in the lamp with lifetime X1, and when the bulb burns out at time t1 = X1, it
is instantaneously replaced by the second bulb with lifetime X2 which burns out at time t2 =
X1 +X2 and so on. In general, the nth bulb is placed in the lamp at time tn−1 = X1 + · · ·Xn−1

and burns out at time tn = tn−1 +Xn, n ≥ 1.
A(t) represents the remaining lifetime of the bulb that is in the lamp at time t. If you arrive

at some time randomly way out in the future, then the distribution of the remaining lifetime
of the bulb you find burning is the equilibrium distribution Fe.

1.5 Backwards recurrence time

Since tN(t) ≤ t < tN(t)+1, we define the backwards recurrence time as the time since the last
point before or at time t:

B(t) def= t− tN(t), t ≥ 0,
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where by convention B(0) def= 0. B(t) is also called the age at time t, because in the lightbulb
lifetime example of the previous section, it represents the age of the light bulb you find burning
at time t, namely, how long the bulb has already been burning. In the subway example, if you
arrive at time t to the platform, then B(t) represents how long it has been since the last subway
arrived.

Analogous to A(t),

Proposition 1.2

lim
t→∞

1
t

∫ t

0
B(s)ds =

E(X2)
2E(X)

w.p.1.

lim
t→∞

1
t

∫ t

0
I{B(s) > x}ds = λE(X − x)+ w.p.1.

lim
t→∞

1
t

∫ t

0
P (B(s) > x)ds = λE(X − x)+.

And so, the stationary distribution of B(t) is the same as that of A(t); Fe(x). This should not
be surprising because the graph of B(t) is just the mirror image of that of A(t), and so the
following are valid as they were for A(t):

1
t

∫ t

0
B(s)ds ≈ 1

t

N(t)∑
j=1

X2
j

2
.

1
t

∫ t

0
I{B(s) > x}ds ≈ 1

t

N(t)∑
j=1

(Xj − x)+.

In general for X ∼ F , we let Xb denote a r.v. with the stationary distribution for B(t);
P (Xb ≤ x) = Fe(x).

1.6 Spread

Since tN(t) ≤ t < tN(t)+1, we define the spread as the length of the interarrival time containing
t:

S(t) def= tN(t)+1 − tN(t) = B(t) +A(t), t ≥ 0.

If N(t) = n then S(t) = Xn+1, so that in general

S(t) = XN(t)+1.

Since S(t) = B(t) +A(t), it follows immediately from the previous two propositions that

lim
t→∞

1
t

∫ t

0
S(s)ds =

E(X2)
E(X)

w.p.1.
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In terms of the lightbulb example, this means that if you randomly (way out in the fu-
ture) observe the lamp then the lightbulb you find burning has a (total) lifetime with mean
E(X2)/E(X), not E(X)! In fact since E(X2) ≥ (E(X))2, we conclude that

E(X2)
E(X)

≥ E(X),

that is, that the mean is larger than that of a typical lifetime. This is part of a more general
result called the Inspection Paradox which we will address in the next section. First we consider
the stationary distribution of spread:

Proposition 1.3

lim
t→∞

1
t

∫ t

0
I{S(s) > x}ds = λE(XI{X > x}) w.p.1.

lim
t→∞

1
t

∫ t

0
P (S(s) > x)ds = λE(XI{X > x}).

Integrating yields
λE(XI{X > x}) = λxF (x) + F e(x).

The proof is based on

1
t

∫ t

0
I{S(s) > x}ds ≈ 1

t

N(t)∑
j=1

XjI{Xj > x}.

The length of time during the jth interarrival time that S(s) > x is precisely Xj if Xj > x; 0
otherwise.

We define the tail
F s(x) = λxF (x) + F e(x),

and let Xs denote a r.v. with this distribution: P (Xs ≤ x) = Fs(x). Note that if F has a
density f then (via taking derivatives) Fs has density fs(x) = λxf(x). Unlike Xe however, Xs

is not a continuous r.v. in general. For example if P (X = c) = 1 then S(t) = c, t ≥ 0 and so
P (Xs = c) = 1; Fs = F in this case.

