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Summary-Huitema and McKean (Psychological Bulletin, 110, 291-304, 1991) recently showed, in a 
Monte-Carlo study, that five conventional estimators of first-order autocorrelation perform poorly for 
small (< 50) sample sizes. They suggested a modified estimator and a test for autocorrelation. We examine 
an estimator not considered by Huitema and McKean: the C-statistic (Young, Annuls of Mathematical 
Statistics, 12,293-300, 1941). A Monte-Carlo study of the small sample properties of the C-statistic shows 
that it performs as well or better than the modified estimator suggested by Huitema and McKean (1991). 
The C-statistic is also shown to be closely related to the d-statistic of the widely used Durbin-Watson 
test. 

INTRODUCTION 

Research in the behavioral and social sciences often yields data that are ordered over time. Time 
series methods offer a means of recognizing the temporal order of the data in the analysis. A basic 
part of this analysis is the computation of the autocorrelation of the observations, that is, the 
correlation of the observation obtained at time or trial t with that obtained at time t - 1 (first-order 
autocorrelation), or at earlier times (higher-order autocorrelations). There are problems estimating 
autocorrelation, however, when the sample size is small (say less than 50 repeat observations). 
The autocorrelation estimator, for example, can be considerably biased. The performance of 
autocorrelation estimators for small sample sizes has implications for applied research, because the 
number of repeated observations is frequently small (for references relevant to behavioral analysis, 
see Matyas & Greenwood, 1991). 

Huitema and McKean (1991) recently examined, in a Monte-Carlo study, five well-known 
estimators of first-order autocorrelation. They showed that the conventional estimators performed 
poorly for small sample sizes (less than 50 observations). Huitema and McKean (1991) proposed 
a modified estimator and showed, for positive autocorrelation, that it consistently out-performed 
the conventional estimators, although its performance for the smallest sample sizes was still poor. 
They also recommended a test for autocorrelation and showed that it offered an improvement over 
the conventional test. 

A common aspect of all of the estimators considered by Huitema and McKean (1991) is that 
they are computed using sums of cross-products. In particular, if Y, denotes the observation 
obtained at time t and Y,_, is the previous observation, then all of the estimators compute the 
cross-product of the deviations of Y, and Y, _ 1 about their means, where the means are computed 
using either all n observations or just n - 1 of them. There are several time series statistics, however, 
that use a related but nevertheless different approach: they are based on the sum of the squared 
dzfirences between successive observations (Y, - Y,_ ,). An example is the C-statistic (Young, 
1941), which is the focus of this article. Another example is the d-statistic of the Durbin-Watson 
test (Durbin & Watson, 1950, 1951) for autocorrelated residuals, which is discussed below. 
Statistics of this type were not considered by Huitema and McKean (1991). The purpose of the 
present article is to examine the small sample properties of the C-statistic. A Monte-Carlo study 
is used to compare the performance of the C-statistic for small sample sizes to that of the 
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conventional estimator and the modified estimator suggested by Huitema and McKean (199 1). The 
next section introduces the estimators and briefly reviews Huitema and McKean’s results. 

AUTOCORRELATION AND ESTIMATION 

A conventional estimator of first-order autocorrelation is: 

where Y, and Y,, , are the observations obtained at times (or on trials) t and t + 1, respectively, 
and y is the mean of all n observations. Note that r, is similar to Pearson’s correlation r, with the 
difference being that the summation in the numerator of equation (1) includes n - 1 terms instead 
of n terms. This occurs because the cross-product of the last observation Y, with Y,, , cannot be 
computed (because Y, + , is not observed). An important difference between T, and r is that, as 
shown by Fig. 1 of Huitema and McKean (1991), the bias of rl for small sample sizes can be large. 

Huitema and McKean (1991) suggested the following modified estimator of first-order autocor- 
relation: 

With respect to positive autocorrelation, which is typically found for time series data, adding the 
term l/n to r, corrects to some extent for negative bias, that is, underestimation of the positive 
autocorrelation. Huitema and McKean’s (1991) Monte-Carlo study showed that the bias of r, + 
for positive autocorrelation is smaller than the bias of rl, particularly for small sample sizes 
(n < 50). In addition, the average (over autocorrelations from 0 to 0.9) mean-squared error (MSE) 
was shown to be smaller for r, + than for r,. The MSE is a function of an estimator’s variance 
and bias: 

MSE = VARIANCE + (BIAS)‘. 

