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Chapter 2

Problem 3

Modify the proof of the mean value formulas to show for n ≥ 3 that

u(0) =

 
∂B(0,r)

g dS +
1

n(n− 2)α(n)

ˆ
B(0,r)

(
1

|y|n−2
− 1

rn−2

)
f dy

provided {
−∆u = f in B0(0, r)

u = g on ∂B(0, r)
.

Proof. First we notice that the formula makes intuitive sense. The first term is just the MVP and the second
term is contributed from the inhomogeneity. As per the hint to look at the proof for the MVP, I define

φ(r) =
1

nα(n)rn−1

ˆ
∂B(0,r)

u dS =

 
∂B(0,r)

g dS.

Differentiating, the proof of Theorem 2 yields

φ′(r) =
r

n

 
B(0,r)

∆u dy = − 1

nα(n)rn−1

ˆ
B(0,r)

f dy.

Fix ε > 0. Then notice that

φ(ε) = φ(r)−
ˆ r

ε

φ′(t) dt. (1)

In order to evaluate the second term of (1), I do integration by parts:

−
ˆ r

ε

φ′(t) dt =
1

nα(n)

ˆ r

ε

ˆ
B(0,t)

1

tn−1
f dy dt (2)

=
1

nα(n)

(
1

2− n
1

tn−2

ˆ
B(0,t)

f dy

∣∣∣∣∣
r

ε

−
ˆ r

ε

ˆ
∂B(0,t)

1

n− 2

1

tn−2
f dydt

)
(3)

=
1

n(n− 2)α(n)

(ˆ r

ε

ˆ
∂B(0,t)

f
1

tn−2
dy dt− 1

rn−2

ˆ
B(0,r)

f dy +
1

εn−2

ˆ
B(0,ε)

f dy

)
. (4)

It is obvious that the last term is bounded by C · ε2 → 0 as ε→ 0. As ε→ 0, the first term becomes

lim
ε→0

ˆ r

ε

ˆ
∂B(0,t)

1

tn−2
f dy dt =

ˆ
B(0,r)

1

|y|n−2
f dy, (5)

as desired. So in the end, letting ε→ 0, (1) yields the desired

u(0) = φ(0) =

 
∂B(0,r)

g dS +
1

n(n− 2)α(n)

ˆ
B(0,r)

(
1

|y|n−2
− 1

rn−2

)
f dy
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Problem 4

We say v ∈ C2(Ū) is subharmonic if −∆v ≤ 0 ⇐⇒ ∆v ≥ 0 in U .

(a) Prove for subharmonic v that

v(x) ≤
 
B(x,r)

v dS

for all B(x, r) ⊂ U .
(b) Prove that maxŪ v = max∂Uv.
(c) Let φ : R→ R be smooth and convex. Assume u is harmonic and v := φ(u). Prove v is subharmonic.
(d) Prove v := |Du|2 is subharmonic, whenever u is harmonic.

Proof. The proof starts out being essentially the same as the MVP for harmonic functions. I define

φ(r) =

 
∂B(x,r)

v dy.

From the assumption that ∆v ≥ 0, we have

0 ≤
ˆ
B(x,r)

∆v dy =

ˆ
∂B(x,r)

∂v

∂ν
dS.

From the differentiation of φ (seen in Theorem 2), we have

φ′(r) =

 
∂B(x,r)

∂v

∂ν
dS ≥ 0.

Hence, φ is increasing =⇒ v(x) = φ(0) ≤ φ(r) =
ffl
∂B(x,r)

v dS. Transforming to polar coordinates in the

same way as the proof on page 26 yields the desired results for (a).

The proof for (b) is identical to that of Theorem 4, except for one little inequality that doesn’t matter
in the proof.

(c) Recall Jensen’s inequality: if f : R → R is convex, U ⊂ Rn is open and bounded, and u : U → R
is summable, then

f

( 
U

u dx

)
≤
 
U

f(u) dx.

Then from the MVP of harmonic functions, we have

v = φ(u) = φ

( 
U

u dx

)
≤
 
U

φ(u) dx =

 
U

v dx.