We summarize with:
If F has a density f then Fs has a density given by

fs(x) = λxf(x).

Finally observe that in the density case,

E(Xs) =
∫ ∞

0
xfs(x)dx

=
∫ ∞

0
λx2f(x)dx

= λE(X2)

=
E(X2)
E(X)

,
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which agrees with our time average derivation, limt−→∞
1
t

∫ t
0 S(s)ds, above. In general (density

case or not), one can integrate the tail F s(x) = λxF (x) + F e(x), and get the same answer.

1.7 Inspection paradox

We already proved that E(Xs) ≥ E(X) and we now extend this to

Proposition 1.4 (Inspection Paradox) For every fixed t ≥ 0, S(t) is stochastically larger
than X, that is,

P (S(t) > x) ≥ P (X > x), t ≥ 0, x ≥ 0.

Moreover Xs is stochastically larger that X:

P (Xs > x) ≥ P (X > x), x ≥ 0.

Note that in terms of the distributions F and Fs we can rewrite the above as

P (S(t) > x) ≥ F (x), t ≥ 0, x ≥ 0,

and
P (Xs > x) ≥ F (x), x ≥ 0.

Since expected values can be computed by integrating the tails, we get

E(S(t)) =
∫ ∞

0
P (S(t) > x)dx ≥

∫ ∞
0

P (X > x)dx = E(X),

E(Xs) =
∫ ∞

0
P (Xs > x)dx ≥

∫ ∞
0

P (X > x)dx = E(X),

that is, E(S(t)) ≥ E(X) and E(Xs) ≥ E(X), the second of which we already proved in the last
section.
Proof :[of the Inspection Paradox]

P (S(t) > x|N(t) = n, tn = s) = P (Xn+1 > x|Xn+1 > t− s)

=
P (Xn+1 > x,Xn+1 > t− s)

P (Xn+1 > t− s)

=
F (max(x, t− s))

F (t− s)
≥ F (x),

because if x > t− s, then max(x, t− s) = x in which case

F (max(x, t− s))
F (t− s)

=
F (x)

F (t− s)
≥ F (x),
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because F (t− s) ≤ 1. If x ≤ t− s, then max(x, t− s) = t− s in which case

F (max(x, t− s))
F (t− s)

=
F (t− s)
F (t− s)

= 1 ≥ F (x).

We have thus proved that wp1, P (S(t) > x|N(t), tN(t)) ≥ F (x) yielding the result after taking
expected values; P (S(t) > x) = E(P (S(t) > x|N(t), tN(t))) ≥ F (x). This completes the proof
of the first statement.

For the second statement we use the first while taking the limit:

P (Xs ≥ x) = lim
t→∞

1
t

∫ t

0
P (S(s) > x)ds

≥ lim
t→∞

1
t

∫ t

0
P (X > x)ds

≥ P (X > x).

1.8 Implications of the inspection paradox

The lightbulb example contains the essentials of the inspection paradox: The bulb you find
burning is biased towards having a longer lifetime than usual. This is because longer lifetimes
cover more of the time line. Your observation time is more likely to fall inside a large lifetime.
In the case when F has a density f(x) so that Fs has density fs(x) = λxf(x), this length biasing
effect is clear: the probability of observing a lifetime in progress of length x is proportional to
x.

As an extreme case of the inspection paradox, consider lightbulbs that with probability 0.9
are defective, that is, blow out immediately, and with probability 0.1 live for exactly 1 month:
P (X = 0) = 0.9, P (X = 1) = 0.1. If you observe a burning bulb, then it must be a bulb with
a length 1 lifetime; you will never observe a defective one; P (Xs = 1) = 1.

If an inspector’s job is to estimate the true mean lifetime of bulbs that have an apriori un-
known distribution F , then the WRONG thing to do is to inspect burning lights at random times
way out in the future: by doing so the inspector will observe bulbs with lifetime distribution Fs

and obtain an answer that is too large. For example, in the P (X = 0) = 0.9, P (X = 1) = 0.1
case above, the inspector would conclude that all bulbs have a lifetime of 1! The correct way is
to take a large sample (of size n) of new bulbs and determine the lifetime of each one and then
average them. By the strong law of large numbers this ensures getting the correct answer:

1
n

n∑
j=1

Xj ≈ E(X).