The MSE should be considered when choosing among estimators because there is a trade-off 
between bias and variance. 

Equations (1) and (2) show that r, and r, + are both computed using sums of cross-products. 
The C-statistic (Young, 1941), on the other hand, is based on the sum of the squared differences 
between successive observations: 

Although it may not be apparent at first glance, the C-statistic is an estimator of first-order 
autocorrelation. In particular, simple algebra (see the Appendix) shows that the C-statistic is 
related to r, as follows: 

C=r 

1 
+(Y,,- n2+cy,- rq* 

25(Y,-F+)* ’ 

(4) 

,=I 

where Y, and Y, are the first and last observations, respectively. Equation (4) is important because 
it shows that the C-statistic is similar in several ways to the modified estimator r, f [Equation (2)]. 
For example, as shown by equation (2), r, + corrects for the underestimation of positive 
autocorrelation by adding l/n to r, . Equation (4) shows that the C-statistic is similar in that it also 
adds a fraction to r,. In addition, it is apparent that r, + converges to r, as the sample size gets 
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Table I. Empirical bias in I,, r, + and C 

N 

783 

P 

0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 

-0.1 
-0.2 
-0.3 
-0.4 
-0.5 
-0.6 
-0.7 
-0.8 
-0.9 

6 10 20 30 50 

11 

-0.73 
-0.66 
-0.59 
-0.52 
- 0.46 
-0.39 
-0.33 
-0.27 
- 0.22 
-0.16 
-0.10 
- 0.05 
-0.01 

0.05 
0.10 
0.16 
0.20 
0.24 
0.27 

II + c rl r1+ C rl I1 + c 
-0.57 -0.53 -0.50 -0.40 -0.36 -0.27 -0.22 -0.19 
-0.49 -0.46 -0.44 -0.34 -0.31 -0.23 -0.18 -0.16 
-0.42 -0.39 -0.39 -0.29 -0.26 -0.20 -0.15 -0.14 
-0.36 --0.34 -0.34 -0.24 -0.22 -0.17 -0.12 -0.12 
-0.29 -0.27 -0.29 -0.19 -0.18 -0.15 -0.10 -0.10 
-0.23 -0.22 -0.25 -0.15 -0.14 -0.13 -0.08 -0.08 
-0.16 -0.16 -0.22 -0.12 -0.11 -0.11 -0.06 -0.06 
-0.10 -0.10 -0.17 -0.07 -0.07 -0.09 -0.04 -0.04 
-0.05 -0.05 -0.13 -0.03 -0.03 -0.07 -0.02 -0.02 

0.01 0.00 -0.10 0.00 0.00 -0.05 0.00 0.00 
0.06 0.06 -0.06 0.04 0.04 -0.03 0.02 0.02 
0.1 I 0.10 -0.02 0.08 0.07 -0.01 0.04 0.04 
0.16 0.15 0.00 0.10 0.10 0.00 0.05 0.05 
0.22 0.2 I 0.04 0.14 0.14 0.02 0.07 0.07 
0.27 0.25 0.07 0.17 0.17 0.04 0.09 0.09 
0.32 0.31 0.10 0.20 0.20 0.06 0.1 I 0.11 
0.37 0.35 0.14 0.24 0.23 0.08 0.13 0.13 
0.41 0.39 0.17 0.27 0.27 0.09 0.14 0.15 
0.44 0.43 0.19 0.29 0.29 0.11 0.16 0.16 

‘I r1+ c rl r1+ 
-0.18 -0.15 -0.13 -0.11 -0.09 
-0.15 -0.12 -0.11 -0.09 -0.07 
-0.13 
-0.12 
-0.10 
-0.09 
-0.07 
-0.06 
-0.05 
-0.03 
-0.02 

0.00 
0.00 
0.02 
0.03 
0.04 
0.06 
0.07 

-0.10 -0.09 -0.08 -0.06 
-0.08 -0.08 -0.07 - 0.05 
-0.07 -0.07 -0.06 -0.04 
-0.05 -0.05 -0.05 -0.03 
-0.04 -0.04 -0.04 - 0.02 
-0.03 -0.03 -0.04 -0.02 
-0.01 -0.01 -0.03 -0.01 

