
MULTIVARIATE BEHAVIORAL RESEARCH 423

Multivariate Behavioral Research, 37 (4), 423-451
Copyright © 2002, Lawrence Erlbaum Associates, Inc.

A Latent Class Extension of Signal Detection Theory,
with Applications
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A latent class extension of signal detection theory is presented and applications are
illustrated.  The approach is useful for situations where observers attempt to detect latent
categorical events or where the goal of the analysis is to select or classify cases.  Signal
detection theory is shown to offer a simple summary of the observers’ performance in
terms of detection and response criteria.  Implications of the view via signal detection for
the training of raters are noted, as are approaches to validating the parameters and
classifications.  An extension of the signal detection model to more than two latent classes,
with a simple restriction on the detection parameters, is introduced.  Sample programs to
fit the models using software for latent class analysis or software for second generation
structural equation modeling are provided.

In many situations in psychology, education, and medicine, observers
attempt to detect or discriminate between two or more classes of events.
When the events are observable, the methods of signal detection theory
(SDT) can be used to obtain a measure of an observer’s ability to detect or
discriminate (see Macmillan & Creelman, 1991; Swets, 1996).  Consider, for
example, a simple test of recognition memory.  A list of words can be
presented during a study period and a combination of old words (from the list)
and new words can be presented during a subsequent test, with the
observers’ task being to decide whether each word is old or new, or to rate
their confidence that a word is old or new.  From the perspective of SDT, the
effect of an event (an old or new word) can be represented by a continuous
latent variable, usually interpreted as an observer’s perception of the event
(e.g., the familiarity of the word), which is used together with a response
criterion to arrive at a decision of old or new.  The results can be summarized
by a detection parameter, say d, which for the memory example is a measure
of recognition memory strength, and by a parameter c that indicates the
location of the response criterion; the location of the criterion is viewed as
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being largely arbitrary, in that it depends on motivational and other (usually
uncontrolled) factors.  Indeed, interest in SDT was stimulated in part by
experiments in psychology that showed that although the response criteria of
observers attempting to detect a signal varied considerably across different
sessions (and could be experimentally manipulated), their detection
remained approximately constant (e.g., Green & Swets, 1988; Swets,
Tanner, & Birdsall, 1961).  Since then, SDT has been shown to be quite
useful for the study of cognitive and perceptual processes in psychology.

For the above example, it is known what type of event was presented on
each trial, that is, whether an old or new word was presented.  In other
situations, the task is again one of signal detection, but the events are not
observed.  Examples are determining whether or not a person has a
psychological or physical condition, such as depression or disease, whether
an essay merits a pass or fail, or whether or not a slide shows a tumor.  In
these cases, the true state of the person or object (hereafter referred to
simply as the case) is not known.  As before, SDT assumes that the observer
has a perception of the case that is used together with a criterion to arrive
at a decision.  Thus, the psychological theory is the same, the only difference
is that the events of interest are not observed.

Signal detection theory can readily be applied to this type of situation by
incorporating it into a latent class analysis.  Latent class analysis (Clogg,
1995; Dayton, 1998; Hagenaars, 1993; McCutcheon, 1987) offers models
that include unobserved (latent) classes or categories of persons or objects.
Although signal detection models with latent classes have been used in
medical applications (c.f. Henkelman, Kay, & Bronskill, 1990; Quinn, 1989),
their general applicability in psychology and education is not well known.
The present article motivates the use of latent class SDT models and
attempts to bridge some gaps between interrelated research in psychology,
education, and medicine.

Signal Detection Theory with Latent Classes

Signal Detection Theory.  Figure 1 illustrates the basic ideas of
signal detection theory for the situation where there are two events (e.g.,
signal or noise, old or new word) and the observer uses a one to four
rating response.  It is assumed that the presentation of an event to an
observer has an effect that can be represented by a random variable on
an underlying continuum (e.g., the observer’s perception).  For two
events, there are two probability distributions that differ in location, as
shown in Figure 1.  The distance between the distributions, denoted as d,
reflects the observer’s ability to discriminate between the two types of
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events.  On each trial, the observer’s perception of a case (the presented
object) is a realization of a random variable that is used together with
response criteria to arrive at an observed response.  For example, as
shown in Figure 1, the observer responds “1” if the realization is below
the lowest criterion (c

1
), “2” if it is between the first and second criteria,

and so on.
A general signal detection model for ordinal responses and two events

that follows from the above assumptions can be written as
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1 Using effect coding gives a re-parameterization where the coefficient of x
i
 is d

j
/2 and the

criteria are located with respect to the midpoint of the two distributions (see DeCarlo,
1998), denoted as c�

jk
 here.