It is interesting to see what happens in the case when X ∼ exp(λ), for then, by the mem-
oryless property, Xe and Xb are i.i.d. ∼ exp(λ). Since Xs = Xb + Xe, we conclude that
Xs ∼ gamma(2, λ). In particular, E(Xs) = 2E(X); it has a mean that is twice as large as a
typical one!

ln general, Xb and Xe are dependent random variables. For example, if P (X = c) = 1, then
Xb +Xe = c and so Xb = c−Xe. In this case, both Xb and Xe have a unif(0, c) distribution.
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The joint distribution of backward and forward recurrence time

Define,

P (Xb > y,Xe > x) def= lim
t→∞

1
t

∫ t

0
P (B(s) > y,A(s) > x)ds.

Proposition 1.5
P (Xb > y,Xe > x) = F e(y + x).

Proof :

1
t

∫ t

0
I{B(s) > y,A(s) > x}ds ≈ 1

t

N(t)∑
j=1

(Xj − (y + x))+}.

The length of time during the jth interarrival time that B(s) > y and A(s) > x is precisely
(Xj − (y + x))+. To see this, consider the first interarrival time, so that B(s) = s and A(s) =
X1− s, s ∈ [0, X1). Then I{B(s) > y,A(s) > x} = I{s > y,X1− s > x} = I{y < s < X1−x}.
If X1− (y+x) > 0, then this indicator is non-zero and

∫ X1

0 I{y < s < X1−x}ds =
∫ X1−x
y ds =

X1 − (y + x). If X1 − (y + x) ≤ 0, then the indicator is 0 and
∫ X1

0 I{y < s < X1 − x}ds = 0.
Thus we get (X1 − (y + x))+.

1.9 Examples

1. Suppose Downtown subways arrive to the West 116th street station exactly every 15
minutes. If you arrive at random to the station way out in the future; how long on
average must you wait? SOLUTION: We want mean forward recurrence time, E(Xe) =
E(X2)/2E(X) = (15)2/2(15) = 7.5. Here X is a typical subway interarrival time; P (X =
15) = 1. Thus E(X2) = X2 = 152 = 225, E(X) = X = 15. Note further that this is
the mean of the equilibrium distribution Fe which is Unif(0, 15) and hence has mean 7.5.
Fe(x) = x/15, x ∈ (0, 15).

2. In the above example, what is the probability that you must wait longer than 5 minutes?
SOLUTION: Xe ∼ Unif(0, 15); Fe(x) = x/15, x ∈ (0, 15). Thus P (Xe > 5) = F e(5) =
10/15 = 2/3.

3. Computer monitors lifetimes have mean E(X) = 3 years and variance V ar(X) = 2. Ev-
erytime the monitor breaks, immediately a new one is installed. You arrive at random out
in the future and find a working monitor. What is its expected total lifetime? SOLU-
TION: We want mean spread, E(X2)/E(X). Noting that V ar(X) = E(X2) − E2(X),
we obtain E(X2) = V ar(X) + E2(X) = 2 + 9 = 11. Thus E(X2)/E(X) = 11/3. Note
that this is larger than E(X) = 3; the inspection paradox.

4. Trains arrive to a station according to a renewal process with interarrival time distribution
P (X ≤ x) = F (x) = 1 − e−

√
x, x ≥ 0 (called a Weibull distribution.) You arrive at

random to the station way out in the future. Find the density function of your waiting
time. SOLUTION: We want fe(x) = λF (x), the density function of the equilibrium
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distribution. Here, F (x) = e−
√

x, and λ = 1/E(X), so we need to compute E(X), the
mean of the Weibull distribution. Integrating the tail yields

E(X) =
∫ ∞

0
P (X > x)dx

=
∫ ∞

0
e−
√

xdx

=
∫ ∞

0
2ue−udu (change of variables u =

√
x)

= 2.

