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Insights from Reparameterized DINA and Beyond 

Lawrence T. DeCarlo 

The purpose of cognitive diagnosis is to obtain information about the set of skills or 

attributes that examinees have or do not have. A cognitive diagnostic model (CDM) attempts to 

extract this information from the pattern of responses of examinees to test items. A number of 

general CDMs have been proposed, such as the general diagnostic model (GDM; von Davier, 

2008), the generalized DINA model (GDINA; de la Torre, 2011), and the log-linear cognitive 

diagnostic model (LCDM; Henson, Templin, & Willse, 2009). These general models can be 

shown to include well-known models that are often used in cognitive diagnosis, such as the 

deterministic inputs noisy and gate model (DINA; Junker & Sijtsma, 2001), the deterministic 

inputs noise or gate model (DINO; Templin & Henson, 2006), the additive cognitive diagnosis 

model (ACDM; de la Torre, 2011), the linear logistic model (LLM; Maris, 1999), and the 

reduced reparameterized unified model (rRUM; Hartz, 2002). 

This chapter starts with a simple reparameterized version of the DINA model and builds 

up to other models; all of the models are shown to be extensions or variations of the basic model. 

Working up to more general models from a simple form helps to illustrate basic aspects of the 

models and associated concepts, such as the meaning of model parameters, issues of estimation, 

monotonicity, duality, and the relation of the models to each other and more general forms. In 

addition, reparameterizing CDMs as latent class models allows one to use standard software for 

latent class analysis (LCA), which offers a connection to latent class analysis and also allows one 

to take advantage of recent advances in LCA. 

The Reparameterized DINA Model 

A well-known CDM, the DINA model (Haertel, 1989; Junker & Sijtsma, 2001; 

Macready & Dayton, 1977), provides a useful starting point. Let Yij be a binary variable that 

indicates whether the response of the ith examinee to the jth item is correct or incorrect (1 or 0) 
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and let α = (α1, α2,…,αK)ꞌ denote the vector of K attributes that are needed to solve the items. The 

Q-matrix consists of elements qjk that specify which of the K attributes are needed to solve the jth 

item. Thus, the Q-matrix elements consist of zeroes and ones, with a value of zero indicating that 

the kth attribute is not needed, and a value of one indicating that the attribute is needed. For the 

DINA model, the probability that an examinee gets an item correct is 

𝑝(𝑌𝑖𝑗 = 1|α) = (1 − 𝑠𝑗)
η𝑖𝑗𝑔

𝑗

1−η𝑖𝑗 , 

with 

η
𝑖𝑗

= ∏ α
𝑖𝑘

𝑞𝑗𝑘
𝐾

𝑘=1
. 

Note that ηij is simply a binary indicator with a value of one indicating that an examinee has all 

of the required attributes and a value of zero indicating that an examinee is lacking one or more 

of the required attributes. Thus, if an examinee has all of the required attributes, then ηij = 1 and 

𝑝(𝑌𝑖𝑗 = 1|α) = (1 − 𝑠𝑗), 

where the parameter sj is the slip rate for examinee j. If an examinee is missing one or more of 

the required attributes, then ηij = 0 and 

𝑝(𝑌𝑖𝑗 = 1|α) = 𝑔𝑗, 

where the parameter gj is the guess rate. 

Although ‘slipping’ and ‘guessing’ were suggested as useful mnemonics by Junker and 

Sijtsma (2001), the relation of the concepts to basic ideas of signal detection theory (SDT) is also 

informative (Green & Swets, 1966; Macmillan & Creelman, 2005; Wickens, 2002). In SDT, 

(1−sj) is the hit rate – the examinee has the requisite attributes and gets the item correct, whereas 

sj is the miss rate – the examinee has the requisite attributes, but gets the item incorrect. If an 

examinee does not have the requisite attributes yet gets the item correct, then that’s a false 

alarm; note that guessing is an interpretation of false alarms. 

It has previously been shown that a simple re-parameterization of the DINA model can be 

obtained by re-writing the false alarm rate, gj, as 

𝑔𝑗 =
𝑒𝑥𝑝(𝑓𝑗)

1 + 𝑒𝑥𝑝(𝑓𝑗)
 , 
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where exp is the exponential function and the parameter fj is the transformed false-alarm rate. 

Similarly, one minus the slip rate, the hit rate, can be re-written as 

1 − 𝑠𝑗 =
𝑒𝑥𝑝(𝑓𝑗 + 𝑑𝑗)

1 + 𝑒𝑥𝑝(𝑓𝑗 + 𝑑𝑗)
, 

where dj is a discrimination parameter. The DINA model can then be re-written as 

logit 𝑝(𝑌𝑖𝑗 = 1|𝛂) = 𝑓𝑗 +  𝑑𝑗 ∏ α
𝑖𝑘

𝑞𝑗𝑘

𝐾

𝑘=1

, 
(

(1) 

which has been referred to as the reparameterized DINA model (rDINA; DeCarlo, 2011). The 

model is a special case of the general diagnostic model of von Davier (2008), with a change in 

notation to emphasize the signal detection aspects of the model. In particular, fj is a transformed 

false alarm rate whereas dj is a difference of transformed hit and transformed false alarm rates 

that indicates the level of discrimination between having and not having the attributes (i.e., ηij = 

1 versus ηij = 0). Note that the discrimination parameter in SDT is a function of both hits and 

false alarms, in contrast to looking at slips and guesses separately, in that it follows from the 

theory that one needs to examine the hit rate relative to the false alarm rate (to get the distance 

measure d); other variations of the discrimination parameter have also been considered (e.g., 

differences, ratios, etc.). From a statistical point of view, the intercept fj is the log odds of a 

correct response given ηij = 0, and the slope dj is the log odds ratio of a correct response given ηij 

= 1 versus ηij = 0. The rDINA model is equivalent to the DINA model and so estimates of fj and 

dj can be transformed to get estimates of gj and sj. 

Monotonicity 

Note that, when fitting the model, a constraint must be used so that monotonicity is 

satisfied. In terms of the DINA model, monotonicity holds if 

0 < 𝑔𝑗 < 1 − 𝑠𝑗 < 1. 