Figure 1
An Illustration of Signal Detection Theory
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logistic CDF is used for the examples presented here, so that the underlying
distributions are logistic, however the model is more general in that other
distributions can be used as well; some examples of SDT with normal and
extreme value distributions are given in DeCarlo (1998).  To use other
distributions, Equation 1 can be re-written as a generalized linear model, in which
case the choice of link function determines the form of the underlying
distributions (see DeCarlo, 1998).

SDT with Latent Events.  To extend the model to situations where the
events are latent, the observed variable X is replaced by a latent categorical
variable, say X* with values x*

c
 = 0, 1 for c = 1, 2,

(2) p(Y
ij
 � k|X* = x*

c
) = F[(c

jk
 – d

j
x*

c
)/�

j
].

The model is the same as before, however the situation differs in that
Equation 2 cannot be fit if there is only one observer (in contrast to Equation 1)
because the model is not identified, that is, one cannot obtain unique
estimates of the parameters.  Several observers are necessary for the model
to be identified; for example, for two latent classes, at least three observers
are necessary if the responses are dichotomous, whereas at least two
observers are necessary if the responses are ordinal with at least three
categories.  The models for the J observers can then be incorporated into a
latent class model, as shown next.  Note that the scale parameter �

j
 can be

set to unity, without loss of generality, and this will be done from here on (the
scale parameter has to be taken into account when comparing results from
models with different link functions; see DeCarlo, 1998).

Latent Class Models.  A discussion of latent class analysis is beyond the
scope of the present article; the reader is referred to Dayton (1998) or Clogg
(1995) for discussion and references.  Here it is shown that the signal
detection model given above is easily incorporated into a restricted latent
class model, and some basic aspects of the analysis are illustrated.

Consider the situation where J observers examine N cases and make
decisions in one of K response categories.  Note that, for each case, there
is a pattern of responses (a vector) across the observers, which can be
denoted as (Y

1
, Y

2
, ..., Y

J
).  The total number of possible response patterns

is KJ; for example, if three observers give ordinal ratings from one to four,
then there are 43 = 64 possible response patterns.  Thus, the data for J
observers examining N cases can be summarized by a multiway frequency
table with KJ cells, where each cell gives the number of cases with a
particular response pattern.  A latent class model can be viewed as a
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probability model for the response patterns.  In particular, it is assumed that
there are C mutually exclusive and exhaustive latent classes so that the
probabilities of the response patterns can be obtained by summing over the
latent classes,

(3) ( ) ( ) ( ) ( )* * *
1 2 3 1 2 3 1 2 3
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.  In

addition, conditional on the latent class, responses are assumed to be
independent, so that
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|X*) is the conditional probability of response k for observer j

given X* and �
k
 p(Y

j
 = k|X*) = 1.  Equation 4 is an assumption of conditional

independence; it reflects a basic assumption of latent class analysis, which
is that the J response variables are independent given the latent class.

Latent Class Models and Signal Detection.  Equations 3 and 4 are the
basic equations for an unrestricted latent class model.  For restricted latent
class models, the conditional probabilities of Equation 4 are restricted in
various ways.  For example, to incorporate the signal detection model of
Equation 2, differences between the cumulative probabilities are used,
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The result is a general class of signal detection models with latent classes,
which are useful for situations that can be conceptualized in terms of SDT,
such as when observers attempt to detect or discriminate latent categorical
events.  The models can be fit with software for latent class analysis that
allows one to restrict the conditional probabilities using models with cumulative
link functions.  For example, the software LEM (Vermunt, 1997a), which is
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freely available on the Internet (http://www.uvt.nl/faculteiten/fsw/
organisatie/departementen/mto/software2.html) was used for the analyses
presented here; a sample LEM program for the binary response example
discussed below is given in Appendix A.  LEM allows one to fit a variety of
latent class and latent trait models to categorical data using maximum
likelihood; a version of the EM algorithm is used (see Vermunt, 1997a).  For
details about estimation and the use of the EM algorithm to fit latent class
models see Bartholomew and Knott (1999), Heinen (1996), McCutcheon,
(1987), McLachlan and Peel (2000), or Vermunt (1997b).  The models
considered here can also be fit using software for (second generation)
structural equation modeling, such as Version 2 of Mplus (Muthén & Muthén,
1998); a sample Mplus program for the ordinal response example discussed
below is given in Appendix A and some other examples are given in DeCarlo
(2001).

