
Article

Applied Psychological Measurement
2020, Vol. 44(3) 215–229

� The Author(s) 2019
Article reuse guidelines:

sagepub.com/journals-permissions
DOI: 10.1177/0146621619843823

journals.sagepub.com/home/apm

An Item Response Model for
True–False Exams Based on
Signal Detection Theory

Lawrence T. DeCarlo1

Abstract

A true–false exam can be viewed as being a signal detection task—the task is to detect whether
or not an item is true (signal) or false (noise). In terms of signal detection theory (SDT), exami-
nees can be viewed as performing the task by comparing the perceived plausibility of an item (a
perceptual component) to a threshold that delineates true from false (a decision component). The
resulting model is distinct yet is related to item response theory (IRT) models and grade of mem-
bership models, with the difference that SDT explicitly recognizes the role of examinees’ percep-
tions in determining their response to an item. SDT also views IRT concepts such as ‘‘difficulty’’
and ‘‘guessing’’ in a different light, in that both are viewed as reflecting the same aspect—item bias.
An application to a true–false algebra exam is presented and the various models are compared.
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A true–false exam is a selected-response exam where the examinees’ task is to decide whether

an item is true or false. One approach to analyzing the resulting data is to use an item response

theory (IRT) model (Birnbaum, 1968; de Ayala, 2009; Embretson & Reise, 2000; Hambleton

& Swaminathan, 1985). In the IRT approach, it is assumed that the probability that an exami-

nee chooses the correct response depends on item parameters and on the examinee’s ability,

where ‘‘ability’’ is a latent continuous random variable. IRT models are basically measurement

models in that examinees’ response patterns are used to obtain information about their underly-

ing abilities and about item characteristics. They are not psychological models because they say

nothing about how examinees make decisions in true–false and other selected-response exams.

This has earlier been noted, for example, by Hambleton, Swaminathan, and Rogers (1991),

‘‘Much of the IRT research to date has emphasized the use of mathematical models that pro-

vide little in the way of psychological interpretations of examinee item and test performance’’

(p. 154). Goldstein and Wood (1989) made a similar observation, ‘‘As the title of Lord and

Novick’s (1968) book made clear, the theory is statistical, not psychological’’ (p. 139). More

recently, in a discussion of the three-parameter logistic (3PL) model, von Davier (2009) noted
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‘‘. . . practical application of IRT models often picks a model out of tradition rather than out of

considerations of how guessing or random response strategies are conceptualized’’ (p. 114).

The model developed here follows directly from a conceptualization about how examinees

make decisions in true–false exams, using a model of decision-making based on signal detection

theory (SDT; Green & Swets, 1988; Macmillan & Creelman, 2005; Wickens, 2002). Although

the approach can be developed for selected-response exams in general, such as multiple choice

exams, the focus here is on what is perhaps the simplest case, a true–false exam, which provides

a simple and useful starting point. The psychological conceptualization underlying the model is

presented, along with a comparison to ideas underlying traditional IRT models and mixed mem-

bership models. The statistical model that follows from the theoretical conceptualization is

derived. Implications of the resulting item response signal detection theory (IRSDT) model for

notions such as ‘‘guessing’’ and ‘‘item difficulty’’ are discussed. The model is applied to real-

world data and the results are compared to those obtained with IRT models.

SDT

A novel aspect of the present approach is the application of SDT as a model of the decision pro-

cess in true–false exams. SDT has been used as an account of psychological processes involved

in decision-making for well over half a century (Green & Swets, 1988; Macmillan & Creelman,

2005; Wickens, 2002). Indeed, Estes (2002) noted that,

Over ensuing decades, the SD model, with only technical modifications to accommodate particular

applications, has become almost universally accepted as a theoretical account of decision making in

research on perceptual detection and recognition and in numerous extensions to applied domains . . .

This development may well be regarded as the most towering achievement of basic psychological

research of the last half century. (p. 15)

Although the relevance of SDT to selected-response exams has previously been noted

(Macmillan & Creelman, 2005, p. 249), details of the approach have not been developed.

Basic Concepts of SDT

A basic idea in SDT is that decisions are based on perceptions of presented events. The percep-

tions in turn can be represented by probability distributions, following ideas going back to

Fechner (1860/1966) and later used by Thurstone (e.g., 1927). For example, the idea of repre-

senting perception as a probability distribution is consistent with the observation in psychophy-

sics that, even if exactly the same stimulus is presented on different occasions, observers do not

necessarily give the same response—clearly, the stimulus did not change, and so it must be the

observer’s perception of the stimulus that changed. As noted by Fechner,

Even when applied in the same way, one and the same stimulus may be perceived as stronger or weaker

by one subject or organ than by another, or by the same subject or organ at one time as stronger or

weaker than at another. (p. 38)

Thus, a basic idea is that when an examinee encounters an item, they have a perception of the

item which is used to make a decision. Furthermore, the perception is viewed as being a reali-

zation from a probability distribution. Note that even if an examinee reads the same item on a

different occasion, then the decision is not necessarily the same, because the examinee’s per-

ception of the item can differ with each reading, which is consistent with the observation that
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examinees on selected-response tests sometimes change their answers—their perception of the

item differed upon a re-reading. In short, an important aspect of SDT is that it recognizes that

an examinee bases his or her decision on a perception of an item (and so they can get it wrong

even if they ‘‘know’’ the item).