Without the monotonicity constraint, examinees who have a required attribute could have a 

lower probability of getting an item correct than if they did not have the attribute (although this 

could be appropriate in certain situations). It is informative to interpret the monotonicity 

constraint in terms of signal detection theory, in that it simply implies that the hit rate (1−sj) must 

be greater than the false alarm rate (gj), in which case the receiver operating characteristic curve 
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(ROC; see Macmillan & Creelman, 2005), which is a plot of hits versus false alarms, will lie 

above the diagonal (the diagonal represents zero discrimination) and the discrimination 

parameter d will be greater than zero. In terms of the rDINA model, monotonicity holds if 

0 <
𝑒𝑥𝑝(𝑓𝑗)

1 + 𝑒𝑥𝑝(𝑓𝑗)
<

exp(𝑓𝑗 + 𝑑𝑗)

1 + exp(𝑓𝑗 + 𝑑𝑗)
< 1, 

and so monotonicity holds if the discrimination parameter dj is greater than zero (for finite fj and 

dj). This constraint can be implemented in many software packages; the Appendix, for example, 

provides Latent Gold programs that show how to implement monotonicity by using the (+) 

command, which constrains the parameter to non-negative values.  

Estimation 

A benefit of the rDINA model of Equation 1 is that it is simple to fit with standard 

software for latent class analysis, such as Latent Gold (LG; Vermunt & Magidson, 2016) or the 

freely available LEM (Vermunt, 1997), given that Equation 1 is simply a logistic latent class 

model with latent dichotomous interaction terms. The program provided in the Appendix shows 

that it is straightforward to fit the rDINA model in LG by specifying interaction terms for the 

latent dichotomous attributes; the Q-matrix being used is also made transparent in the program. 

Note that the rDINA model discussed so far is the ‘examinee-level’ part of the model, 

whereas the complete model also includes a higher-level model for the attributes, that is, an 

‘attribute-level’ model. This is a model for the probabilities of the various skill combinations, 

that is, p(α1, α2,…, αK). Latent Gold and LEM programs to fit the rDINA model with either an 

independence structure or a higher-order structure (with a continuous latent variable) for the 

attribute-level model have previously been provided (DeCarlo, 2011). Here it is shown how to 

specify an unstructured attribute-level model (not previously shown) in Latent Gold or other 

latent class software. Note that when CDM researchers refer to fitting ‘the DINA model’, they 

usually mean the DINA model with an unstructured attribute-level model. 

To implement the unstructured attribute model one merely needs to use a saturated model 

as the higher-level model. A simple way to do this in Latent Gold is to specify a saturated 

association model (Agresti, 2002) for the attribute-level model, with one parameter set to zero, 

so that the model includes 2k − 1 parameters for the 2k attribute patterns (and so it is saturated). 



   5 

 
An example of this approach is given by the first rDINA LG program provided in the Appendix. 

In this case, the first cell is restricted to be zero, using the command r[1,1] = 0, for identification. 

Estimates of the class sizes for each attribute pattern, and their standard errors, are given in the 

section of LG output that is labeled as “Profile”, along with estimates of the marginal class sizes, 

that is, estimates of p(αk).  

Another option is to specify a sequence of path models, which gives the same results as 

when an association model is used, given that both models are saturated. The LG program in the 

Appendix also illustrates this approach (in the comments, which are specified in LG by the 

symbol ‘//’); running the program shows that the results are the same as those obtained using the 

saturated association model. Depending on the software that one uses, one or the other of the 

approaches for the attribute-level model might be simpler to implement. 

Philipp, Strobl, de la Torre, and Zeilis (2018) recently noted that there is a problem with 

respect to estimation of the standard errors in CDMs. In particular, “it is common to compute the 

standard errors only for the parameters that are used to specify the item response function while 

ignoring the parameters used to specify the joint distribution of the attributes.” (p. 2). They note 

that this common approach can lead to underestimation of the standard errors in both parts of the 

model (also see von Davier, 2014). Note that, with the LCA approach, the standard errors are 

estimated for both the examinee-level parameters (i.e., the item response function) and the 

attribute-level parameters. Latent Gold also offers a robust (sandwich) estimator of the SEs, as 

well as others, details of which are given in the technical manual (Vermunt & Magidson, 2016). 

Using software for LCA also makes available a wide array of tools and output for CDMs. 

For example, with Latent Gold, one obtains estimates of the parameters for both the examinee-

level and attribute-level models, along with their standard errors, absolute and relative fit 

statistics (e.g., Chi-square goodness of fit, information criteria such BIC and AIC, etc.), bivariate 

residuals, various classification statistics and tables, different types of plots, output files with 

posterior classifications for each examinee, as well as details about the iterations and any 

convergence or identification problems. In addition, different algorithms are available, such as 

versions of the Newton-Raphson and Expectation-Maximization algorithms (LG starts with the 

EM and moves to NR when in the vicinity of the solution), as well as the option to use posterior 
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mode estimation with different Bayes constants, which controls the degree of smoothing, along 

with many other options. 

Boundary Problems 

A well-known problem that often arises in latent class analysis is known as a boundary 

problem (Clogg & Eliason, 1987; DeCarlo, 2011; Maris, 1999). Boundary problems occur when 

parameter estimates and SEs are large or indeterminate, or probability estimates are close to zero 

or one, which is also related to identification problems (such as weak identification). This 

problem has been somewhat neglected in CDMs (some exceptions are noted below), partly 

because the SEs are sometimes not reported, and partly because, in the original probability 

version of the model, finding slipping or guessing parameters close to zero, for example, is not in 

and of itself cause for alarm (not having slipping or guessing can be viewed as a good thing), 

whereas it could actually be reflecting an overlooked boundary problem. The reparameterized 

model is useful in this regards because the model transforms the zero-one probability scale (for gj 

and sj) to a minus infinity to positive infinity scale for fj and greater than zero to infinity scale for 

dj (because of the monotonicity constraint), and so boundary problems or weak identifiability 

will tend to be more obvious, in that they will appear as overly large or infinite parameter 

estimates and/or estimated standard errors. For example, Table 4 of de la Torre (2009) shows 

parameter estimates for a fit of the DINA model to a subset of 15 items (out of 20) of the well-

known fraction subtraction data. The estimate of g1 for the first item is shown as 0.00 with a 

standard error of 0.05 (which is the largest standard error in the table) and the estimate of s1 is 

0.28 (the highest in the table) with a standard error of 0.013. A fit of the rDINA model with LG 

to this data (with unstructured attributes) gives an estimate of f1 of about −24 (whereas the lowest 

fj for all the other items is around −4.5) with an SE of 0.12, and an estimate of d1 of 25 with an 

SE of 1000 (i.e., infinite), and so there are clearly identification problems for this item. 