Examples

Binary Responses.  For binary responses, the model is simply a
reparameterization of the unrestricted latent class model (Equations 3 and 4).
The reparameterization is useful, however, in that it provides a different
perspective on and insights into the data.  An example is a study concerned
with pleural thickening (from Walter & Irwig, 1988) used by Dayton (1998)
to illustrate the application of latent class models to medical diagnosis.  Three
observers examined 1692 chest X-rays and made a yes/no decision as to the
presence or absence of thickening of the lung tissues.  From the signal
detection perspective, an observer has a perception of each X-ray that they
use in conjunction with a response criterion to arrive at a decision.  Of basic
interest is the parameter d

j
, which reflects the jth observer’s ability to detect

thickening.

Table 1
SDT Parameter Estimates for Latent Class Logistic SDT Model: Pleural
Thickening Data

d
j

SE c
j1

SE

Observer A 5.69 0.48 4.60 0.35
Observer B 3.89 0.32 3.30 0.14
Observer C 5.69 0.48 4.51 0.34

Note. SE = standard error.
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Table 1 presents results for a fit of a latent class logistic signal detection
model (the data are given by Dayton, 1998, p. 26); a sample LEM program
is given in Appendix A and some notes on using LEM are given in Appendix
B.  First note that the estimates of d

j
 are all large, significant, and suggest

excellent detection.  For the logistic SDT model, d
j
 are simply log odds ratios,

and so the estimate of 3.89 for Observer B (the smallest estimate) indicates
that his or her odds of detecting thickening are exp(3.89) = 49 times higher
for an event (thickening) than a non-event (no thickening), which is quite
good, as was also noted by Dayton (1998).  Note that another (equivalent)
view of d

j
 is that it provides a measure of the conditional precision of each

observer (c.f., Clogg & Manning, 1996; Mellenberg, 1996); for a correlation-
type measure, d

j
 can be rescaled to a zero-one range as follows

Q
e

e
j

d

d

j

j
= −

+
1

1
,

which is simply Yule’s Q (see Clogg & Manning, 1996).  For the pleural thickening
data, the values of Q

j
 are .99, .96, and .99 for Observers A, B, and C, respectively,

which again indicates high precision (i.e., good detection) for each observer.
The parameter estimates in Table 1 suggest that d

j
 is equal for Observers

A and C.  The first row of Table 2 presents a likelihood ratio (LR) goodness
of fit test for a model with this restriction (note that the unrestricted model
has as many parameters as observations and so fits perfectly).  The LR
statistic is not significant, and so the model is not rejected.  In contrast, the

Table 2
Results for Restricted Latent Class Logistic SDT Model: Pleural Thickening
Data (N = 1692)

LR df p AIC BIC

Equal d
j
 (A,C) <0.01 1 .99 1794.29 1827.89

Equal d
j
 (A,B,C) 15.51 2 <.01 1807.79 1834.96

Equal d
j
 (A,C) equal c

jk
 (A,C) 0.13 2 .94 1792.42 1819.59

Equal d
j
 (A,C) equal c

jk
 (A,B,C) 2.99 3 .39 1793.27 1815.01

Equal d
j
 (A,C) equal c�

jk
 (A,B,C) 3.06 3 .38 1793.35 1815.08

Note. LR = likelihood ratio goodness of fit statistic, BIC = Bayesian information criterion,
AIC = Akaike’s information criterion.
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second row of Table 2 shows that a model with a restriction of equal d
j
 across

all three observers is rejected.  Thus, the results suggest that Observers A
and C detected equally well, whereas detection for Observer B was lower,
although his or her detection was still quite good.