Figure 1 presents the basic ideas of SDT as applied to true–false exams. The top two panels

illustrate the theory for a true item without bias (left panel) and with bias (right panel). For the

left panel, the probability distribution on the left represents a perceptual distribution of plausi-

bility for examinees who do not know an item. The second distribution, to the right of the first,

shows that, if an examinee knows an item, then the plausibility distribution is shifted to the right

by dj. This simply reflects that a true item will appear to be more plausible to examinees who

know the item, and so they have a higher probability of deciding true. The distance parameter

dj reflects how well the item discriminates between those who know and do not know the item.

Next, examinees make a decision by comparing their perception of the item’s plausibility to

a decision criterion that delineates true from false, shown by a vertical line at zero in the top

left panel of Figure 1. If an examinee perceives the plausibility of an item as being above the

criterion, then the decision is that the item is ‘‘true,’’ otherwise, the decision is ‘‘false.’’ Note

that locating the criterion at zero means that there is no item bias, in that the probability of a

decision of true or false for an examinee who does not know the item is .50, which is similar to

the idea of ‘‘guessing’’ in IRT. In SDT, ‘‘guessing’’ refers to the situation where an examinee

does not know an item, and so guessing is not a separate process, in that the decision process is

exactly the same irrespective of whether an examinee knows an item or not—if the perceived

Figure 1. Signal detection theory conceptualization of a true–false test.
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plausibility of the item is above the criterion, then the decision is ‘‘true,’’ otherwise, the deci-

sion is ‘‘false.’’ Thus, a basic difference between SDT and IRT is that guessing is not a separate

process in SDT, but involves the same process as when ‘‘not guessing.’’‘Guessing’ can be

defined in SDT as the probability of a correct response for an examinee who does not know an

item, which is determined by the bias.

Also shown in Figure 1 are two possible realizations, shown as circles, from the plausibility dis-

tributions for an examinee who does not know an item (open circle) and one who does (filled cir-

cle). In the first case, an incorrect response is given because the open circle is below the criterion,

and so a response of ‘‘false’’ is given to the true item, which is a ‘‘miss.’’ In the second case, a cor-

rect response of ‘‘true’’ is given, because the filled circle is above the criterion, which is a ‘‘hit.’’

The top right panel of Figure 1 shows the effect of item bias—the criterion is not located at

zero, but is shifted, in this case to the right by bj, as shown by the arrow. This means that exam-

inees who either know or do not know an item both have a higher probability of deciding

‘‘false,’’ and so there is a bias toward a response of ‘‘false.’’ The right panel of Figure 2 shows

that, because the item is in fact true, the probability of a correct response is lower, regardless of

whether one knows the item or not. Thus, the presence of bias toward a response of false (posi-

tive bias) makes the item appear to be ‘‘more difficult’’ compared to the situation without bias

(left panel). Also note that, for examinees who do not know an item, the probability of getting

it correct is now considerably less than .50, and so the ‘‘guessing’’ probability is well below

chance. Thus, the SDT approach can conceptually handle guessing probabilities that are well

below (or above) chance, whereas this is neither predicted nor expected in the IRT view.

Furthermore, the same mechanism (bias) that leads to the item being ‘‘difficult’’ also leads to

low ‘‘guessing’’ rates, and vice versa.

The bottom panels of Figure 1 illustrate the theory for a false item with and without bias. In

the lower left panel, the plausibility distribution for examinees who do not know the item is again

located at zero, and so the probability of a decision of ‘‘true’’ or ‘‘false’’ is .50, which is the ‘‘no

bias’’ situation. Also note that, for a false item, the plausibility distribution for examinees who

know the item is shifted to the left, which reflects that a false item appears to be less plausible,

and so examinees who know the item are more likely to correctly recognize that the item is false.

The lower right panel of Figure 1 shows the situation for a false item again with bias toward

a response of ‘‘false,’’ shown by a rightward shift of the criterion bj, as in the example above.

The probability of a correct decision is now higher for examinees both who know and do not

know the item, and so the item appears to be ‘‘easier’’ compared to the situation with no bias

(left panel). For examinees who do not know the item, the probability of getting the item cor-

rect is now well above .50, and so, because of the bias, they have an above chance probability

of getting the item correct.

In summary, ‘‘difficulty’’ in the SDT view depends on the decision criterion, which in turn

reflects bias. As shown in Figure 1, for example, a bias toward a response of ‘‘false’’ will make

a true item appear to be more difficult and a false item appear to be easier. Note that one can

obtain a simple measure of item difficulty in SDT using bj*Z, where Z is a true–false indicator

coded as 1 for true items and 21 for false items, with the result that a larger value of bj*Z indi-

cates a more difficult item. Second, guessing in SDT is not viewed as being a separate process

but instead involves the same process that is involved when not guessing—the decision is based

on whether or not the perceived plausibility of an item is above or below the decision criterion.

