
Prof. Lydia Chilton
COMS 6998
14 September 2018

No screens Say your name

Databases, Queries, and Joins

You already know front-end web dev:
HTML, JavaScript, Bootstrap, jQuery

And design:
Iterative design, critique

You will learn back-end web dev:
• Server-side programming (Flask),
• Databases (Sqlite, SQLAlchemy)
• Real-time Communication (Socket.IO)

And practice web design by:
• Rebuilding IMDB.com
• Rebuilding twitter
• Pursuing your own project

Rebuilding IMDB.com

What is the single concrete user goal that
best defines IMDB?

Who is that actor?????

What you just turned in:
Remake the basic functionality of IMDB.com
• Must use Flask (web server) back end
• HTML, JavaScript, jQuery, Bootstrap
• Must have multiple pages
• Must serve data from the server

• NO static HTML data to display data
• NO Database
• NO images
• NO graphic design

To remake the basic functionality of IMDB.com
What goals should we define?

• High-level user goal:
• ???

• Low-level dev goals:
• ?
• ?
• ?
• ?
• ?
• ?
• ?

This is a studio class.
We practice web dev and learn from experience.

Like this:

Not this:

Studio Time
Count off by 3’s

What to discuss during studio

• What was your high level
goal?
• (Get at least two answers)

• Show us your homepage.
• (Get at least two answers)

• What pages did you create?
• (Get at least two answers)

• Let’s see the code for the
route.
• (Get at least two answers)

• What does your ”database”
look like?
• (Get at least two answers)

• How does the user navigate
your site to accomplish the
goals multiple times?
• (Get at least two answers)

• What did you discover or learn?
• (Everybody answer)

• What are the pros and cons of
this database implementation?

My High-level goal

Allow a user to look up the main actors in a movie.

Allow a user to look up the year a movie was made (or actor was born).

I learned that storing the actors in a movie and the movies of an actor was redundant.
So I changed the goal.

My Homepage

What did I learn

• I spent a lot of time restarting the server.
• I learned about Flask debug mode.
• Restarts the server automatically on code changes (still have to reload

the page)

What did I learn

• I was able to add new movies to the “database”
• But I don’t give any feedback. I added that to my low level goals, but

didn’t do it.

Studio discussion: (30 minutes)

• What was your high level
goal?
• (Get at least two answers)

• Show us your homepage.
• (Get at least two answers)

• What pages did you create?
• (Get at least two answers)

• Let’s see the code for the
route.
• (Get at least two answers)

• What does your ”database”
look like?
• (Get at least two answers)

• How does the user navigate
your site to accomplish the
goals multiple times?
• (Get at least two answers)

• What did you discover or learn?
• (Everybody answer)

• What are the pros and cons of
this database implementation?

At the end of studio, make a public piazza post saying something you learned.

This week’s high level goal:

• Remake the basic functionality of IMDB.com:
• User goal: “Look up what actor was in what movie and then

see all the other movies that actor is in.”

• Must store data in a SQLite database
• Must query it with SQLAlchemy
• Must Enable CRUD operations (create, read, update, delete)

• This is not actually user-facing functionality of IMDB, but it’s essential back-end dev)

• Must use at least one Database Join

This week’s high level goal:

• Remake the basic functionality of IMDB.com:
• User goal: “Look up what actor was in what movie and then

see all the other movies that actor is in.”

• Must store data in a SQLite database
• Must query it with SQLAlchemy
• Must Enable CRUD operations (create, read, update, delete)

• This is not actually user-facing funcationality of IMDB, but it’s essential back-end dev)

• Must use at least one Database Join

Dictionaries vs. Database Tables:
Which is faster to query?

movies = {
'1': {

'title': "Crazy Rich Asians",
'rating': "PG-13",

},
'2': {

'title': "Mission Impossible: Fallout",
'rating': "G",

}
}

actors = {
'1': {

name’: “Henry Golding",
year_of_birth’: “1987",

},
}

id title rating year
1 Crazy Rich Asians PG-13 2018
2 MI: Fallout G 2018

id title Year_of_birth
1 Henry Golding 1987
2 Constance Wu 1982

“Movie” table

“Actor” table

How did IMDB do this so fast???

Dictionaries vs. Database Tables:
How do we find all movies named ‘Titanic’?

movies = {
'1': {

'title': "Crazy Rich Asians",
'rating': "PG-13",

},
'2': {

'title': "Mission Impossible: Fallout",
'rating': "G",

}
}

actors = {
'1': {

name’: “Henry Golding",
year_of_birth’: “1987",

},
}

id title rating year
1 Crazy Rich Asians PG-13 2018
2 MI: Fallout G 2018

id title Year_of_birth
1 Henry Golding 1987
2 Constance Wu 1982

“Movie” table

“Actor” table

For applications with
~100 users
~500 data items,
I have deployed dictionaries!

Great for prototyping!
But the data is not persistent.
(What does that mean?)

This week’s high level goal:

• Remake the basic functionality of IMDB.com:
• User goal: “Look up what actor was in what movie and then

see all the other movies that actor is in.”