0.00 0.00 - 0.02 0.00 
0.01 0.01 -0.01 0.01 
0.03 0.03 0.00 0.02 
0.04 0.04 0.00 0.02 
0.05 0.05 0.01 0.03 
0.06 0.06 0.02 0.04 
0.07 0.07 0.02 0.04 
0.09 0.09 0.03 0.05 
0.10 0.10 0.04 0.06 
0.11 0.11 0.05 0.07 

C 

- 0.08 
-0.07 
-0.06 
- 0.05 
-0.04 
- 0.03 
-0.02 
-0.01 
-0.00 

0.00 
0.01 
0.02 
0.02 
0.03 
0.04 
0.04 
0.05 
0.06 
0.07 

large, because l/n approaches zero. It follows from equation (4) that the C-statistic also converges 
to I, as the sample size gets large, because the term to the right of r, approaches zero as n increases 
(only the denominator increases as n increases). In short, the relation between C and rl + implies 
that a comparison of their properties for small sample sizes is in order. We conducted a 
Monte-Carlo study with this goal in mind. 

HYPOTHESIS TESTING 

Although the focus of the present article is on estimation, a comparison of the statistics with 
respect to tests of hypotheses is also of interest. The null hypothesis of zero autocorrelation is 
commonly tested by using r, divided by l/x n as a test statistic, where n is the number of 
observations. The test statistic is compared to critical values from the normal distribution. Huitema 
and McKean (1991, Fig. 4) showed that the Type I error rates for this test, however, deviate 
considerably from their normal values (for the right tail). For example, for a sample size of 10, 
the empirical Type I error rate for the right tail (positive autocorrelation) was 0.008 instead of the 
chosen 0.05 value. The deviation from the nominal value persisted for sample sizes of 20, 50 and 
100. 

Huitema and McKean (1991) suggested using an estimator of the standard error (SE) of r, 
proposed by Moran (1948), which is: 

SE@,)= n -2 
nJGi’ 

The recommended test procedure was to use r, + divided by the above quantity as a test for 
autocorrelation. Huitema and McKean (1991) showed that the empirical probability of a Type I 
error for this test was close to the nominal value (0.05) across all sample sizes. The test also had 
greater power than the conventional test across all sample sizes, although the power was low for 
the smallest sample sizes: (e.g. n = 6 and n = 10). 

Table 2. Average MSE for I,, r,+ and C 

Sample size rl ri+ C 

6 0.3 I33 0.1969 0.2029 
IO 0. I684 0.1217 0.1187 
20 0.0653 0.053 I 0.0509 
30 0.0377 0.0322 0.031 I 
50 0.0194 0.0175 0.0171 
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Fig. I. Empirical Type I etror rates (two-tailed, z = 0.10) for rI divided by I/&. r,i- divided by 
(n - 2),k(n -. l)“* and C divided by [(n - 2),!(n2 - 1)]“2. 

The estimator of the SE of the C-statistic is: 

(Young, 1941). The test statistic in this case is the ratio of C to its SE, which is compared to critical 
values from the normal distribution. We examine the Type I error rates and power of this test for 
several sample sizes. 

A MONTE-CARLO STUDY 

The simulation was run on a DEC VAX using VMS Version 5.4. The normal probability 
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generator RANNOR of the SAS system (SAS Institute Inc., 1990) was used to generate 
observations from a first-order autoregressive process: 

where p is the autocorrelation parameter and e, is a random normal variate with a mean of zero 
and a variance of one. Each series was started with a normal variate, Y,, having a mean of zero 
and a variance of l/(1 - p’). Autocorrelation parameters of -0.9 to 0.9 in steps of 0.1 were 
examined. The sample sizes investigated were 6, 10, 20, 30 and 50. For each parameter value and 
sample size, 10,000 samples were generated. The first 30 observations of each sample were dropped 
(to eliminate any dependency between the samples). The estimators r,, r,+ and C, plus their 
associated test statistics were computed for each sample. The empirical bias and MSE for each 
estimator were determined, along with the number of times the null hypothesis of zero autocorre- 
lation was rejected. The latter was used to compute the empirical Type I error rates and power. 