(d) We know that if u is harmonic, uxi is harmonic. Then from part (c), (uxi)
2 is subharmonic. Obviously

the sum of subharmonic functions is subharmonic, so v = |Du|2 =
∑n
i=1(uxi

)2 is subharmonic.

Problem 5

Prove that there exists a constant C, depending only on n, such that

max
B(0,1)

|u| ≤ C
(

max
∂B(0,1)

|g|+ max
B(0,1)

|f |
)
,

whenever u is a solution of {
−∆u = f in B0(0, 1)

u = g on ∂B(0, 1)
.
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Proof. Let M = maxB(0,1) f and define v(x) = u(x)+ M
2n |x|

2. Then we see that −∆v = −∆u−M = f−M ≤
0 =⇒ v is subharmonic. Also notice that u ≤ v ∀x ∈ B(0, 1). Then

max
B(0,1)

u ≤ max
B(0,1)

v = max
∂B(0,1)

v ≤ max
∂B(0,1)

|g|+ 1

2n
M = max

∂B(0,1)
|g|+ 1

2n
max
B(0,1)

|f |,

where we have used part (b) from Problem 4.

Problem 6

Use Poisson’s formula for the ball to prove

rn−2 r − |x|
(r + |x|)n−1

u(0) ≤ u(x) ≤ rn−2 r + |x|
(r − |x|)n−1

u(0)

whenever u is positive and harmonic in B0(0, r). This is an explicit form of Harnack’s inequality.

Proof. We recall Poisson’s formula:

u(x) =
r2 − |x|2

nα(n)r

ˆ
∂B(0,r)

g

|x− y|n
dS (6)

solves ∆u = 0 in B0(0, r), u = g on ∂B(0, r). Since we are integrating around the boundary, y ∈ ∂B(0, r) =⇒
|x− y| ≤ |x|+ r. Then we easily see

u(x) =
r2 − |x|2

nα(n)r

ˆ
∂B(0,r)

g

|x− y|n
dS =

(r + |x|)(r − |x|)
nα(n)r

ˆ
∂B(0,r)

g

|x− y|n
dS

≤ (r + |x|)(r − x)

nα(n)r

ˆ
∂B(0,r)

g

(|x|+ r)n
dS =

r − |x|
(|x|+ r)n−1

rn−2

nα(n)rn−1

ˆ
∂B(0,r)

g dS

= rn−2 r − |x|
(|x|+ r)n−1

 
∂B(0,r)

g dS = rn−2 r − |x|
(|x|+ r)n−1

u(0).

The other inequality is easily seen the same way by noticing that |x− y| ≥ |x| − r.

Problem 7

Prove Theorem 15 in section 2.2.4. (Hint: Since u ≡ 1 solves (44) for g ≡ 1, the theory automatically implies

ˆ
∂B(0,1)

K(x, y) dS = 1

for each x ∈ B0(0, 1).)

Proof. First recall that we must prove that u ∈ C∞(B0(0, r)),∆u = 0 in B0(0, r), and limx→x0 u(x) = g(x0)
for each x0 ∈ ∂B(0, r). The book defines u by my (6) and

∂G

∂ν
(x, y) = K(x, y) =

r2 − |x|2

nα(n)r

1

|x− y|n

as Poisson’s kernel. Let G(x, y) be Green’s function for the ball. Fixing x, we see that y 7→ G(x, y) is
harmonic for x 6= y. Since G(x, y) = G(y, x), we see that x 7→ G(x, y) is also harmonic for x 6= y. This
implies that x 7→ K(x, y) is harmonic. Then since K(x, y) is both smooth and harmonic, we have that
u ∈ C∞(B0(0, r)) and ∆u = 0 by (6) since ∆xK(x, y) = 0.
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Now we try to show that limx→x0 u(x) = g(x0) ∀x0 ∈ ∂B(0, r). Fix x0 ∈ B(0, r). Fix ε > 0. Choose
δ > 0 small such that |g(y) − g(x0)| < ε if |y − x0| < δ. This just comes from continuity of g. Recall that´
∂B(0,1)