In addition to boundary problems appearing in the examinee-level part of the model, they 

can also appear in the attribute-level part of the model, particularly when the unstructured 

attribute model is used. For the fraction subtraction example with 15 items just discussed, LG 

shows that there are 22 boundary problems in the unstructured attribute model (with 22 SEs 

appearing as 1000). It is interesting to note that if one fits the original 20 item version of the 
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fraction subtraction data with an unstructured attribute model, as has been widely used in many 

studies, then Latent Gold reports that there are 198 non-identified parameters (note that the 

unstructured model has 28 – 1 = 255 parameters; problems also appear for a higher-order model). 

Estimates of the standard errors for the attribute-level model parameters are also all excessively 

large (>20), again reflecting identification problems. Thus, even though the unstructured 

attributes model has been widely used, identification problems with the attribute-level model, 

and the possible effects of this on estimation for the examinee-level model, have generally not 

been considered. 

Boundary problems for fits of the DINA model, additive cognitive diagnosis model 

(ACDM), and GDINA model to real-world data given in the R package pks (Heller & 

Wickelmaier, 2013) were recently noted by Philipp, Strobl, de la Torre, & Zeileis (2018); they 

noted boundary problems in both the examinee-level and attribute-level parts of the model (p. 

20). von Davier (2014) discussed identification problems for the well-known Examination for 

the Certificate of Proficiency in English (ECPE) data; he noted that, even with constraints, weak 

identifiability still appeared for the LCDM; also see Templin and Bradshaw (2014). 

Posterior Mode Estimation and Bayesian Estimation 

A number of authors have discussed the use of posterior mode estimation (PME) to deal 

with boundary problems (e.g., DeCarlo, 2011; DeCarlo, Kim, & Johnson, 2011; Maris, 1999; 

Vermunt & Magidson, 2016). PME is less computationally intense than a full Bayesian analysis 

in that it does not require that the full posterior distribution be generated, but rather only the 

mode needs to be found. As a result, PME has a computational speed advantage over a full 

Bayesian analysis, which is useful when performing computer simulations. In addition, standard 

algorithms that implement maximum likelihood estimation can often easily be modified to 

implement PME. The approach basically smooths infinite or large parameter estimates and/or 

estimates of the standard errors. The use of PME in CDMs is a topic for future research; this 

option is currently available in Latent Gold. The use of PME for a simple latent class signal 

detection model (DeCarlo, 2002; 2005), which is the same as a CDM with a single latent 

dichotomous attribute (the latent signal), has been examined in simulations presented in DeCarlo 

(2008; 2010); the use of PME for a hierarchical rater signal detection model with ordinal latent 
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classes has been examined in simulations presented in Kim (2009), and the use of PME with 

real-world data was examined in DeCarlo, Kim, and Johnson (2011). 

Another option is to use a full Bayesian analysis to fit CDMs (e.g., Culpepper, 2015; de 

la Torre & Douglas, 2004; DeCarlo, 2012; Henson, Templin, & Willse, 2009). For example, an 

OpenBugs program (Spiegelhalter, Thomas, Best, & Lunn, 2014) to fit the rDINA model with 

Bayesian estimation was given in DeCarlo (2012; with a monotonicity constraint implemented 

by restricting dj to be greater than zero). The approach also generalized the model by allowing 

for uncertainty about some elements of the Q-matrix, and simulations suggested adequate 

recovery of those elements using posterior distributions. The Bayesian approach allows for 

interesting extensions; for example one can extend the model with a few uncertain Q-matrix 

elements to allow all of the Q-matrix elements to be uncertain; this approach was examined by 

DeCarlo and Kinghorn (2016; with monotonicity restrictions) and by Culpepper (2015; with 

completeness restrictions). 

Classification 

Classification in latent class analysis is typically done using the modal posterior 

probabilities (e.g., Clogg, 1995; Dayton, 1998). For example, one approach, maximum a priori 

(MAP) classification, is to simply classify each examinee into the attribute set with the largest 

posterior probability. Another option is to use marginal probabilities to classify examinees for 

each skill separately, as in expected a posteriori (EAP) classification. In maximum likelihood 

estimation (MLE), classification is accomplished by finding attribute patterns that maximize the 

posterior. The various approaches were compared in the context of CDMs by Huebner and Wang 

(2011). 

Identifiability 

Identifiability is concerned with whether one can obtain unique estimates of the model 

parameters. Xu and Zhang (2016) gave necessary and sufficient conditions for identifiability of 

the model parameters for the DINA model (also see Chen, Liu, Xu, & Ying, 2015). They also 

noted that their results could be extended to the DINO model, because of the duality of the 

models (see below). The issue of boundary problems discussed above is also related to the issue 
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of identifiability, with large standard errors often indicating ‘weak identification’, in which case 

the data (or model) are not informative about the parameters. 

The effect of identifiability on classification has also been discussed. Chiu, Douglas, and 

Li (2009) noted that completeness of a Q-matrix is generally needed for identification of all 

possible attribute patterns. For the DINA and DINO models, for example, completeness is 

satisfied if, for each attribute, there is an item that measures that attribute alone. Köhn and Chiu 

(2017) noted that the conditions for completeness depend on the model and examined 

completeness for several CDMs. 

For the fraction subtraction data, DeCarlo (2011) noted that, because of incompleteness 

of the Q-matrix, some of the posterior classifications from the DINA model depend solely on the 

priors, and so the data offer no additional information over the priors. Zhang, DeCarlo, and Ying 

(2013) noted that, although certain attribute patterns are in the same equivalence class for the 

fraction-subtraction data and so are not identifiable, individual attributes within an equivalence 

class may still be identifiable. They proposed a measure of the marginal identifiability rate, 

which is the proportion of the population for which each attribute is marginally identifiable, and 

suggested that it can be viewed as a measure of test (and model) quality. Zhang et al. also 

proposed classification algorithms that took into account the effects of marginal identifiability. 