0 6 10 20 30 50 
Sample Size 

1.0 
1 0 rl 

rho=.6 
6Ea rl+ 

0 50 

Sample Size 

Sample Size 

Fig. 2. Power for the tests using r,, r, + and C for autocorrelation parameters of 0.3, 0.6 and 0.9. 
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Results 

Estimation. Table 1 shows the empirical bias of r, , r, + and C for each autocorrelation parameter 
and each sample size. The table shows that the biases of r, and r, + are close to those obtained 
by Huitema and McKean (1991, Tables 2 and S), thus replicating their results (using SAS in lieu 
of IMSL). For values of p greater than zero, the bias of r,+ is consistently less than the bias of 
r, , which confirms Huitema and McKean’s (1991) findings. In addition, the bias of C for positive 
values of p is less than or equal to the bias of r, + for all sample sizes. Thus, with respect to bias 
in estimating positive autocorrelation, C performs better than r, +. 

Table 2 presents the average MSE (across autocorrelation values of 0 to 0.9 in steps of 0.1) for 
r, , r, + and C. The values obtained for r, and r, + are close to those obtained by Huitema and 
McKean (1991, Table 3). The table shows that, for all sample sizes, the average MSEs of both r, + 
and C are smaller than the average MSE of r, . In addition, the average MSE of C is smaller than 
the average MSE of r, + for all sample sizes except the smallest (n = 6). Inspection of the individual 
MSEs for each p suggested that the MSE of C tended to be smaller than the MSE of r,+ for 
p > 0.5, whereas the MSE of r, + tended to be smaller for p < 0.5. 

In sum, with respect to estimation of positive autocorrelation, Tables 1 and 2 show that C 
performs better than r, +. 

Hypothesis testing. Figure 1 shows the empirical Type I error rates for a two-tailed test of the 
null hypothesis of no autocorrelation with u = 0.10 (0.05 in each tail). The test statistics are r, 
divided by l/& (top panel), r,+ divided by Moran’s SE (middle panel), which is the test 
recommended by Huitema and McKean (1991) and C divided by its SE (bottom panel). The 
proportion of cases in the left and right tails are shown separately. Ideally, each bar should have 
a height of 0.05. The top panel shows, for the test using r, , that the proportion of cases in the right 
tail deviates considerably from the nominal 0.05 value across all sample sizes. For example, for 
a sample size of 10, the proportion of cases in the right tail was 0.009 instead of 0.05, which agrees 
with Huitema and McKean’s (1991) finding of 0.008. In contrast, the middle panel shows that the 
empirical Type I error rates for the test using r,+ are close to the nominal value (0.05 per tail) 
across all sample sizes. The results for r, and r, + replicate Huitema and McKean’s (1991) findings 
(Figs 4 and 9). The bottom panel shows, for the test using C, that the empirical Type I error rates 
are close to the nominal value (0.05 per tail) across all sample sizes. Thus, with respect to Type 
I error rates, the test using C performs as well as the test proposed by Huitema and McKean (1991). 

Figure 2 shows, for the five sample sizes, the power of the tests using r,, r, + and C for ps of 
0.3 (top panel), 0.6 (middle panel), and 0.9 (bottom panel). The test in this case was two-tailed with 
c1 = 0.05 (0.025 in each tail). The figure shows that the tests using r, + and C have similar power. 
In addition, the two tests have greater power than the conventional test (using r,) . 

DISCUSSION 

The simulation shows that the C-statistic has properties comparable to those of r, + for small 
sample sizes. With respect to estimation of positive autocorrelation, the bias and MSE of C were 
smaller than those of r, + . With respect to testing for positive autocorrelation, the empirical Type 
I error rates and power of the test using C were similar to those of the test using r, +. The results 
show that the search for improved small-sample estimators should consider the approach offered 
by the C-statistic, in addition to modifications or r,. Overall, statistics based on differences and 
cross-products are both useful for the analysis of correlated data. 