K = 1. Then for |x− x0| < δ, we see

|u(x)− g(x0)| =

∣∣∣∣∣
ˆ
∂B(0,r)

K(x, y)g(y) dS(y)− g(x0)

∣∣∣∣∣ =

∣∣∣∣∣
ˆ
∂B(0,r)

K(x, y)
(
g(y)− g(x0)

)
dS(y)

∣∣∣∣∣
≤

∣∣∣∣∣
ˆ
∂B(0,r)∩|x−x0|≤δ

K(x, y)
(
g(y)− g(x0)

)
dS(y)

∣∣∣∣∣+

∣∣∣∣∣
ˆ
∂B(0,r)∩|x−x0|>δ

K(x, y)
(
g(y)− g(x0)

)
dS(y)

∣∣∣∣∣
≤
ˆ
∂B(0,r)∩|x−x0|≤δ

K(x, y)
∣∣g(y)− g(x0)

∣∣ dS(y) +

ˆ
∂B(0,r)∩|x−x0|>δ

K(x, y)
∣∣g(y)− g(x0)

∣∣ dS(y)

= I + J.

Then

I ≤
ˆ
∂B(0,r)

K · ε dy = ε.

For J , recall that g is continuous and bounded:

J ≤ ‖g‖L∞

ˆ
∂B(0,r)∩|x−x0|>δ

K dS(y)

= ‖g‖L∞
r2 − |x|2

nα(n)r

ˆ
∂B(0,r)∩|x−x0|>δ

1

|x− y|n
dS(y)

→ 0 as |x| → r.

Then we finally get that |u(x)− g(x0)| ≤ 2ε for small |x− x0|, and we are done proving the last part.

Problem 9

Let U+ denote the open half-ball {x ∈ Rn||x| < 1, xn > 0}. Assume u ∈ C2(Ū+) is harmonic in U+ with
u = 0 on ∂U+ ∩ {xn = 0}. Set

v(x) :=

{
u(x) if xn ≥ 0
−u(x1, . . . , xn−1,−xn) if xn < 0

for x ∈ U = B0(0, 1). Prove v is harmonic in U .

Proof. If xn ≥ 0, uxixi
= vxixi

=⇒ ∆v = 0. Let xn < 0. Then notice that vxi
= −uxi

(x1, . . . , xn−1,−xn), i =
1, . . . , n−1. Similarly, vxixi = −uxixi(x1, . . . , xn−1,−xn), i = 1, . . . , n−1. For i = n, vxn = uxn(x1, . . . , xn−1,−xn)
and vxnxn = −uxnxn(x1, . . . , xn−1,−xn). Since u ∈ C2(Ū+) =⇒ v is too =⇒ all vxixi extend continuously
to ∂U+ ∩ {xn = 0}. So we get that ∆v = −∆u = 0 =⇒ v is harmonic for all x ∈ U .

Chapter 5

Problem 2

Let U, V be open sets, with V ⊂⊂ U . Show there exists a smooth function ζ such that ζ ≡ 1 on V, ζ = 0
near ∂U .

Proof. Take V ⊂⊂W ⊂⊂ U , and consider

χW (x) =

{
1 x ∈W
0 x /∈W.
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Let ηε(x) be the standard mollifier, and define the following convolution:

w := χW ∗ ηε(x) =

ˆ
Rn

χW ∗ ηε(x) dx

=

ˆ
W

ηε(x) dx.

It is obvious that w is smooth and has support in W ∩B(0, ε). Since W̄ is compact, we can cover it by open
balls Wi such that

W̄ ⊂
n⋃
i=1

Wi.

Letting ηεi(x) be the standard mollifier for each respective ball Wi, define wi := χW ∗ ηεi(x). Note that∑
i wi is nowhere zero. Then

ζ(x) :=

N∑
i=1

wi∑
i wi

(x)

is the desired smooth function such that ζ ≡ 1 on V (because V ⊂⊂ W ), and ζ = 0 near ∂U (because
W ⊂⊂ U).