Thus, ‘‘item bias’’ in SDT accounts for both ‘‘item difficulty’’ and ‘‘item guessing.’’ As a

result, an additional parameter is not needed to account for ‘‘guessing’’ in SDT, in contrast to

the 3PL model of IRT. This allows one to maintain desirable properties of the two-parameter

logistic (2PL) model and also deal with guessing without the additional complications intro-

duced by including an additional parameter (see below). Finally, SDT is consistent with
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‘‘guessing’’ probabilities that are either well above or below chance, whereas well above or below

chance guessing probabilities for true–false exams are not predicted or expected for the 3PL model;

if it is random guessing, should not the probability of a correct response be around .5?

From Theory to Model

As noted above, SDT identifies two basic aspects of the situation—examinees’ perceptions of

items and their use of decision criteria. Let Yij represent the response of the ith examinee to the

jth item with values yij = 1 for a response of ‘‘true’’ and yij = 0 for ‘‘false.’’ Let Cij be a random

variable that represents the perceived plausibility of an item to an examinee. The decision rule is

to respond ‘‘true’’ if the plausibility is above the criterion and ‘‘false’’ if it is below the criterion:

Yij = 1, if Cij. bj

Yij = 0, if Cij � bj,
ð1Þ

where bj is the item bias, as illustrated in Figure 1. Note that it should be kept track of which option

was chosen, true or false, and not simply whether the choice was correct or incorrect (the informa-

tion is the same for true–false tests, but it is lost for tests with more than two alternatives).

Next, the structural model (DeCarlo, 2010) relates the examinee’s perception of the item to

its known status (i.e., true or false). Let Zj indicate the item’s actual status as true (Zj = 1) or

false (Zj = 21); note that the coding gives the rightward (for true) or leftward (for false) distri-

bution shift shown in Figure 1. Let dij be a latent dichotomous variable that indicates whether

or not examinee i knows item j, with a value of one indicating yes and zero indicating no. The

structural model is as follows:

Cij = dijdjZj + eij, ð2Þ

where eij is a random variable that represents variation in the perception and dij ~ Bernoulli(li).

Equation 2 gives the two distributions of plausibility shown in Figure 1, with a shifted distribu-

tion for examinees who know the item (dij = 1) versus those who do not know (dij = 0), with dj

indicating the amount of shift; Equation 3 is a simple generalization of the structural model

given in DeCarlo (2010), with the addition of dij.

Some simplifying assumptions are made. For example, discrimination and bias are conceived

of as being item characteristics (this assumption can be relaxed, as shown in the supplementary

material). Second, it is assumed that the probability that examinee i has knowledge about item j

is constant across the j items, p(dij =1) = li, which is analogous to the assumption of parallel

items in classical test theory. The items are in essence viewed as being exchangeable, in that the

probability that an examinee knows any particular item for a given test is the same across all

items on the test. The examinee parameter li can be viewed as being the proportion of items that

an examinee knows for a given test, which is analogous to Lord’s definition of the true score §

in the compound binomial model (Lord, 1965). As noted below, li is also analogous to member-

ship scores used in the grade of membership (GoM) model (Erosheva, 2002).

It follows from the decision rule and structural model that the conditional probability that an

examinee responds ‘‘true’’ is as follows:

p Yij = 1jdij, bj, dj, Zj

� �
= p Cij.bjjdij, bj, dj, Zj

� �
= p dijdjZj + eij.bj

� �
= p eij.bj � dijdjZj

� �
:

Different probability distributions can be used for eij, such as the normal, logistic, or extreme

value distributions; note that a scale indeterminancy is removed by fixing the variance of eij.

Assuming logistic distributions gives,
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pij = p Yij = 1jdij, bj, dj, Zj

� �
=

e�bj + dijdjZj

1 + e�bj + dijdjZj
, ð3Þ

which is linearized using the logit transform,

logit pij

� �
= � bj + dijdjZj:

The above equation is an SDT model for item responses; it is referred to here as the IRSDT

model and is a simple generalization of the usual logistic version of the signal detection model

(DeCarlo, 1998) with the addition of a latent dichotomous variable, dij. Equation 3 shows that

if examinee i knows item j, dij =1, then the decision depends on both the item bias bj and item

detection dj. If the examinee does not know the item, dij =0, then the decision only depends on

the item bias. Note that the bias and discrimination parameters also have a statistical interpreta-

tion as a log odds and a log odds ratio, respectively,

bj = � logit p Yij = 1jdij = 0, bj, dj, Zj

� �
dj = logit p Yij = 1jdij = 1, bj, dj, Zj

� �
� logit p Yij = 1jdij = 0, bj, dj, Zj

� �
:

It is also assumed that examinees are independent and that their responses are locally inde-

pendent given li. Written as a hierarchical Bayesian model, the IRSDT model is,

Yijjdij, bj, dj, Zj;Bernoulli pij

� �
dijjli;Bernoulli lið Þ
li;Beta y, vð Þ:

Note that the above equation is also related to a latent class representation of the GoM model given by

Haberman (1995) and to data augmentation approaches used in Bayesian estimation (Tanner, 1996).