Reparameterized DINO 

Here it is shown that a reparameterized version of the DINO model (Templin & Henson, 

2006) clarifies issues about the relations between the DINO and DINA models (duality) and their 

parameters. The DINO model is similar to the DINA model with the exception that, instead of 

requiring that all of the skills be present in order to solve an item, only one or more of the skills 

need to be present. The DINO condensation rule is usually referred to as being disjunctive, 

whereas the DINA condensation rule is conjunctive (Rupp, Templin, & Henson, 2010). The 

model is 

𝑝(𝑌𝑖𝑗 = 1|α) = (1 − 𝑠𝑗
′)

𝜔𝑖𝑗
𝑔𝑗

′1−𝜔𝑖𝑗 , 

where 𝜔𝑖𝑗 = 1 − ∏ (1 − 𝛼𝑖𝑘)𝑞𝑗𝑘𝐾
𝑘=1  equals one if any required skill is present, and zero only if 

all of the required skills are absent. 
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It is important to note that slips and guesses, 𝑠𝑗
′ and 𝑔𝑗

′ , are defined differently in the 

DINO model as compared to the DINA model. In the DINO model, the hit rate 1 − 𝑠𝑗
′ is the 

probability of a correct response given that an examinee has at least one of the attributes, 

whereas in the DINA model, the hit rate 1 − 𝑠𝑗 is the probability of a correct response given that 

an examinee has all of the attributes. Similarly, the false alarm rate  𝑔𝑗
′  in the DINO model is the 

probability of a correct response given that an examinee has none of the attributes, whereas the 

false alarm rate 𝑔𝑗 in the DINA model is the probability of a correct response given that an 

examinee is missing at least one attribute. 

The DINO model can be reparameterized using the same approach used above for the 

DINA model, which gives, 

logit 𝑝(𝑌𝑖𝑗 = 1|𝛂) = 𝑓𝑗
′ +  𝑑𝑗

′[1 − ∏(1 − 𝛼𝑖𝑘)𝑞𝑗𝑘]

𝐾

𝑘=1

, 
(

(2) 

which will be referred to as the rDINO model; the model was also recently derived in terms of 

the GDM by Köhn and Chiu (2016). Once again, monotonicity is satisfied if 𝑑𝑗
′ is greater than 

zero. 

As for the rDINA model, the model in this form is straightforward to fit using software 

for latent class analysis. Suppose, for example, that Item 1 requires the first three skills. The 

model for the first item is then 

logit 𝑝(𝑌𝑖1 = 1|𝛂) = 𝑓1
′ +  𝑑1

′ (𝛼𝑖1 + 𝛼𝑖2 + 𝛼𝑖3 − 𝛼𝑖1𝛼𝑖2 − 𝛼𝑖1𝛼𝑖3  − 𝛼𝑖2𝛼𝑖3 + 𝛼𝑖1𝛼𝑖2𝛼𝑖3), 

which is a logistic model with all main effects and higher order interaction terms. Further, the 

coefficients (𝑑𝑗
′) are restricted to be equal across all terms and have alternating signs across the 

two and three way interactions, as was also noted by de la Torre (2011) for the G-DINA model. 

A sample rDINO program that shows how to implement the parameter constraints of Equation 2 

in Latent Gold is given in the Appendix.  

DINO/DINA Duality 

The rDINO model of Equation 2 can be re-written as 

logit 𝑝(𝑌𝑖𝑗 = 1|𝛂) = (𝑓𝑗
′ +  𝑑𝑗

′) − 𝑑𝑗
′ ∏(1 − 𝛼𝑖𝑘)𝑞𝑗𝑘 .

𝐾

𝑘=1

 

(3) 
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Note that, if one replaces 1 − 𝛼𝑖𝑘 in the above with reverse coded 𝛼𝑖𝑘
∗ = 1 − 𝛼𝑖𝑘, then Equation 

3 has the same form as the rDINA model of Equation 1, with a redefined intercept and a negative 

slope. This was also shown by Köhn and Chiu (2016, see Section 3.3) by replacing 1 − 𝛼𝑖𝑘 with 

𝛼𝑖𝑘
∗  and by reverse coding the data, so that 𝑌𝑖𝑗

∗ = 1 − 𝑌𝑖𝑗, which merely reverses the signs of 

Equation 3, given that logit p = −logit (1−p), and so 

logit 𝑝(𝑌𝑖𝑗
∗ = 1|𝛂∗) = (−𝑓𝑗

′ − 𝑑𝑗
′) + 𝑑𝑗

′ ∏(𝛼𝑖𝑘
∗ )𝑞𝑗𝑘

𝐾

𝑘=1

. 
(

(3a) 

Equation 3a is clearly related in form to the rDINA model of Equation 1, with a redefined 

intercept (and different parameters). In this respect, there is a duality between the rDINA and 

rDINO models (and so between the DINA and DINO models as well; Chen, Liu, Xu, & Ying, 

2015; Köhn & Chiu, 2016; Liu, Xu, & Ying, 2011).  

An important consequence of the duality between the DINA and DINO models (and 

rDINA and rDINO) is that theoretical results developed for one model can be applied to the other 

model (Liu, Xu, & Ying, 2011). For example, Köhn and Chiu (2016) used duality to determine 

the conditions necessary for completeness of the Q-matrix for both the DINA and DINO models. 

Köhn and Chiu (2016) noted another interesting consequence of duality, which is that it 

implies that the DINO model can be fit by using a DINA program. The simple reparameterized 

versions of the models presented here are helpful in that they suggest more than one way that this 

can be done. To start, note that the rDINO model can be fit directly as given in Equation 2, as 

shown by the rDINO program given in the Appendix. In this case, the program is a little more 

involved than the rDINA program because of the parameter restrictions implied by the rDINO 

model (i.e., equal 𝑑𝑗
′ and alternating signs). 

Equation 3a suggests another option, also suggested by Köhn and Chiu (2016), which is 

to use a DINA program to fit the DINO model. This can be done if one can fit the DINA model 

with reverse coded 𝛼𝑖𝑘
∗  in lieu of 𝛼𝑖𝑘, which is the key to the difference between the models. 

Köhn and Chiu (2016) accomplished this by reverse coding the data and maintaining the 

monotonicity constraint. Note that, for symmetric links such as the logit, reverse coding the data 

simply reverses the parameter signs. However, because the monotonicity constraint is also 

maintained, the model cannot account for the reversed Y with a negative sign for the 
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discrimination parameter, but rather with a reversed α (i.e., α*). Thus, reverse coding the data and 

maintaining monotonicity is simply a way to induce the use α* in the model in lieu of α. 

A practical advantage of the above approach is that one can then fit the rDINO model 

using the simpler rDINA program given in the Appendix by reverse coding the data and keeping 

the monotonicity constraint (i.e., positive values of 𝑑𝑗
′). Note that if the monotonicity constraint 

is removed, then fitting the reverse coded data will simply give results for the rDINA model with 

reversed parameter signs, and not the rDINO model, as the reader can verify. 