Problem 4

Assume U is bounded and U ⊂⊂
⋃N
i=1 Vi. Show there exists C∞ functions ζi such that{

0 ≤ ζi ≤ 1, spt ζi ⊂ Vi (i = 1, . . . , N)∑N
i=1 ζi = 1 on U.

The functions {ζi}Ni=1 form a partition of unity.

Proof. Take U ⊂⊂
⋃N
i=1Wi ⊂⊂

⋃N
i=1 Vi. For each i, we apply Problem 2 and find a wi ≡ 1 on Wi and 0

near ∂Vi. Note that
∑
wi is nowhere zero. Hence

ζi :=
wi∑
i wi

is smooth and the sum is obviously 1. Also supp ζi ⊂ Vi because W̄i ⊂ Vi and {x|ζi 6= 0} = {x|wi 6= 0 ⊂
Wi.

Problem 6

Prove directly that if u ∈W 1,p(0, 1) for some 1 < p <∞, then

|u(x)− u(y)| ≤ |x− y|1−
1
p

(ˆ 1

0

|u′|p dt
)1/p

for a.e. x, y ∈ [0, 1].

Proof. Let v(x) be the weak derivative of u. I define

ũ(x) :=

ˆ x

0

v(x) dx.

Let φ ∈ C∞c (0, 1) be arbitrary. Note that since u, v ∈ Lp(0, 1), they are also in L1(0, 1) =⇒ ũ is absolutely
continuous =⇒ ũ′ = v a.e. Then,

ˆ 1

0

uφ′ dx = −
ˆ 1

0

vφ dx = −
ˆ 1

0

ũ′φdx =

ˆ 1

0

ũφ′ dx,
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where we used the definition of a weak derivative, fundamental theorem of calculus, and integration by parts,
respectively. This implies that

ˆ 1

0

(u− ũ)φ′ dx = 0 =⇒ u = u′ a.e.

Without loss of generality, let y < x and x, y ∈ [0, 1].

|u(x)− u(y)| = |ũ(x)− ũ(y)|

=

∣∣∣∣ˆ x

y

v dx

∣∣∣∣
≤
(ˆ x

y

|v|p dx
)1/p(ˆ x

y

11− 1
p dx

)1− 1
p

≤ |x− y|1−
1
p

(ˆ 1

0

|v|p dx
)1/p

,

as desired.

Problem 8

Integrate by parts to prove the interpolation inequality:

ˆ
U

|Du|2 dx ≤ C
(ˆ

U

u2 dx

)1/2(ˆ
U

|D2u|2 dx
)1/2

for all u ∈ C∞c (U). Assume ∂U is smooth, and prove this inequality if u ∈ H2(U) ∩H1
0 (U).

Proof. Let u ∈ C∞c (U). Then integrating by parts and applying Holder’s inequality for p = 2 yields

ˆ
U

|Du|2 dx = −
ˆ
U

u∆u dx ≤ C
ˆ
U

|u||D2u| dx

≤ C
(ˆ

U

|u2| dx
)1/2(ˆ

U

|D2u|2
)1/2

.

There is no boundary term because u has compact support and so the integral along the boundary is zero.
Now let u ∈ H1

0 (U) ∩H2(U). We will approximate by smooth functions: let {vk}∞k=1 ⊂ C∞c (U) converge to
u in H1

0 (U) and {wk}∞k=1 ⊂ C∞(U) converge to v in H2(U). Then Green’s formula implies

ˆ
U

Dwk ·Dvk dx = −
ˆ
U

vk∆wk dx

≤ C
ˆ
U

|vk||D2wk| dx

≤ C
(ˆ

U

|vk|2 dx
)1/2(ˆ

U

|D2wk| dx
)1/2

.

There is no boundary term because vk has compact support. As k → ∞, the RHS of the inequality above
converges to C‖u‖L2(U)‖D2u‖L2(U) by the definitions of our sequences vk and wk. All that is left is to show
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that the LHS of the inequality above converges to ‖Du‖2L2(U) as k →∞:

ˆ
U

(Dwk ·Dvk − |Du|2) dx =

ˆ
U

(Dwk · (Dvk −Du) +Du · (Dwk −Du)) dx

≤
ˆ
U

(|Dwk||Dvk −Du|+ |Du||Dwk −Du|) dx

≤ ‖Dwk‖L2(U)‖Dvk −Du‖Lp(U) + ‖Du‖L2(U)‖Dwk −Du‖L2(U)

→ 0 as k →∞.