Further restrictions that can be considered are with respect to the response
criteria, although these are usually viewed in SDT as being arbitrary (and so not
of substantive interest).  Here I simply note that some of the submodels
considered by Dayton (1998) have a straightforward interpretation in terms of
SDT.  For example, the third row of Table 2 shows that a model with both
detection and criteria restricted to be equal across Observers A and C is not
rejected; this corresponds to submodel III of Dayton (see his Table 3.2, p.28;
note that the results obtained with LEM exactly match those shown in Dayton’s
table).  The fourth row shows that a model with detection equal across A and
C and the criterion equal across all three observers is not rejected; this
corresponds to submodel V of Dayton.  Note, however, that there are different
criterion measures that have been considered in SDT, and tests concerned with
the criterion can give different results, depending on which measure is used.  For
example, the distance of the criterion from the mode of the lower distribution is
used here (which distribution is lower can be determined by the output; see
Appendix B), however an alternative measure locates the criterion with respect
to its distance from the midpoint of the two (symmetric) distributions (e.g., as
done in the choice theory parameterization of SDT; see DeCarlo, 1998;
Macmillan & Creelman, 1991).  The last row of Table 2 shows a model with the
criterion equal across the three observers for this alternative measure, denoted
as c�

jk
 (where for symmetric distributions c�

jk
 = c

jk
 –½ d

j
).  In this case, the LR

goodness of fit statistic differs only slightly from before and the model is not
rejected (thus one cannot distinguish between alternate hypotheses about the
criterion in this case).  Nevertheless, it is important to keep in mind that the results
of tests concerned with the criterion can differ for the different measures.

Table 2 also shows information criteria, and in particular Akaike’s
information criterion (AIC) and the Bayesian information criterion (BIC; see
Burnham & Anderson, 1998; Dayton, 1998; Lin & Dayton, 1997), using versions
based on the log-likelihood.  The information criteria can be used to compare
non-nested models, with smaller values indicating a better model; they can be
used, for example, to compare models with different link functions, as shown
below.  Table 2 shows that AIC favors the model given in the third row whereas
BIC favors the models given in the last two rows (c.f., Dayton, 1998, who also
noted differences between AIC and BIC for this example).  From the
perspective of SDT, these models only differ with respect to whether Observer
B had the same criterion location as the other observers, whereas both models
are consistent with the conclusion that Observers A and C had equal detection.
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Finally, the estimates of the latent class size [i.e., p(X*) in Equation 3] are
.95 for the lower latent class and .05 for the higher class; note that Dayton
(1998) obtained the same values for the (different) models he considered.
Thus, it is estimated that about 5% of the 1692 cases had pleural thickening.

In summary, a fit of the latent class signal detection model offers a simple
interpretation of the data.  The analysis suggests that all three observers
detected well, with Observers A and C equal and Observer B lower.  With
respect to the response criterion, it is clarified that there are different types of
restrictions across observers that can be examined; namely whether the
criterion location is constant with respect to the lower distribution (in which case
the observer is basically controlling the false alarm rate) or whether it is constant
with respect to the midpoint of the two distributions; some implications of the
different criterion measures have been considered in SDT (see Macmillan &
Creelman, 1991), but merit further study.  It is also noted that tests of the
criterion may be of little substantive interest, because of the arbitrary aspect of
the criterion’s location, but this depends on the particular research application.

Ordinal Responses.  Further aspects of the approach via SDT are
illustrated by an example with ordinal responses.  In this case, examination
of the estimated conditional probabilities, as done in latent class analysis
(e.g., by Dayton, 1998, for the binary response example discussed above),
may not be as informative as examination of the signal detection parameters.

The example is from a widely cited article by Landis and Koch (1977)
where guidelines as to interpreting the magnitude of kappa (Cohen, 1960)
were offered (i.e., < 0 = poor, .00-.20 = slight, .21-.40 = fair, .41-.60 = moderate,
.61-.80 = substantial, .81-1.00 = almost perfect, p.165; note that Fleiss, 1981,
p.218, suggested < .40 as poor agreement, .40 to .75 as fair to good agreement,
and > .75 as excellent agreement; in psychometrics, agreement less than .70
is generally considered poor).  Two neurologists examined patient records and
made a decision as to the presence or absence of multiple sclerosis; the data
for 149 Winnipeg patients are examined here (the data are given in Landis &
Koch, 1977); for other analyses of these data, see Darroch and McCloud
(1986) and Uebersax (1993b).  Decisions with respect to the presence or
absence of multiple sclerosis were made on a 1 to 4 scale, with 1 = certain
multiple sclerosis, 2 = probable multiple sclerosis, 3 = possible multiple
sclerosis, and 4 = doubtful, unlikely, or definitely not multiple sclerosis (the
coding is reversed for the analysis presented here, so that higher numbers
indicate a diagnosis of more probable multiple sclerosis).  SDT assumes that
the neurologists had a perception of symptoms for each patient, which they
used together with response criteria to arrive at a response.
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For the sample of 149 patients, kappa is .21, indicating slight agreement,
according to the criteria suggested by Landis and Koch (1977) or poor
agreement, by Fleiss’ (1981) criteria; weighted kappa (Cohen, 1968) is .38,
which also indicates poor agreement.  Latent class SDT, on the other hand,
offers additional information of interest, such as estimates of the observers’
detection and response criteria, the sizes of the latent classes, and the
accuracy of classifications based on the fitted model.