The remaining parameters and hyperparameters are as follows:

y, v;lognormal 0, 1ð Þ
dj;lognormal 0, 1ð Þ
bj;Normal 0, 9ð Þ:

A lognormal distribution is used for dj so that it can only take on zero or positive values, which is a

monotonicity constraint; the constraint ensures that an examinee who knows an item has the same or

higher probability of answering correctly as an examinee who does not know the item. In terms of

Figure 1, monotonicity ensures that the ‘‘know’’ distribution is shifted to the right for true items and

to the left for false items (the true–false indicator Zj makes the negative dj positive). Restricting dj to

positive values also helps to prevent a label switching problem that arises in latent class models, in

that the switched solution has a negative dj, which the monotonicity constraint prevents. Other

options for dj are to use a normal distribution truncated at zero, or a gamma distribution.

The model as specified above can be fit using Bayesian estimation. For the data analyzed

below, first examined were situations where a distribution for li was specified, such as uniform,

li ~ Beta (1, 1); also examined were situations where the model was specified with arbitrary

shape parameters for li, that is li ~ Beta (v, w); some simulations that examine parameter recov-

ery in several situations are presented in the supplementary material.

The IRSDT model can also be written as follows:

p Yij = 1jli, bj, dj, Zj

� �
= li

e�bj + djZj

1 + e�bj + djZj
+ (1� li)

e�bj

1 + e�bj
: ð4Þ
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That is, the probability of a response of ‘‘true’’ is a mixture of the probability of knowing and

not knowing an item, along with hit and false alarm probabilities. Equation 4 shows that the

IRSDT model is a probabilistic mixture model with a random mixing parameter li. It can be

viewed as a type of generalized latent class model—note that if li is restricted to take on values

of only zero or one, and so examinees are assumed to either know or not know all of the items,

then the IRSDT model reduces to a simple latent class model. Given this relation, it is informa-

tive to compare results for the simple latent class model to those obtained for the IRSDT model.

GoM Model

The IRSDT model is closely related to the GoM model (Erosheva, 2002, 2005). The GoM is

often written as follows:

p Yij = 1jljk , gik

� �
=
XK

k = 1

ljkgik ,

with
P

k gik = 1 and 0 � gik � 1, where K is the number of latent classes, ljk are structural

coefficients (item parameters), and gik are GoM scores. Note that the above is equivalent to

Equation 4 with K = 2, gi1 = (12li), gi2 = li, lj1 = expit (2bj), and lj2 = expit (2bj + dj Zj),

where the expit function is ea/(1 + ea). Thus, for K = 2, the IRSDT model can be viewed as a re-

parameterized version of the GoM model with li of IRSDT being analogous to the grade of

membership in classes of knowing or not knowing all of the items in the GoM. An interesting

consequence of this view is that it shows that the GoM item parameters can be transformed and

interpreted as signal detection parameters:

bj = � ln
lj1

1� lj1

, dj = ln
lj2

1� lj2

� ln
lj1

1� lj1

� �
Zj:

It also follows that GoM software can be used to fit a version of the IRSDT model (with

maximum likelihood), with parameters transformed as shown above. Some small simulations

using the R package SIRT (Robitzsch, 2018) to fit the nonparametric GoM model (with 16

points for gik, the maximum) showed good recovery of the IRSDT parameters.

Note that a difference between the models, however, is that Equation 4 is a probabilistic mix-

ture model, in that li is the probability that an examinee knows an item, whereas membership

scores in the GoM model are not probabilities, but are measures of the distance from the extre-

mal categories (in this case whether an examinee knows all of the items or not).

IRT

The left side of Figure 2 shows another representation of the IRSDT model. In the first branch,

it is assumed that an examinee either knows or does not know an item, with probabilities li or

12li, respectively. In the second branch, the decision depends on an examinee’s perception of

an item, along with the item parameters. Adding the two branches shown in Figure 2, multiplied

by their weights, gives the probability of a choice of ‘‘true’’ (Yij = 1) as given by Equation 4.

Although IRT models are commonly derived directly as measurement models, a ‘‘psycholo-

gical motivation’’ for the 3PL model has been noted by several authors (Birnbaum, 1968, p.

404; San Martı́n, del Pino, & De Boeck, 2006). The motivation offers a useful comparison to

the SDT approach and shows similarities and differences between the approaches.
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The right side of Figure 2 shows basic ideas underlying the 3PL IRT model. As before, it is

assumed that an examinee either knows or does not know an item, as indicated by dij. The first

branch shows the probability that an examinee knows an item is a function of both examinee

characteristics and item characteristics:

p dij = 1
� �

=
eaj ui�bjð Þ

1 + eaj ui�bjð Þ ,

where aj and bj are item discrimination and difficulty parameters, respectively, and ui is the

ability of examinee i. The second branch shows that it is assumed that if an examinee knows an

item, then they answer it correctly, and so the probability of a correct response is unity.