• Must store data in a SQLite database
• Must query it with SQLAlchemy
• Must Enable CRUD operations (create, read, update, delete)

• This is not actually user-facing funcationality of IMDB, but it’s essential back-end dev)

• Must use at least one Database Join

Before SQLAlchemy, there was SQL

We want to be able to query the database. For example, find an movie title, by its id:

“SELECT title FROM Movies WHERE id = 1”

Problem: How do you write SQL statements in the server language (python, PHP)?

id title rating year
1 Crazy Rich Asians PG-13 2018

2 MI: Fallout G 2018

“Movies” table

<?php
$servername = "localhost";
$username = "username";
$password = "password";
$dbname = "myDB";

// Create connection
$conn = new mysqli($servername, $username, $password, $dbname);
$id = $_GET[”id”]
$sql = "SELECT title, year FROM Movies WHERE id = $id";
$result = $conn->query($sql);

echo $result
$conn->close();
?>

Writing SQL in PHP:

<?php
$servername = "localhost";
$username = "username";
$password = "password";
$dbname = "myDB";

// Create connection
$conn = new mysqli($servername, $username, $password, $dbname);
$id = “1; DROP TABLES;”
$sql = "SELECT title, year FROM Movies WHERE id = $id";
$result = $conn->query($sql);

echo $result
$conn->close();
?>

Writing SQL in PHP:

from app import db
from app.models import Movie, Actor

@app.route("/movie/<id>")
def movie(id):

movie = Movie.query.get(id)
return render_template('movie.html', movie_data = movie)

SQLAlchemy is a Python wrapper around SQL

This week’s high level goal:

• Remake the basic functionality of IMDB.com:
• User goal: “Look up what actor was in what movie and then

see all the other movies that actor is in.”

• Must store data in a SQLite database
• Must query it with SQLAlchemy
• Must Enable CRUD operations (create, read, update, delete)

• This is not actually user-facing funcationality of IMDB, but it’s essential back-end dev)

• Must use at least one Database Join

How will we keep track of what actors are in
what movies?

id title rating year
1 Crazy Rich Asians PG-13 2018
2 MI: Fallout G 2018

id title Year_of_birth
1 Henry Golding 1987
2 Constance Wu 1982

“Movie” table

“Actor” table

Can we add an
Actors column to the Movie table?

id title rating year actors
1 Crazy Rich Asians PG-13 2018 Henry Golding, Constance Wu
2 MI: Fallout G 2018 Tom Cruise, Alec Baldwin, Superman

id title Year_of_birth
1 Henry Golding 1987
2 Constance Wu 1982

“Movie” table

“Actor” table

Can we add an
actors column to the Movie table AND
a movies column to the Actor table?

id title rating year actors
1 Crazy Rich Asians PG-13 2018 Henry Golding, Constance Wu
2 MI: Fallout G 2018 Tom Cruise, Alec Baldwin, Superman

id title Year_of_birth Movies
1 Henry Golding 1987 Crazy Rich Asians
2 Constance Wu 1982 Crazy Rich Asians
3 Tom Cruise 1962 MI 1, MI 2, MI 3, MI4, MI5, MI: Fallout

“Movie” table

“Actor” table

Can we add an
actors column to the Movie table AND
a movies column to the Actor table?

id title rating year actors
1 Crazy Rich Asians PG-13 2018 1, 2

2 MI: Fallout G 2018 3

id title Year_of_birth Movies
1 Henry Golding 1987 1

2 Constance Wu 1982 1

3 Tom Cruise 1962 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

“Movie” table

“Actor” table

Join tables (also called Association tables)

id title rating year
1 Crazy Rich

Asians
PG-13 2018

2 MI: Fallout G 2018

id title Year_of_birth
1 Henry Golding 1987
2 Constance Wu 1982
3 Tom Cruise 1962

“Movie” table

“Actor” table

Movie_id Actor_id

Movie_actor_join

Join tables (also called Association tables)

id title rating year
1 Crazy Rich

Asians
PG-13 2018

2 MI: Fallout G 2018

id title Year_of_birth
1 Henry Golding 1987
2 Constance Wu 1982
3 Tom Cruise 1962

“Movie” table

“Actor” table

Movie_id Actor_id
1 1
1 2
2 3
3 3
4 3
5 3

Movie_actor_join

Now quering for actors and movies is easy

id title rating year Actors_backref
1 Crazy Rich

Asians
PG-13 2018 (automatic)

2 MI: Fallout G 2018

id title Year_of_birth Movie_backref
1 Henry Golding 1987 (automatic)

2 Constance Wu 1982

3 Tom Cruise 1962

“Movie” table

“Actor” table

Movie_id Actor_id
1 1

1 2

2 3

3 3

4 3

5 3

Movie_actor_join

Actors.query.get(3).movie_backref

Movies.query.get(1).actors_backref

Great video on SQLAlchemy Association Tables

This week’s high level goal:

• Remake the basic functionality of IMDB.com:
• User goal: “Look up what actor was in what movie and then

see all the other movies that actor is in.”

• Must store data in a SQLite database
• Must query it with SQLAlchemy
• Must Enable CRUD operations (create, read, update, delete)

• This is not actually user-facing funcationality of IMDB, but it’s essential back-end dev)

• Must use at least one Database Join

In the near future:

• Make your own site that puts a new
spin on IMDB.com

Turn in by 2pm Friday:

Late work cannot be accepted.
Turn in whatever you have by 2pm to get credit.

1. Establish goals.
One high level user goal and 7-10 low-level goals that will help you accomplish the high level goal.

2. Iteration.
Report on 3 of the features in your that caused you to iterate on your goals.
1. My plan was to ___x____.
2. But I ran into problem ___y____.
3. And I solved it by doing ___z_____.
z = “I added a new sub-goal”, “I changed my high level goal”, “I removed a sub-goal”

3. Report on goal progress.
For each of the goals in part 1. Which items you completed?
Show images to document each item. (either of the UI or code)

Be prepared to discuss your progress during studio.

You will be graded on whether or not you did each part.