Another interesting option is suggested by Equation 3 – fit the rDINO model with an 

rDINA program, but impose a negative monotonicity constraint, that is, restrict 𝑑𝑗
′ in Equation 3 

to be less than zero. An interesting aspect of this approach is that it again allows one to fit the 

rDINO model with an rDINA program, but there is no need to reverse code the data. That is, one 

can fit the original data, again using an rDINA program, by simply replacing (+) in the LG 

program given in the Appendix with (−), to give a negative monotonicity constraint. Specifying a 

negative monotonicity constraint will tend to lead to 𝛼𝑖𝑘
∗  being used in the model in lieu of 𝛼𝑖𝑘, 

in which case the rDINO model of Equation 3 is fit (and not the rDINA model). 

It is apparent that the simplest approach in Latent Gold is the third one – simply use the 

original data and impose a negative monotonicity constraint in an rDINA program to get the 

rDINO model of Equation 3. It would be interesting in future research to see if there are any 

differences across the three approaches to fitting the rDINO model, in terms of estimation 

advantages or disadvantages. 

It should be noted that using a negative monotonicity constraint or reverse coding the 

data and using a positive monotonicity constraint may not be sufficient to lead to 𝛼𝑖𝑘
∗  being used 

in the model in lieu of 𝛼𝑖𝑘 (this is also related to ‘label switching’ issues discussed in latent class 

analysis, although it is not simply label switching in this case in that the likelihood differs, but 

this is beyond the scope of the current chapter), this needs to be considered more closely in 

future research. For example, if Equation 3a is used, then one must check that all of the 𝑑𝑗
′ 

estimates have positive signs, so that monotonicity holds. Another useful check is to compare the 

latent class size estimates, that is, the estimates of p(αk) for the rDINO model, to those obtained 

for a fit of the rDINA model – the class size estimates will usually  differ (beyond a simple 
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reversal in categories). If they are the same, apart from a category reversal, then it is likely that 

the rDINA model was fit, not the rDINO model. 

Equations 2, 3, and 3a are useful in that they also show exactly what estimates are 

obtained with each of the three approaches. That is, if one fits the rDINO model as specified in 

Equation 2, then the intercept and slope of the logistic model will give direct estimates of 𝑓𝑗
′ and 

𝑑𝑗
′ respectively; the estimates of p(αk), the latent class sizes, will be given in LG as Class Size 2 

(i.e., the class size for having the attribute). If the data are reverse coded and Köhn and Chiu’s 

(2016) approach is used, then the intercept gives an estimate of −𝑓𝑗
′ − 𝑑𝑗

′ and the slope gives an 

estimate of 𝑑𝑗
′ (see Equation 3a). Thus, one has to add the estimate of 𝑑𝑗

′ to the intercept and then 

reverse the sign to get an estimate of 𝑓𝑗
′. The latent class sizes will also be reversed, so that Class 

Size 1 in Latent Gold will give the class size for having the attribute. Finally, if one fits rDINO 

with Equation 3, then the intercept will give an estimate of 𝑓𝑗
′ +  𝑑𝑗

′ and the slope will give an 

estimate of −𝑑𝑗
′. Thus, one simply adds the slope estimate to the intercept estimate to get an 

estimate of 𝑓𝑗
′ and reverses the sign of the slope to get 𝑑𝑗

′. The latent class sizes will again be 

reversed, and so Class Size 1 again gives the desired estimate. It is instructive to use the three 

approaches and compare the results; simulated DINO data is available at the author’s website, 

along with LG programs, so that the three approaches can be implemented and compared. 

The equations also help to clarify similarities and differences between the DINA and 

DINO models. First, the relation between Equations 1 and 3a does not imply that the rDINA 

model and the rDINO model are equivalent; they can and will give different log likelihoods 

when fit to the same data (and different log posteriors, in a Bayesian approach), given that they 

impose a different structure on the data (for items that involve two or more attributes). Note that 

Köhn and Chiu (2016; Section 3.3) showed that the expected item response function for DINO 

with Y* and α* is equivalent to that for DINA with Y and α, as also shown by Equation 3a. This 

does not mean however that the DINO model is equivalent to the DINA model. Rather, it should 

be recognized that if one uses a DINA program to fit the model with 𝛼𝑖𝑘
∗ , regardless of whether 

or not Y is reverse coded, then the DINO model is being fit, as shown by Equations 3 and 3a, and 
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not the DINA model. That is, using notation suggested by a reviewer, Equations 3 and 3a, 

respectively, show that 

rDINO(Y,α) = rDINA(Y*,α*) = rDINA(Y,α*), 

with the parameters related as shown above. This is what allows one to use a DINA program to 

fit the DINO model – use α* in the DINA model in lieu of α, irrespective of whether Y or Y* is 

used, and the DINO model is being fit. However, this does not mean that the DINO model is 

equivalent to the DINA model, that is, 

rDINO(Y,α) ≠ rDINA(Y,α) 

as can be seen by comparing Equations 1 and 2 (for items that load on two or more attributes). 

Thus, rDINO and rDINA (and DINO and DINA) are structurally different models, the above just 

shows that using α* in place of α in a DINA program, and maintaining monotonicity, results in 

the DINO model being fit. A useful exercise is to use the rDINA LG program given in the 

Appendix with reverse coded data, but remove the monotonicity constraint; the result is that the 

rDINA model is fit, not the rDINO model, and the parameter signs are simply reversed from 

those obtained for a fit of the rDINA model to the original data. On the other hand, if the 

monotonicity constraint is enforced for the reverse coded data, then the rDINO model will be fit, 

not the rDINA model, and the parameter estimates and likelihood will differ. 

Another point of clarification is that the models also differ with respect to the parameter 

estimates, that is, the DINO parameter estimates are not transformations of the DINA parameter 

estimates (contrary to some claims). The models are structurally different and involve different 

parameters. Table 1 shows a simple example with two attributes. The third column shows the 

condensation rule η
𝑗
 for the DINA model and the fourth column shows the condensation rule 𝜔𝑗 

for the DINO model. The fifth column shows the DINA parameters for a correct response. The 

column shows that, for the DINA model, false alarms, 𝑔𝑗, occur for the first three rows, whereas 

the last row represents hits, 1 − 𝑠𝑗. The sixth column shows the DINO parameters; in this case, 

only the first row represents false alarms, 𝑔𝑗
′ , whereas the other rows all correspond to hits, 1 −

 𝑠𝑗
′. 
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Table 1: Relation between terms and parameters for the DINA and DINO models 

 α1  α2  ηj  ωj  DINA  DINO 

 0  0  0  0       𝑔𝑗     𝑔𝑗
′  

 1  0  0  1       𝑔𝑗  1 − 𝑠𝑗
′ 

 0  1  0  1       𝑔𝑗  1 − 𝑠𝑗
′ 

 1  1  1  1  1−𝑠𝑗   1 − 𝑠𝑗
′ 

Table notes:  for DINA, 𝜂𝑗 = ∏ α𝑘

𝑞𝑗𝑘𝐾
𝑘=1 ; for DINO, 𝜔𝑗 = 1 − ∏ (1 − 𝛼𝑘)𝑞𝑗𝑘𝐾

𝑘=1 ; the DINA and 

DINO columns show the parameters that correspond to a correct response. 