So for u ∈ H1
0 (U) ∩H2(U) we are left with

‖Du‖2L2(U) ≤ ‖u‖L2(U)‖D2u‖L2(U),

as desired.

Problem 10

Suppose U is connected and u ∈W 1,p(U) satisfies

Du = 0 a.e. in U .

Prove u is constant a.e. in U .

Proof. Fix ε > 0 such that dist(∂B(x, r), ∂U) < ε and consider the convolution uε := ηε ∗ u. Recall that
ηε ∈ C∞c (U) and we know that uε is smooth. Then I claim that the regular derivative of uε is equal to the
convolution of ηε and the weak derivative of u:

Duε = ηε ∗Du.

We see this explicitly:

Duε(x) = D

ˆ
U

ηε(x− y)u(y) dy =

ˆ
U

Dxηε(x− y)u(y) dy

= −
ˆ
U

Dyηε(x− y)u(y) dy = (−1) · (−1)

ˆ
U

Du(y)ηε(x− y) dy

= [ηε ∗Du](x).

But from the given that Du = 0 a.e. in U , we conclude that uε is constant almost everywhere in our ball
=⇒ u is too because uε → u in W 1,p

loc (U). The fact that U is connected implies that any two points can be
connected through a single path; a path that can be finitely covered by open balls. Applying the fact that
u is constant a.e. in open balls inside U , and since any one of these balls has a non-empty intersection with
its neighbor, u must be constant in all of U a.e.

Problem 14

Let U be bounded, with a C1 boundary. Show that a ’typical’ function u ∈ Lp(U) (1 ≤ p < ∞) does not
have a trace on ∂U . More precisely, prove that there does not exist a bounded linear operator

T : Lp(U)→ Lp(∂U)

such that Tu = u|∂U whenever u ∈ C(Ū) ∩ Lp(U).

Proof.
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Chapter 6

Problem 3

Assume U is connected. A function u ∈ H1(U) is a weak solution of Neumann’s problem{
−∆u = f in U
∂u
∂ν = 0 on ∂U

(7)

if ˆ
U

Du ·Dv dx =

ˆ
U

fv dx (8)

for all v ∈ H1(U). Suppose f ∈ L2(U). Prove that (7) has a weak solution if and only ifˆ
U

f dx = 0.

Proof. Suppose u is a weak solution. i.e., (8) holds. Then in particular, we can make v ≡ 1 =⇒ Dv = 0 =⇒

0 =

ˆ
U

f dx.

Now assume that the integral of f is zero. Note that if u is a weak solution to (7), then u+ c is another one
because the c becomes zero when we plug it into (8). Note that by modifying this constant, we can find a
weak solution u satisfying ˆ

U

u dx = 0.

Define
A := {f ∈ L2(U)|

´
U
f dx = 0}

A′ := {f ∈ H1(U)|
´
U
f dx = 0}.

Then A is a closed subspace because it can be defined as the kernel of a linear functional defined by
f 7→

´
U
f dx. Now I define the bilinear form on A′ as

B[u, v] =

ˆ
U

Du ·Dv dx,

∀v, u ∈ A′. By Holder’s inequality, we have

|B[u, v]| ≤ ‖Du‖L2(U)‖Dv‖L2(U) ≤ ‖u‖A′‖v‖A′ . (9)

Also note that, by definition,
B[u, u] = ‖Du‖2L2(U).

By our construction of A, we have that ∀u ∈ A,

(u)U =

 
U

u dx = 0.

Then we can apply Poincare’s inequality:

‖u‖2L2(U) =

ˆ
U

u2 dx =

ˆ
U

(u− (u)U )2 dx ≤ C
ˆ
U

|Du|2 dx = CB[u, u].