However, if an examinee does not know an item, then the probability of a correct response is

given by cj, which is an item parameter that reflects ‘‘guessing.’’ For example, in a true–false

exam, the probability of a correct response should be around .5 if an examinee simply

‘‘guesses.’’ The parameter cj is often referred to as the ‘‘pseudo-guessing’’ parameter because

values that are less than chance are often found in practice (Lord, 1980).

Multiplying by the weights and adding, it follows from the two branches shown in Figure 2

that the probability of a correct response for a given examinee is,

p Yij = correctjui, aj, bj

� �
= 13

eaj ui�bjð Þ

1 + eaj ui�bjð Þ + cj3 1� eaj ui�bjð Þ

1 + eaj ui�bjð Þ

 !
,

which can be rearranged to give the usual 3PL model,

p Yij = correctjui, aj, bj

� �
= cj + 1� cj

� � eaj ui�bjð Þ

1 + eaj ui�bjð Þ : ð5Þ

Note that the response Yij is usually coded as 1 or 0 to indicate whether a choice was correct

or incorrect, but ‘‘correct’’ is used explicitly in the above (instead of 1) to distinguish Yij from

that used in the IRSDT model, where 1 indicates a response of ‘‘true.’’ There are well-known

estimation problems associated with the 3PL (see Baker, 1992) as well as identification issues

for various versions of the model (Maris & Bechger, 2009; San Martin, Gonzalez, & Tuerlinckx,

Figure 2. Decision structures for SDT and IRTapproaches.
Note. SDT = signal detection theory; IRT = item response theory.
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2015; Wu, 2016). A common approach to estimation problems is to set cj to a fixed value or to

restrict cj to be equal across the J items. There are also other ways to derive the model (San

Martı́n et al., 2006), but the current derivation is useful for a comparison to the IRSDT approach.

Setting cj = 0 in Equation 4 gives the 2PL model,

p Yij = correctjui, aj, bj

� �
=

eaj ui�bjð Þ

1 + eaj ui�bjð Þ :

In terms of Figure 2, the model implies that if an examinee does not know an item, then they

get the item incorrect. Thus, both branches of the second stage of the 2PL are deterministic: if

an examinee knows an item, then he or she gets it correct; if the examinee does not know an

item, then he or she gets it incorrect. The use of the 2PL for true–false exams is conceptually

questionable, because ‘‘guessing’’ clearly gives a chance of being correct that is greater than

zero, and so the assumption that cj = 0 is not appropriate, although one can of course still fit the

model (or fix cj to 0.5 in the 3PL). However, the IRSDT model considers guessing to be a con-

sequence of response bias and so it has no difficulties dealing with guessing with only two item

parameters and can also deal with above and below ‘‘chance’’ levels of guessing.

Also note that IRT does not consider the role of perception in decision-making, which is why

at least one branch in the second stage on the right side of Figure 2 is deterministic—if an exam-

inee knows an item, then he or she gives the correct answer. In contrast, even if an examinee

knows an item, IRSDT recognizes that the examinee can still give an incorrect answer, due to

the role of perception in decision-making (e.g., the examinee can misperceive the item in some

way), along with effects of item bias and discrimination.

Application to a True–False Algebra Exam

Given that the IRSDT model is new, a comparison of results across IRSDT and IRT models for

real-world data is of primary interest. The example is an algebra exam that was developed by the

author years ago, with items based on observed algebraic mistakes made by students in courses

on measurement and statistics. The exam is used as a screening instrument in these courses to

help identify students who might lack algebraic skills needed for the course; use of the exam has

also been approved by the institution’s institutional review board (IRB). The exam consists of 16

true–false items and is shown in the supplementary material; half of the items are true and the

other half are false. Students were instructed to not leave any items blank and were given about

20 min to complete the exam. Results for 829 students who took the exam are analyzed.

The IRSDT and IRT models were fit using Bayesian estimation, implemented via PROC

MCMC of SAS (using the Metropolis–Hastings algorithm). About 20,000 iterations seemed

adequate for convergence; however, because of the low computational time, each model was fit

with 20,000 burn-ins followed by 100,000 iterations. For the IRSDT, the priors and hyperpriors

were dj ~ lognormal (0, 1), b ~ N (0, 9), and li ~ Beta (v, w) with v and w ~ lognormal (0, 1);

details about a random parameter version of the model, the IRSDTr model, are given in the sup-

plementary material. For the 2PL and 3PL models, the priors used were aj ~ lognormal (0, 1), bj

~ N (0, 9), u ~ N (0, 1), and cj ~ Beta (1, 1).

Model Fit

Posterior predictive checks (PPCs; Gelman et al., 2014; Sinharay, Johnson, & Stern, 2006) are

useful for comparisons of the models. For each model, 1,000 samples from the posterior predic-

tive distributions were generated and checks at both the test level and item level were
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conducted. For the IRSDT models, the checks reported here are for the model with estimated

shape parameters, that is, li ~ Beta (n, v); models with fixed shape parameters were also exam-

ined (see the supplementary material).