A comparison of the second and third rows of Table 1, where only one of the skills is 

present, helps to highlight differences between the models. For DINA, the second and third row 

parameters are the same as the first row, that is, they are all false alarms 𝑔𝑗. In contrast, for 

DINO, the second and third row parameters are the same as the fourth row, the hit rate 1 − 𝑠𝑗
′. 

Thus, different parameter estimates will generally be obtained for fits of the two models (for 

items that involve two or more attributes) and one set of parameters are not simply 

transformations of the other set, that is, 𝑔𝑗
′ ≠ 𝑔𝑗  and 1 − 𝑠𝑗

′ ≠ 1 − 𝑠𝑗 . 

To summarize, if one uses a DINA program and induces the use of α* in place of α, either 

by reverse coding the data or enforcing negative monotonicity, then one is fitting the DINO 

model and not the DINA model. 

A General Reparameterized Model 

The rDINA and rDINO models show a clear and simple pattern. Consider the rDINA 

model for an item that requires three skills, 

logit 𝑝(𝑌𝑖𝑗 = 1|𝛂) = 𝑓𝑗 + 𝑑𝑗𝛼𝑖1𝛼𝑖2𝛼𝑖3, 

whereas the corresponding rDINO model is 

logit 𝑝(𝑌𝑖𝑗 = 1|𝛂) = 𝑓𝑗
′ +  𝑑𝑗

′(𝛼𝑖1 + 𝛼𝑖2 + 𝛼𝑖3 − 𝛼𝑖1𝛼𝑖2 − 𝛼𝑖1𝛼𝑖3  − 𝛼𝑖2𝛼𝑖3 + 𝛼𝑖1𝛼𝑖2𝛼𝑖3), 

and similarly for the other items. It is clear that the rDINA model only includes the highest-order 

interaction term whereas the rDINO model also includes main effects and lower order interaction 

terms. Further, rDINO restricts the coefficients of all the terms to be equal and the signs to be 

alternating. 
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It is immediately obvious that both the rDINA and rDINO models, as well as others, are 

simply special cases of a more general model that includes all main effects and higher order 

interactions. For example, for the above item with three attributes, a general reparameterized 

model is 

g[ 𝑝(𝑌𝑖𝑗 = 1|𝛂)] = 𝑓𝑗 + 𝑑𝑗1𝛼𝑖1 + 𝑑𝑗2𝛼𝑖2 + 𝑑𝑗3𝛼𝑖3+ 𝑑𝑗,12𝛼𝑖1𝛼𝑖2 + 𝑑𝑗,13𝛼𝑖1𝛼𝑖3  

 +𝑑𝑗,23𝛼𝑖2𝛼𝑖3 +  𝑑𝑗,123𝛼𝑖1𝛼𝑖2𝛼𝑖3,  

where g is a link function, such as the logit, probit, or complementary log-log link (all available 

in LG, along with others). Note that the discrimination parameters are now attribute-specific, that 

is, dj in the rDINA and rDINO models is replaced with the attribute-specific djk, for the first-

order terms. For the interaction terms, the discrimination parameter subscripts indicate which 

attributes are involved; for example, for a three-way interaction term the discrimination 

parameter is dj,kk’k’’, where the j indicates the item, as before, and kk’k’’ indicates the three 

attributes involved in the interaction (giving 𝑑𝑗,123 in the example above). Applying the model to 

every item, according to the Q-matrix structure, gives a general reparameterized model (GRM), 

which is simple to fit with software such as Latent Gold. The notation makes clear that the added 

parameters are discrimination parameters that show how (transformed) hits increase compared to 

(transformed) false alarms. 

The GRM with logit link gives a saturated version of the GDM of von Davier (2008) and 

the LCDM of Henson et al. (2009); with an identity link it is a saturated version of the GDINA 

model of de la Torre (2011); also see von Davier (2013; 2014). With appropriate parameter 

restrictions, the GRM includes the rDINA and the rDINO models discussed above. Another 

simplification is to only include main effects, which gives the linear logistic model (LLM) of 

Maris (1999); using an identity link gives the additive cognitive diagnosis model (ACDM) of de 

la Torre (2011). With constraints placed on the coefficients of the higher-order interaction terms, 

one can obtain the reduced reparameterized unified model (rRUM; Hartz, 2002), given that Chiu 

and Köhn (2016) recently showed that rRUM is a (non-saturated) logistic model with parameter 

constraints. The parameter constraints for rRUM, however, are somewhat complex (and 

apparently cannot be implemented in LG at this time).  
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Although an unrestricted saturated model is quite simple to fit in software such as Latent 

Gold, one has to pay close attention to parameter restrictions that might need to be imposed. For 

example, if the monotonicity constraint is to be satisfied, then the coefficients djk of single 

attribute terms should be restricted to be greater than zero. Note that if one fits the model (as 

GDINA) using ‘rule=GDINA2’ in the CDM package in R (George et al., 2016; also see Chapter 

26 in this volume), for example, then monotonicity is not enforced, as can be verified using the 

ECPE data – the first item gives a negative djk for the first attribute, and so monotonicity does 

not hold for the first item. The GDINA package in R (Ma & de la Torre, 2017; also see Chapter 

29 in this volume) allows one to place monotonicity constraints on the parameters. As before, in 

Latent Gold, non-negativity for djk is implemented by using the monotonicity constraint (+), 

whereas negative monotonicity is implemented by using (−), as shown by the programs given in 

the Appendix. 

Another consideration has to do with whether or not restrictions should be placed on the 

coefficients of the interaction terms. For example, if they are left unrestricted, then it is possible 

that the probability of a correct response can be lower when an examinee has two required 

attributes as compared to only one of the attributes. If this is viewed as being theoretically 

undesirable (although in some cases one could possibly argue for an interference effect) then 

restrictions should be placed on the interaction parameters. For example, for an item that requires 

two attributes, the restriction dj,kk’ > −1*min(djk, djk’) will ensure that  the probability of a correct 

response when an examinee has both attributes will not be lower than when they only have one 

of the attributes (namely the one that gives the highest probability of a correct response). The 

restriction can also be written as dj,kk’ > −djk and dj,kk’ > −djk’, which is the form used by Templin 

and Hoffman (2013) for an implementation of the model in Mplus. 