If interest centers on estimation, then the results suggest that the C-statistic is preferable to r, + , 
because the bias and MSE tend to be smaller, although the difference between the two estimators 
is small. It should be kept in mind that the bias of both r, + and C is still quite large for small 
sample sizes (< 30). With respect to hypothesis testing, the power of both tests tends to be low for 
n < 50 (for p < 0.5). In light of the results, Box and Jenkins’ (1976) recommendation of sample 
sizes of at least 50-100 repeat observations is shown to be reasonable. In situations where only 
small sample sizes can be obtained, as is often the case in behavioral analysis, one option is to pool 

the time series across Ss, which is referred to as pooled time series or cross-sectional time series 
in statistics and econometrics (e.g. see Sayrs, 1989). 
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Huitema and McKean’s (1991) study and our study have focused on testing for autocorrelation 
of the observations Y,. It is often the case, however, that a model has been fitted to the data. 
Regression models, for example, are frequently used to determine how other variables affect the 
response, and to study trends or intervention effects. The test for autocorrelation in this case is 
applied to the residuals, which by definition are the difference between the observed and fitted 
values. The situation differs from the above in that the distribution of the test statistic depends on 
the sample values of the regressors. 

Here we note that the C-statistic is closely related to the d-statistic of the widely used 
Durbin-Watson (DW) test (Durbin & Watson, 1950, 1951) which tests for autocorrelated 
residuals. The d-statistic is computed as follows: 

i (6 - et- I I* 
d=‘=* 

ie: ’ 
(5) 

where e, and e,_ , are the regression residuals for times t and t - 1, respectively. The d-statistic has 
been extensively investigated in statistics and econometrics, and has been shown to have good small 
sample properties (for references, see Kmenta, 1986; Judge, Griffiths, Hill, Lutkepohl & Lee, 1985). 

Equation (5) shows that the d-statistic, which is based on the difference between successive 
residuals, is similar to the C-statistic, which is based on the difference between successive 
observations. In fact, if the C-statistic is computed on the residuals obtained from a regression 
analysis, so that Y in equation (3) is replaced by e, then C has an exact relation to d. In this 
situation, the term P (i.e. y) in the denominator of equation (3) equals zero (the mean of the 
residuals is zero), so the denominator of equation (3) is simply twice that of equation (5). Writing 
out the terms summed in the numerator of equations (3) and (5) shows that they are identical. It 
therefore follows that: 

C=l-id. 

The above shows that, if the C-statistic is computed using residuals from a regression analysis, then 
it has an exact relation to the d-statistic of the Durbin-Watson test. It should be noted that the 
test of the null hypothesis of zero autocorrelation differs, however, in that the d-statistic is 
compared to upper and lower critical bounds, whereas the C-statistic is compared to critical values 
from the standard normal distribution. The bounds for the d-statistic arise because of difficulties 
in determining an exact critical value which is independent of the sample values of the regressors. 

In sum, there are two basic approaches to estimating and testing autocorrelation. One approach 
is based on the cross-product of successive observations; r, and r, + are examples. The second 
approach is based on the squared differences between successive observations; the C-statistic is an 
example. The two approaches are closely related, and an understanding of this relationship is 
important for future studies of small sample autocorrelation estimators. 
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APPENDIX 

Relation Between C and r, 

The C-statistic is: 

2C(Y,-r)2 
,=I 

The numerator of the term on the far right can be expanded as: 

(Y,- y,+,)2=t(y,- P)-(Y,+,- P)1*. 
Squaring and rearranging terms gives: 

n-l “-1 n-1 

c (Y,-~2+C(Y,+,-P)2-2C(Y,-P)(Y,+,-P) 
C”l-‘=’ ,=I ,=I 

n 

2 c (Y,- n* 
Writing the last term in the numerator on the right as a separate fraction shows that it is simply r,, so that: 

n--l n-1 

c (Y,- n2+ c (Y,+,- Q?’ 
Czr,+t--‘=’ ‘=I 

2,@Y,- r3’ 

Next, the two terms in the numerator on the right can be replaced using the following identities: 

and 

n-1 

,F;(Y,-Y)2=i:(Y,-~2-(Y”-~I 
,=I 

which gives 

n-1 

1 (Y,+,- V= i (Y,- V’-(Y,- r3’, 
,= I ,=I 

” 
2 2 (Y,- y)z-(Y,- n2-(Y,- Y)’ 

C=r,fl- ‘=I 
n 

2 c (Y,- n* 
Substituting 

for 1 and cancelling terms gives 

,=I 

2&r n* 
1 

&Y,- n* 
I 

C=r 
1 

+(Y,- V+(y,- n?’ 
n 

2,;,(Yt- r3’ 
which is equation (4). 