At the test level, a PPC of the total test score was performed, that is, the score frequencies

predicted by the models over the samples were compared to the score frequencies for the

observed data. Figure A1 in the supplementary material shows results for four models. The

solid circles indicate the observed data, whereas the solid lines show, for the replicated samples,

the 5th, 50th, and 95th percentiles (across 1,000 samples). The figure shows that the IRSDT

model performs well throughout the range except for the top two scores; it predicts too many

scores of 15 and too few scores of 16. The IRSDTr model corrects for this somewhat and better

predicts scores of 15, but it still has too few scores of 16. The 2PL model performs poorly, with

many points outside of the 90% range, whereas the 3PL is consistent with the observed score

distribution. Overall, the two IRSDT models and the 3PL model appear to be adequate with

respect to accounting for the observed total scores.

At the item level, a PPC of the item-total score curves was performed. Figure A2 in the sup-

plementary material shows the observed data (solid circles) along with the 5th, 50th, and 95th

percentiles for the predicted data for the IRSDT model. The figure shows the proportion correct

for each item plotted against the observed total score (item fit plots; see Sinharay, 2006).

Overall, the predicted curves generally include the observed data; plots for the 3PL are similar

to those obtained for the IRSDT. The item fit plots show that the IRSDT model adequately

accounts for the observed item-total score relationships.

Parameter Estimates

Table 1 shows parameter estimates (posterior means and standard deviations) for a fit of the

IRSDT and IRT models. For the IRSDT model, a few items (e.g., 1, 5, and 7) show large nega-

tive bias, which is a bias toward a response of ‘‘true,’’ and a few items show large positive bias

(e.g., 3, 4, 14, and 16), which is a bias toward a response of ‘‘false.’’ The discrimination para-

meters are generally in the range of 2 to 6 (with one large value, with large posterior standard

deviation), which indicates good to excellent discrimination. The posterior standard deviations

for the bias parameter are fairly small, whereas those for discrimination are larger. The esti-

mated shape parameters for the beta distribution of lambda are 0.33 and 0.31, which indicates a

bimodal distribution. For the IRSDTr model, the right side of the table shows that the para-

meters are generally consistent with those found for the IRSDT model, with similar bias but

with smaller discrimination estimates. The variance of the bias parameter is small (0.10),

whereas that for the discrimination parameter is considerably larger (2.33).

For a fit of the 3PL model, shown in the lower half of Table 1, five items (4, 5, 8, 9, and 11)

show very low probabilities of guessing correctly, less than .26, whereas three items (1, 6, and

14) have high guessing probabilities, larger than .63. Given that guessing should give a probabil-

ity of a correct response of around .50 in a true–false exam, it is not clear why some items have

guessing probabilities that are considerably higher or lower.

It is informative to examine the relation of the parameter estimates across the different mod-

els; Table 2 shows Spearman’s correlations and p-values. The top part of the table shows that

the difficulty measure of IRSDT (bjZ) is highly correlated (.89) with the difficulty parameter bj

of the 2PL, and so both models rank order the item difficulties similarly. The IRSDT discrimina-

tion parameter dj is also highly correlated (.81) with the 2PL discrimination parameter aj. Thus,

the IRSDT and 2PL models lead to similar conclusions about item difficulty and item discrimi-

nation. The top right side of Table 2 shows that the bj and aj across the 2PL and 3PL models are

not significantly correlated, and so the 2PL and 3PL models lead to different conclusions about
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item difficulty and discrimination. For example, according to the 2PL, Items 1 and 14 are the

‘‘easiest’’ items (see Table 1), which is also consistent with the IRSDT estimates of bj*Z, and

so conclusions about relative difficulty are consistent across IRSDT and the 2PL (and the GoM,

though not shown), whereas estimates for the 3PL model suggest that Items 1 and 14 are rela-

tively difficult. Furthermore, both items show high guessing rates (.75 and .73). If the items are

relatively difficult, as indicated by the 3PL estimates, then why are they easy to guess? This dif-

fers from the IRSDT model, where difficult items are also more difficult to guess, because of

the common mechanism (bias).

Table 1. Posterior Means and Standard Deviations for Algebra Data, IRSDT, and IRT Models.