Putting these inequalities together gives us

‖u‖2A′ =

ˆ
U

u2 + |Du|2 dx =

ˆ
U

u2 dx+B[u, u] ≤ (C + 1)B[u, u]. (10)

Then by the Lax-Milgram theorem, we have that there is a unique u ∈ A′ such that B[u, v] = 〈f, v〉 for any
v ∈ A′. But note that we haven’t used the fact that the integral of f over U is zero! Applying this gives the
required results.
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Problem 6

Assume u is a smooth solution of{
Lu = −

∑n
i,j=1 a

ijuxixj
= f in U

u = 0 on ∂U.

where f is bounded. Fix x0 ∈ ∂U . A barrier at x0 is a C2 function w such that

Lw ≥ 1 in U, w(x0) = 0, w ≥ 0 on ∂U.

We want to show that if w is a barrier at x0, there exists a constant C such that

|Du(x0)| ≤ C
∣∣∣∣∂w∂ν (x0)

∣∣∣∣ .
Proof. Note that since w(x0) = 0, w ≥ 0 on ∂U and it is a supersolution, then the weakmaximum principle
imples that

min
U

w = min
∂U

w,

so w(x0) is a minimum. Since f is bounded, we know that ‖f‖L∞(U) <∞. Define v1 := u+ ‖f‖L∞(U)w and
v2 := u− ‖f‖L∞(U)w. We now calculate Lv1 and Lv2:

Lv1 = f + ‖f‖L∞(U)Lw ≥ f + ‖f‖L∞(U) ≥ 0

Lv2 = f − ‖f‖L∞(U)Lw ≤ f − ‖f‖L∞(U) ≤ 0.

This shows that v1 is a supersolution and v2 is a subsolution. By the weak maximum principle, v1 attains
its minimum on ∂U , while v2 attains its maximum there. Finally note that

v1

∣∣
∂U

= 0 + ‖f‖L∞(U)w
∣∣
∂U

= ‖f‖L∞(U)w
∣∣
∂U

v2

∣∣
∂U

= 0− ‖f‖L∞(U)w
∣∣
∂U

= −‖f‖L∞(U)w
∣∣
∂U

This means that v1 attains a minimum at x0 and v2 attains a maximum at x0. Then we have

∂v1

∂ν
(x0) =

∂u

∂ν
(x0) + ‖f‖L∞(U)

∂w(x0)

∂ν
≤ 0

∂v2

∂ν
(x0) =

∂u

∂ν
(x0)− 2‖f‖L∞(U)

∂w(x0)

∂ν
≥ 0.

Putting these two together yield ∣∣∣∣∂u∂ν (x0)

∣∣∣∣ ≤ ‖f‖L∞(U)

∣∣∣∣∂w∂ν (x0)

∣∣∣∣ .

Problem 7

Assume U is connected. Use (1) energy methods and (2) the maximum principle to show that the only
smooth solutions of the Neumann boundary-value problem{

−∆u = 0 in U
∂u
∂ν = 0 on ∂U

(11)

are u ≡ C, for some constant C.
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Proof. 1. Let u, v be solutions to the general Neumann boundary-value problem:{
−∆u = f in U

∂u
∂ν = g on ∂U

, (12)

and let w = u − v. Then w solves (11). If w attains its maximum on the interior of U , then it is
a constant and we are done by the strong maximum principle. Assume that it does not attain its
maximum in its interior. By the weak maximum principle, w has a maximum at ∂U , call it x0. This
implies that w(x0) > w(x) ∀x ∈ U because we assume that its maximum is not attained on the interior.
If w is not a constant, then we can now use Hopf’s Lemma:

∂w

∂ν
=
∂u

∂ν
− ∂v

∂ν
> 0.

However, since ∂w/∂ν = 0, we have that w is a constant. Note that this proves uniqueness of (12) up
to a constant.

2. Let w solve (11). Then we can use green’s formula:

ˆ
U

|Dw|2 dx = −
ˆ
U

w∆w dx+

ˆ
∂U

∂w

∂ν
w dS.

The RHS is equal to zero because w solves (11). Then since
´
U
|Dw|2 dx = 0, |Dw|2 is positive, and U

is connected, we have that w is a constant.
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