Thus λ = 0.5 and fe(x) = 0.5e−
√

x, x ≥ 0.

5. Suppose buses heading downtown arrive in front of Columbia University exactly every 15
minutes. Further suppose that independently, taxis arrive according to a Poisson process
at rate 20 per hour. You arrive at random to go downtown. You decide to take either a
taxi or a bus, whichever arrives first. How long on average must you wait? SOLUTION:
The time until the next bus arrives, denote this by Xe, has the Unif(0, 15) distribution,
Fe, for the bus interrival times. The time until the next taxi arrives, denote this by
Te, has an exponential distribution with rate 20 per hour, or 1/3 per minute by the
memoryless property. Thus your waiting time is given by W = min{Xe, Te} with Xe

and Te independent. We will compute E(W ) by integrating its tail. Since W > x if
and only if both Xe > x and Te > x, and since P (Xe > 15) = 0, we conclude that
P (W > x) = 0, x ≥ 15, and

P (W > x) = P (Xe > x)P (Te > x) = e−(1/3)x(1− x/15), x ∈ [0, 15).

Thus

E(W ) =
∫ ∞

0
P (W > x)dx

=
∫ 15

0
e−(1/3)x(1− x/15)dx,

computational details left to the reader.

2 The Renewal Reward Theorem

2.1 Main result

Consider a NYC taxi driver who drops off passengers at times tn, n ≥ 1 forming a renewal
process with iid interarrival times Xn = tn − tn−1, n ≥ 1 (t0

def= 0). Suppose that Rj denotes
the cost to the jth passenger for their ride. We view this as a reward for the driver. (We are
assuming a negligeable amount of time is spent by the driver to find new passengers: as soon
as one passenger departs, the next one is found immediately.) Our objective is to compute the
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long run rate at which the driver earns money from the passengers (amount of money per unit
time). Letting

R(t) =
N(t)∑
j=1

Rj

denote the total amount collected by time t, where N(t) is the counting process for the renewal
process, we wish to compute

lim
t→∞

R(t)
t
. (5)

We suppose that the pairs of rvs (Xj , Rj) are iid which means that Rj is allowed to depend on
the length Xj (the length of the ride) but not on any other lengths (or other Rj). Since we can
re-write R(t) as

N(t)
t
× 1
N(t)

N(t)∑
j=1

Rj ,

the Elementary Renewal Theorem (ERT) (N(t)/t → λ = (E(X))−1) and the Strong Law of
Large Numbers (SLLN)( 1

n

∑n
j=1Rj → E(R)) then give (5) as

lim
t→∞

R(t)
t

=
E(R)
E(X)

w.p.1., (6)

where (X,R) denotes a typical “cycle” (Xj , Rj).

In words: the rate at which rewards are earned is equal to the expected reward over
a “cycle” divided by an expected “cycle length”. In terms of taxi rides this means
that the rate at which money is earned is equal to the expected cost per taxi ride
divided by the expected length of a taxi ride; an intuitively clear result.

For (6) to hold there is no need for rewards to be collected at the end of a cycle; they
could be collected at the beginning or in the middle or continuously throughout, but
the total amount collected during cycle length Xj is Rj , and it is earned in the time
interval [tj−1, tj ]. Moreover, “rewards” need not be non-negative (they could be
“costs” incurred as opposed to rewards). A precise statement of a theorem follows:

Theorem 2.1 (Renewal Reward Theorem) For a positive recurrent renewal pro-
cess in which a reward Rj is earned during cycle length Xj and such that {(Xj , Rj) :
j ≥ 1} is iid with E|Rj | <∞, the long run rate at which rewards are earned is given
by

lim
t→∞

R(t)
t

=
E(R)
E(X)

w.p.1., (7)

where (X,R) denotes a typical “cycle” (Xj , Rj). In words: the rate at which rewards
are earned is equal to the expected reward over a “cycle” divided by an expected “cycle
length”.