With respect to fitting the model in Latent Gold, although there is a way to implement 

order restrictions (as shown below), the multiple restrictions required above cannot currently be 

implemented simultaneously (to my knowledge). For example, for items that require two 

attributes, there are four required restrictions: dj1 > 0, dj2 > 0, dj,12 > −dj1, and dj,12 > −dj2; three of 

the four restrictions can be implemented in LG, but not all four. A simple work-around is to use a 

two-step approach: in the first step, fit the GRM with monotonicity constraints on the first order 
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terms but with no restrictions on the interaction terms and examine the parameter estimates; in 

the second step constrain interaction parameters where necessary (i.e., they violate the above 

order condition) using information gained in the first step. That is, if one finds that the estimate 

of dj2 is greater than the estimate of dj1, then only the restriction dj,12> −dj2 is needed, in addition 

to the two monotonicity restrictions. 

To illustrate the suggested approach, consider the well-known ECPE data, where the 

saturated LCDM with appropriate restrictions has previously been fit (using Mplus; Templin & 

Bradshaw, 2014). The first step is to fit a saturated model in LG with a monotonicity constraint 

on the first-order terms, but unrestricted interaction terms; the program in the Appendix shows 

that this is very simple to do in LG. The results then allow one to see 1) if and where the above 

restriction on the interaction term is violated and 2) if it is, which discrimination parameter is 

smallest, which gives one information about min(djk, djk’), and so only three of the four 

restrictions noted above are needed. For example, for the ECPE data, it was apparent from a fit 

of the GRM that there were problems with Item 7; the coefficient for the second attribute for this 

item was also clearly smaller than for the first attribute. Thus, for the second step, the saturated 

model was fit adding the constraint dj,12> −dj2 to Item 7, and the results reproduce those shown in 

Table 1 and Figure 1 of Templin and Bradshaw (2014) to two decimal places; the log-likelihood 

was also identical to that obtained with Mplus. This is not to say that the two-step approach will 

work in general, but the point here is to show possible ways to implement more complex 

restrictions in current software. 

The program given in the Appendix shows how to implement the order constraint for 

Item 7 in LG; a ‘trick’ is used of adding a positive constant to the coefficient that must be greater 

than zero by introducing an additional interaction term that is restricted to be greater than zero, 

which implements the order constraint. 

It should be noted that there is also a computational speed advantage of Latent Gold for 

CDMs, which is useful when conducting simulations. For example, on a machine with 8GB 

RAM, 2.30 GHz Intel Core processor, and 64-bit OS, an Mplus program to fit the saturated 

LCDM to the ECPE data (retrieved from https://jonathantemplin.com/dcm-workshop-spring-
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2012-ncme/ ) took 47 minutes to converge, whereas the model fit with LG (using the program 

provided in the Appendix) took less than 3 seconds (packages in R also have shorter run times). 

Several researchers have suggested starting with a saturated model and attempting to 

determine which sub-model might be more appropriate (e.g., Rupp, Templin, & Henson, 2010). 

Recent studies have examined this approach using information criteria (Chen, de la Torre & 

Zhang, 2013) and the Wald test (de la Torre & Lee, 2013) for the DINA, DINO, and ACDM 

models. Given the ability to fit the saturated model and the various sub-models in Latent Gold, it 

is straightforward to implement these types of model comparisons. 

Discussion 

Reparameterized models are useful both for illustrating and understanding basic aspects 

of CDMs, as well as providing a bridge to latent class models and accompanying software. The 

importance of recognizing the signal detection nature of the parameters is emphasized. 

Monotonicity, for example, is seen to be a simple restriction on the discrimination parameter 

(i.e., that it is greater than zero) which ensures that the corresponding ROC curves lie above the 

diagonal line (the diagonal represents zero discrimination). The models also help make concepts 

such as duality more transparent, and are useful for showing how different models are related. 

For example, the models show that duality leads to a simple way to fit the rDINO model with a 

program for the rDINA model by using a negative monotonicity constraint. It also clarifies that 

DINA and DINO are structurally different models with different parameters. All the options for 

estimation, classification, and other output and tools available in latent class software become 

immediately available for CDMs. One can also go beyond the GRM, in that one can consider 

models with nominal or ordinal indicators with more than two categories, models with 

continuous indicators, models with nominal, ordinal, or continuous latent variables, and models 

with other link functions besides the logit, all in a very straightforward manner, and all available 

in current software. 
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Appendix 

Complete Latent Gold program to fit the rDINA model, 15 items, 4 unstructured attributes. 

model 

options 

   maxthreads=all; 

   algorithm  

      tolerance=1e-008 emtolerance=0.01 emiterations=250 nriterations=50 ; 

   startvalues 

      seed=0 sets=16 tolerance=1e-005 iterations=50; 

   bayes 

      categorical=0 variances=0 latent=0 poisson=0; 

   montecarlo 

      seed=0 sets=0 replicates=500 tolerance=1e-008; 

   quadrature  nodes=10; 

   missing  excludeall; 

   output       

      parameters=effect  betaopts=wl standarderrors profile probmeans=posterior 

      bivariateresiduals estimatedvalues=model; 

variables 

   dependent y1 cumlogit, y2 cumlogit, y3 cumlogit, y4 cumlogit, y5 cumlogit, 

   y6 cumlogit, y7 cumlogit, y8 cumlogit, y9 cumlogit, y10 cumlogit, y11 cumlogit, 

   y12 cumlogit, y13 cumlogit, y14 cumlogit, y15 cumlogit; 

   latent       

     a1 ordinal 2 score=(0 1), a2 ordinal 2 score=(0 1), 

     a3 ordinal 2 score=(0 1), a4 ordinal 2 score=(0 1); 

equations 

//next line uses a saturated association model for the attribute model// 

  (r~full) a1 <-> a2 <-> a3 <-> a4; 