IRSDT IRSDTr

PM PSD PM PSD PM PSD PM PSD

b1 21.10 0.13 d1 2.69 0.50 b1 21.19 0.14 d1 2.04 0.31
b2 20.18 0.12 d2 4.60 0.87 b2 20.35 0.16 d2 2.11 0.31
b3 1.44 0.13 d3 6.10 0.75 b3 0.98 0.15 d3 4.85 0.53
b4 1.78 0.22 d4 3.11 0.33 b4 1.71 0.18 d4 2.32 0.26
b5 21.19 0.15 d5 3.20 0.30 b5 21.30 0.19 d5 2.60 0.24
b6 0.45 0.11 d6 2.52 0.37 b6 0.57 0.18 d6 1.88 0.34
b7 21.12 0.12 d7 10.56 2.62 b7 20.58 0.16 d7 5.21 0.28
b8 0.33 0.12 d8 6.00 0.83 b8 20.42 0.17 d8 5.91 0.35
b9 0.82 0.12 d9 5.16 0.92 b9 0.44 0.17 d9 3.75 0.37
b10 20.43 0.11 d10 4.48 0.90 b10 0.16 0.17 d10 4.69 0.38
b11 0.18 0.12 d11 4.89 0.74 b11 20.34 0.21 d11 3.99 0.36
b12 20.15 0.11 d12 2.43 0.36 b12 20.42 0.17 d12 1.43 0.28
b13 0.35 0.12 d13 3.30 0.46 b13 0.94 0.35 d13 3.59 0.36
b14 0.81 0.12 d14 2.11 0.40 b14 1.20 0.20 d14 1.17 0.30
b15 20.71 0.12 d15 2.81 0.29 b15 20.29 0.17 d15 1.44 0.27
b16 1.04 0.19 d16 5.36 0.71 b16 0.95 0.18 d16 2.86 0.30
n 0.33 0.03 v 0.31 0.02 n 0.50 0.06 v 0.25 0.02

s2
b 0.10 0.03 s2

d 2.33 0.32

2PL 3PL

PM PSD PM PSD PM PSD PM PSD PM PSD

b1 22.51 0.32 a1 0.84 0.13 b1 0.14 0.22 a1 2.44 0.57 c1 0.75 0.04
b2 21.24 0.11 a2 1.31 0.15 b2 20.03 0.10 a2 3.34 0.40 c2 0.53 0.04
b3 21.67 0.15 a3 2.16 0.33 b3 21.35 0.20 a3 2.14 0.27 c3 0.37 0.13
b4 0.12 0.07 a4 1.29 0.12 b4 0.57 0.07 a4 3.40 0.45 c4 0.22 0.03
b5 20.27 0.08 a5 1.33 0.13 b5 0.30 0.11 a5 2.43 0.31 c5 0.26 0.04
b6 21.85 0.26 a6 0.80 0.12 b6 0.28 0.17 a6 2.08 0.38 c6 0.63 0.04
b7 22.03 0.24 a7 1.23 0.19 b7 21.11 0.33 a7 1.55 0.30 c7 0.48 0.13
b8 21.12 0.08 a8 1.98 0.22 b8 20.95 0.12 a8 2.25 0.27 c8 0.12 0.08
b9 21.43 0.11 a9 1.83 0.23 b9 21.15 0.22 a9 1.93 0.26 c9 0.25 0.12
b10 21.37 0.12 a10 1.36 0.15 b10 20.81 0.31 a10 1.73 0.30 c10 0.30 0.15
b11 21.00 0.08 a11 2.34 0.27 b11 20.76 0.10 a11 2.89 0.29 c11 0.16 0.07
b12 21.49 0.23 a12 0.79 0.12 b12 0.39 0.13 a12 2.53 0.36 c12 0.57 0.03
b13 20.88 0.10 a13 1.11 0.12 b13 0.33 0.08 a13 4.78 0.96 c13 0.49 0.03
b14 22.31 0.31 a14 0.74 0.11 b14 0.54 0.15 a14 3.20 0.39 c14 0.73 0.02
b15 20.56 0.07 a15 1.05 0.12 b15 0.39 0.09 a15 2.74 0.25 c15 0.38 0.03
b16 20.52 0.07 a16 1.64 0.16 b16 0.14 0.07 a16 4.51 0.45 c16 0.33 0.03

Note. For IRSDT, a positive value of bj indicates a bias toward a response of ‘‘false.’’ IRSDT = item response signal

detection theory; IRT = item response theory; IRSDTr = random parameter version of IRSDT; PM = posterior mean;

PSD = posterior standard deviation; 2PL = two-parameter logistic; 3PL = three-parameter logistic.
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Examinee Variables

Figure 3 shows the distribution of the estimates (posteriors) of the examinee variables lambda and

theta across the IRSDT and IRT models. As noted above, the shape parameter estimates for the

beta-distributed lambda of IRSDT indicate bimodality, and this can be seen in the top left panel of

Figure 3. The figure also shows that many examinees obtained perfect scores of 16. The top right

panel for the 2PL shows that theta appears normally distributed except for a cluster of high values,

which reflects the influence on the posterior of the large number of perfect scores. The results sug-

gest possibly exploring using a mixture extension for either the IRT (or IRSDT) models.

The lower panel of Figure 3 shows that estimates of lambda for the IRSDT model and theta

for the 2PL model are highly correlated (Spearman’s correlation of .98) and so the models tend

to rank order examinees in the same way; the right panel also shows a high correlation with

theta from the 3PL, with more scatter however at the lower end. Thus, although the IRSDT and

IRT models follow from somewhat different conceptual frameworks, they lead to similar con-

clusions about examinees.