Moreover,

lim
t→∞

E(R(t))
t

=
E(R)
E(X)

. (8)
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Proof : When rewards are non-negative the proof of (7) is based on a “sandwiching”
argument in which the two extreme cases (collect at the end of a cycle vs collect at
the beginning of a cycle) serve as lower and upper bound respectively:

1
t

N(t)∑
j=1

Rj ≤
R(t)
t
≤ 1
t

N(t)+1∑
j=1

Rj .

Both these bounds converge to E(R)/E(X) yielding the result. In the case when Rj

is not non-negative, one can break Rj into positive and negative parts to complete
the proof; Rj = R+

j −R
−
j with R+

j = max{0, Rj} ≥ 0 and R−j = −min{0, Rj} ≥ 0.
Then R(t) = R+(t)−R−(t), where

R+(t) =
N(t)∑
j=1

R+
j , R

−(t) =
N(t)∑
j=1

R−j .

The condition E|Rj | < ∞ ensures that both E(R+
j ) < ∞ and E(R−j ) < ∞ so

that the non-negative proof goes through for each of R+(t) and R−(t): R+(t)/t→
E(R+)/E(X) and R−(t)/t→ E(R−)/E(X). Thus, since E(R) = E(R+)−E(R−),
the result follows, R(t)/t→ E(R)/E(X).

Proof of (8): Note that

|R(t)|/t ≤ Y (t) =
1
t

N(t)+1∑
j=1

|Rj |,

where wp1, Y (t) → E|R|/E(X) < ∞. Moreover, N(t) + 1 is a stopping time with
respect to {Xj , Rj}, so from Wald’s equation E(Y (t)) = E(N(t)/t+ 1/t)E(|R|)→
E|R|/E(X) (via the elementary renewal theorem); thus {Y (t) : t ≥ 1} is uniformly
integrable (UI)2 and since |R(t)|/t ≤ Y (t), {R(t)/t : t ≥ 1} is UI as well.

2.2 Examples

The first three examples below involve derivations that we previously provided us-
ing a direct sample-path method but which we now place in the renewal reward
framework. As the reader is encouraged to check, the previous direct sample-path
method is precisely the method we used to prove the renewal reward theorem. But
we also can apply (8) to obtain expected value versions too.

1. Average forward recurrence time. Our objective is to compute

lim
t→∞

1
t

∫ t

0
A(s)ds.

2A collection {X(t)} of non-negative rvs for which X(t) → X wp1 with E(X) < ∞ is UI if and only if
E(X(t)) → E(X).
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Recall that A(t) def= tN(t)+1− t, t ≥ 0, so that if tj−1 ≤ t < tj then N(t) = j−1
and A(t) = tj − t. In order to place this in the context of renewal reward, we
collect rewards continuously at rate r(t) = A(t) at time t. For then

R(t) =
∫ t

0
r(s)ds =

∫ t

0
A(s)ds,

and the total reward over Xj is Rj = X2
j /2 since that indeed is the area under

A(s) during the cycle Xj . Formally:

Rj =
∫ tj

tj−1

A(s)ds =
∫ tj

tj−1

(tj − s)ds.

Changing variables u = s− tj−1 yields the integral as

Rj =
∫ Xj

0
(Xj − u)du =

[
Xju− u2/2

]Xj

0
= X2

j /2.

So our answer from the Renewal Reward Theorem is
E(R)
E(X)

=
E(X2)
2E(X)

.

It is apparant that for any renewal reward problem, as in the example above,
we need only integrate over the first cycle X1 and compute R1:

R1 =
∫ X1

0
r(s)du.

This is the easiest cycle to compute over (since the lower limit of integration
is 0) thus we use R = R1 and X = X1 as our “typical” cycle. Finally, by
applying (8) we also have an expected value version

lim
t→∞

1
t

∫ t

0
E(A(s))ds =

E(X2)
2E(X)

.

2. Average backwards recurrence time. Here we wish to derive

lim
t→∞

1
t

∫ t

0
B(s)ds.

Defining r(t) = B(t) places us in the framework of the Renewal Reward The-
orem, and since B(s) = s, 0 ≤ s < X1

R =
∫ X

0
sds = X2/2,

so that our answer becomes the same as for forward recurrence time,

E(R)
E(X)

=
E(X2)
2E(X)

.