//for sequential path approach, replace above with:// 

//a1 <- 1; a2 <- 1 + a1; a3 <- 1 + a1 + a2 + a1 a2// 

//a4 <- 1 + a1 + a2 + a3 + a1 a2 + a1 a3 + a2 a3 + a1 a2 a3// 

   y1 <- 1 + (+)a1; 

   y2 <- 1 + (+)a2; 

   y3 <- 1 + (+)a3; 

   y4 <- 1 + (+)a4; 

   y5 <- 1 + (+)a1 a2; 

   y6 <- 1 + (+)a1 a3; 

   y7 <- 1 + (+)a1 a4; 

   y8 <- 1 + (+)a2 a3; 

   y9 <- 1 + (+)a2 a4; 

   y10 <- 1 + (+)a3 a4; 

   y11 <- 1 + (+)a1 a2 a3; 
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   y12 <- 1 + (+)a1 a2 a4; 

   y13 <- 1 + (+)a1 a3 a4; 

   y14 <- 1 + (+)a2 a3 a4; 

   y15 <- 1 + (+)a1 a2 a3 a4; 

//remove next line for the sequential path approach// 

r[1,1]=0; 

end model 

 

 

Latent Gold program to fit the rDINO model of Equation 2 (starting from variables statement) 

 

variables 

   dependent y1 cumlogit, y2 cumlogit, y3 cumlogit, y4 cumlogit, y5 cumlogit, 

 y6 cumlogit, y7 cumlogit, y8 cumlogit, y9 cumlogit, y10 cumlogit, y11 cumlogit, 

 y12 cumlogit, y13 cumlogit, y14 cumlogit, y15 cumlogit; 

   latent       

     a1 ordinal 2 score=(0 1), a2 ordinal 2 score=(0 1), 

     a3 ordinal 2 score=(0 1), a4 ordinal 2 score=(0 1); 

equations 

 (r~full) a1 <-> a2 <-> a3 <-> a4; 

  y1 <- 1 + (+)a1; 

  y2 <- 1 + (+)a2; 

  y3 <- 1 + (+)a3; 

  y4 <- 1 + (+)a4; 

  y5 <- 1 + (+a)a1 + (+a)a2 + (-a)a1 a2; 

  y6 <- 1 + (+b)a1 + (+b)a3 + (-b)a1 a3; 

  y7 <- 1 + (+c)a1 + (+c)a4 + (-c)a1 a4; 

  y8 <- 1 + (+d)a2 + (+d)a3 + (-d)a2 a3; 

  y9 <- 1 + (+e)a2 + (+e)a4 + (-e)a2 a4; 

  y10 <- 1 + (+f)a3 + (+f)a4 + (-f)a3 a4; 

  y11 <- 1 + (+g)a1 + (+g)a2 + (+g)a3 + (-g)a1 a2 + (-g)a1 a3 

   + (-g)a2 a3 + (+g)a1 a2 a3; 

  y12 <- 1 + (+h)a1 + (+h)a2 + (+h)a4 + (-h)a1 a2 + (-h)a1 a4 

   + (-h)a2 a4 + (+h)a1 a2 a4; 

  y13 <- 1 + (+i)a1 + (+i)a3 + (+i)a4 + (-i)a1 a3 + (-i)a1 a4 

   + (-i)a3 a4 + (+i)a1 a3 a4; 

  y14 <- 1 + (+j)a2 + (+j)a3 + (+j)a4 + (-j)a2 a3 + (-j)a2 a4 

   + (-j)a3 a4 + (+j)a2 a3 a4; 

  y15 <- 1 + (+k)a1 + (+k)a2 + (+k)a3 + (+k)a4 + (-k)a1 a2 

   + (-k)a1 a3 + (-k)a1 a4 + (-k)a2 a3 + (-k)a2 a4 + (-k)a3 a4 

   + (+k)a1 a2 a3 +(+k)a1 a2 a4 + (+k)a1 a3 a4 + (+k)a2 a3 a4 

   + (-k)a1 a2 a3 a4; 

r[1,1]=0; 

end model 
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Latent Gold program to fit the restricted (and unrestricted) GRM to the ECPE data 

 

variables 

   dependent i1 cumlogit, i2 cumlogit, i3 cumlogit, i4 cumlogit, i5 cumlogit, i6 cumlogit, 

   i7 cumlogit, i8 cumlogit, i9 cumlogit, i10 cumlogit, i11 cumlogit, i12 cumlogit, i13 cumlogit, 

   i14 cumlogit, i15 cumlogit, i16 cumlogit, i17 cumlogit, i18 cumlogit, i19 cumlogit, 

   i20 cumlogit, i21 cumlogit, i22 cumlogit, i23 cumlogit, i24 cumlogit, i25 cumlogit, 

   i26 cumlogit, i27 cumlogit, i28 cumlogit; 

   latent 

      a1 ordinal 2 score=(0 1), a2 ordinal 2 score=(0 1), a3 ordinal 2 score=(0 1); 

equations 

   (r~full) a1 <-> a2 <-> a3; 

   i1 <- 1 + (+)a1 + (+)a2 + (+)a1 a2; 

   i2 <- 1 + (+)a2; 

   i3 <- 1 + (+)a1 + (+)a3 + (+)a1 a3; 

   i4 <- 1 + (+)a3; 

   i5 <- 1 + (+)a3; 

   i6 <- 1 + (+)a3; 

 //i7 <- 1 + (+)a1 + (+)a3 + (+)a1 a3;// 

 //order restriction on Item 7 can be done as follows// 

   i7 <- 1 + (+)a1 + (+a)a3 + (-a)a1 a3 + (+)a1 a3; 

   i8 <- 1 + (+)a2; 

   i9 <- 1 + (+)a3; 

   i10 <- 1 + (+)a1; 

   i11 <- 1 + (+)a1 + (+)a3 + (+)a1 a3; 

   i12 <- 1 + (+)a1 + (+)a3 + (+)a1 a3; 

   i13 <- 1 + (+)a1; 

   i14 <- 1 + (+)a1; 

   i15 <- 1 + (+)a3; 

   i16 <- 1 + (+)a1 + (+)a3 + (+)a1 a3; 

   i17 <- 1 + (+)a2 + (+)a3 + (+)a2 a3; 

   i18 <- 1 + (+)a3; 

   i19 <- 1 + (+)a3; 

   i20 <- 1 + (+)a1 + (+)a3 + (+)a1 a3; 

   i21 <- 1 + (+)a1 + (+)a3 + (+)a1 a3; 

   i22 <- 1 + (+)a3; 

   i23 <- 1 + (+)a2; 

   i24 <- 1 + (+)a2; 

   i25 <- 1 + (+)a1; 

   i26 <- 1 + (+)a3; 

   i27 <- 1 + (+)a1; 

   i28 <- 1 + (+)a3; 

  r[1,1]=0; 

 end model 