For a subset of the examinees (493 students), the numerical grade they received in the course

(weighted average of exams and homework) was also available. Although algebra was only a

small part of the course content, it is of interest to examine the relation of the various latent vari-

ables in IRSDT and IRT to the numerical grade obtained in the course. The Spearman’s correla-

tions between predicted values of the latent variables and observed measures were .30 for li of

IRSDT, .31 for ui of 2PL, .31 for ui of 3PL, and .31 for the proportion correct. The correlations

are all significant (p \ .01) and positive and are about the same size in magnitude. Thus, the cor-

relations provide some evidence as to the validity of the examinee measure; however, they also

do not support one model over another or any of the models over the simple proportion correct.

Discussion

A psychological model of perceptual and decision processes involved when examinees answer

true–false items is presented in this article. SDT recognizes the role of an examinee’s perception

of an item as a source of variability, as shown in Figure 1, whereas perception does not have an

explicit role in IRT. SDT recognizes that, even if an examinee knows an item, they might still

get it wrong because they misperceive (misinterpret, misread, etc.) the item in some way. The

role of perception also provides an account as to why examinees sometimes change responses

(as evidenced by cross-outs and erasures on exams)—the item was perceived differently upon a

Table 2. Spearman’s Correlations of Parameter Estimates for SDT and IRT Models.

IRSDT 3PL

Model b̂j � Z d̂j b̂j âj ĉj

2PL
b̂j .89 (\.01) .15 (.60) .26 (.32) .50 (.05) 2.65 (\.01)
âj 2.02 (.96) .81 (\.01) 2.72 (\.01) 2.16 (.58) 2.82 (\.01)

IRSDT
b̂j � Z .62 (.01) .65 (\.01) 2.34 (.20)
d̂j 2.84 (\.01) 2.28 (.29) 2.57 (.02)

Note. Two-tailed probabilities are in parentheses. GoM was fit with 16 points. SDT = signal detection theory; IRT =

item response theory; IRSDT = item response signal detection theory; 3PL = three-parameter logistic; 2PL = two-

parameter logistic.
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re-reading. This variation due to perception is exactly what was recognized by Fechner (1860/

1966) and others (Thurstone, 1927) in early psychological studies, and here it is noted that per-

ception continues to play an important role when examinees are presented with items in exams.

This role is explicitly recognized in the signal detection approach.

SDT also places traditional IRT concepts such as item difficulty and item guessing in a some-

what different light, in that they are not seen as separate item aspects, but rather as reflecting

one aspect—item bias. As a result, the IRSDT model does not require an additional set of J

parameters to account for guessing, and so the model has only two item parameters, as in the

2PL model, rather than three, as in the 3PL model. The IRSDT model also defines ‘‘guessing’’

in a simple way, namely, as the probability of getting an item correct for an examinee who does

not know the item, instead of as the probability of a correct response for an examinee with (infi-

nitely) low ability, as in the 3PL model. The model is also consistent with high or low guessing

rates, given that this simply reflects item bias. In the SDT view, bias also affects examinees who

know the item, thus making the item overall more ‘‘easy’’ or ‘‘difficult.’’ The IRSDT model

also avoids issues with respect to inconsistencies of item difficulty and guessing that arise across

the 2PL and 3PL models for true–false data, as shown above.

The IRSDT approach also offers the advantage of potentially providing insights into items.

For example, for the Algebra data, Item 1 has the highest guessing rate of all items (.75),

Figure 3. Distributions and relation of IRSDT and IRTexaminee variable estimates.
Note. IRSDT = item response signal detection theory; IRT = item response theory.
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according to the 3PL estimate. What this means and what to do about it are not clear: Does it

mean that the item is poor and should be eliminated or revised? From the IRSDT point of view,

the bias estimate simply indicates that there was a large bias toward a response of ‘‘True’’ for

Item 1, and given that the item is true, the bias leads to a high correct ‘‘guessing’’ rate for exam-

inees who do not know the item. Thus, the high guessing rate found for the 3PL is consistent

with the bias revealed by the IRSDT model. The bias in this case also implies that the item over-

all is ‘‘easy,’’ as found for a fit of the 2PL model, but not for a fit of the 3PL model. Thus, the

IRSDT model gives a simple account of the results and shows that the item is not necessarily

poor because of what appears to be high guessing in the 3PL model; in fact, discrimination is

quite high for this item. Furthermore, SDT suggests things to do. For example, Item 1 could be

re-written in a way to make it look ‘‘falser,’’ which might reduce the bias toward ‘‘true,’’ and so

the guessing rate would be lower, both for the IRSDT and 3PL models. This could be tested by

revising the item and seeing if and how the bias is affected, and fitting the various models. IRT

does not directly suggest these types of experiments.

The model can be also extended in a straightforward way to multiple choice items using an

m-alternative forced choice version of SDT (DeCarlo, 2012). In that case, the IRSDT models dif-

fer somewhat from standard IRT models, in that, for the IRSDT approach, one must keep track

of which alternative was chosen, whereas simply using correct/incorrect leads to a loss of infor-

mation about bias (when there are more than two alternatives). The IRSDT approach in that case

is more similar to IRT models with an analysis of distractors (Penfield & de la Torre, 2008).
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