By applying (8) we also have an expected value version

lim
t→∞

1
t

∫ t

0
E(B(s))ds =

E(X2)
2E(X)

.
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3. Stationary distribution of forward recurrence time. Here we wish to derive

lim
t→∞

1
t

∫ t

0
I{A(s) > x}ds, x ≥ 0,

which can be viewed, in the lightbulb context, as the stationary remaining
lifetime distribution, the probability that the bulb you find burning will live
for at least x more time units. For x fixed, defining r(t) = I{A(t) > x} places
us in the framework of the Renewal Reward Theorem, and

R =
∫ X

0
I{X − s > x}ds = (X − x)+,

so that our answer becomes

E(X − x)+

E(X)
= λ

∫ ∞
x

P (X > s)ds,

yielding F e(x), the tail of the equilibrium distribution of F (x) = P (X ≤ x).

4. Car replacement problem with “T” policy. Suppose new cars cost $C1 and
have i.i.d. lifetimes {Vj : j ≥ 1} with a continuous distribution with cdf
F (x) = P (V ≤ x) (and tail F (x) = 1−F (x)). A car that dies when we own it
costs $C2 to tow away (to the dump), then we buy a new one. Suppose that
at time 0 we have a new car and then for fixed number T > 0 we decide to use
the following “T” policy concerning when to buy a new car from then onwards:
If our car is still working after T time units, then we give it away to a friend
for free and buy a new one. If however, the car dies before T time units, we
must pay the tow charge $C2 and buy a new one. What is our long run cost
when using such a policy?
Letting the consecutive times at which we buy a new car serve as the beginning
of a cycle, we conclude that we have a renewal process with interarrival times
Xj = min{Vj , T}, and that Rj = C1 + C2I{Vj < T} is the cost over the jth

cycle. Consequently, from the Renewal Reward Theorem, our rate of cost is
E(R)/E(X).
E(R) is immediately computed as

E(R) = C1 + C2P (V < T ) = C1 + C2F (T ),

where P (V < T ) = P (V ≤ T ) = F (T ) because F is assumed a continu-
ous distribution. To compute E(X) we integrate the tail of X = min{V, T}:
P (X > x) = P (V > x, T > x) = P (V > x)I{x < T} because T is a constant.
Thus

E(X) =
∫ ∞

0
P (X > x)dx =

∫ T

0
P (V > x)dx =

∫ T

0
F (x)dx.

Finally
E(R)
E(X)

= g(T ) =
C1 + C2F (T )∫ T

0 F (x)dx
. (9)
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Of intrinsic interest is now finding the “optimal” value of T to use, the one
that minimizes our cost. Clearly, on the one hand, by choosing a T too large,
the car will essentially always break down therbye always costing you the C2

in addition to the C1. On the other hand, by choosing a T too small, you
will essentially keep giving away good cars and have to buy a new one every
T time units; incurring C1 at a fast rate. Between those two extremes should
be a moderate value for T that is best. The general method of determing such
a value is to differentiate the above function g(T ) with respect to T , set equal
to 0 and solve. The solution of course depends upon the specific distribution
F in use. Several examples are given as homework exercises. Finally note that
E(X) can also be computed by using the density function f(x) of V :

E(X) = E(min{V, T}) =
∫ T

0
xf(x)dx+ TF (T ).

5. Taxi driver revisited. Suppose for the taxi driver problem we incorporate the
fact that the driver must spend time finding new passengers. Let Yj denote
the amount of time spent finding a jth passenger after the (j − 1)th passenger
departs. Let Lj denote the length of the jth passengers ride, Rj the cost of
this ride. We shall assume that {Yj} are i.i.d. and independent of all else (we
could more generally only assume that (Lj , Yj , Rj) are i.i.d. vectors.) Then
cycle lengths are now given by Xj = Lj + Yj and the long run rate at which
the driver earns money is given by

E(R)
E(L) + E(Y )

.
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