The upper half of Table 3 shows the parameter estimates and standard
errors for a fit of a latent class logistic SDT model.  It is apparent that the
estimated detection parameters are close in magnitude across the two
observers.  Also note that some of the standard errors are large, which reflects
a lack of precision with respect to estimation, or what Vermunt and Magidson
(2000) refer to as “weak identification”; this is also indicated by the ratio of the
largest to smallest eigenvalues of the information matrix (the eigenvalues are
given in the LEM output), which in this case is 109.58/0.08 = 1370, which is
rather large.  The lack of precision is due to the small sample size relative to
the number of observers.  That is, the precision of estimation depends on
both the number of observers and on the sample size: with few observers,
larger sample sizes are needed (for example, note that, in contrast to the
current example, the ratio of eigenvalues for the binary response example
discussed above with three observers and 1692 cases is 294.1/2.7 = 109),

Table 3
Parameter Estimates for Logistic Latent Class Signal Detection Model:
Multiple Sclerosis Data

Unrestricted Model

d
j

SE c
j1

SE c
j2

SE c
j3

SE

Neurologist A 4.02 1.79 –0.36 0.38 1.99 1.28 4.21 1.76
Neurologist B 4.03 1.84 –0.82 0.35 –0.01 0.39 2.43 1.46

Restricted Model (equal d
j
)

d
j

SE c
j1

SE c
j2

SE c
j3

SE

Neurologist A 4.02 0.45 –0.36 0.34 1.99 0.55 4.22 0.51
Neurologist B 4.02 0.45 –0.82 0.34 –0.01 0.35 2.43 0.55

Note. SE = standard error.
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whereas having more observers compensates for a small sample size;2  a
similar point has recently been made in the context of confirmatory factor
analysis by Marsh, Hau, Balla, and Grayson (1998).

The lower half of Table 3 shows results for a model where the detection
parameters are restricted to be equal across the two observers; the LR
goodness of fit statistic in this case is 11.27 on 7 df (p = .13), and so the
restricted model is not rejected.  Note that several of the standard errors are
considerably smaller; the ratio of largest to smallest eigenvalues in this case is
111.86/0.98 = 114.  Also note that the criteria estimates differ little, if at all,
across the restricted and unrestricted models.  A model with, in addition to
detection, the response criteria restricted to be equal across both observers is
rejected; the LR goodness of fit statistic is 53.4 on 10 df with p < .01 (a model
with only the criteria restricted, and not d

j
, is also rejected).3  Thus, the

observers appear to detect equally, but their response criteria differ.  Note
that when the detection parameters are equal across observers, tests with
the alternative criteria measure noted above lead to the same conclusions
(since c�

jk
 = c

jk
 – ½d

j
).

In summary, a fit of the latent class SDT model suggests that the two
neurologists detected well, and about equally.  The latter conclusion,
however, must be tempered by the fact that the detection parameters are not
estimated precisely in this case, because of the small sample size relative to
the number of observers (there might be insufficient power to detect
differences in detection).  The results also suggest that the response criteria
differed across observers, and in particular the larger values of c

j2
 and c

j3
 for

Neurologist A in Table 3 show that he or she had higher criteria for responses
of 3 or 4 (probable or certain multiple sclerosis), and in this way Neurologist
A was more conservative than Neurologist B with respect to a diagnosis of
multiple sclerosis.  Thus, SDT provides a simple summary of the
performance of the observers, both with respect to detection (d

j
) and

decision factors (c
jk
).  In addition, SDT shows why agreement was poor, that

is, the low agreement arose because of differences in the response criteria
across the observers.

Classification.  This section considers some additional results for the
above example.  The statistics noted here are the same as those used in
ordinary latent class analysis, and so the reader is referred to Dayton

2 Simulations I’ve conducted (manuscript in preparation), for example, suggest that, for a
sample size of 100, estimation is accurate with 10 observers.
3 The models are nested and so differences between the log-likelihoods could be used to test
the restricted models (using a likelihood ratio statistic).  Using the difference test, the
restricted models are rejected (as expected from the LR goodness of fit statistics, which
differ considerably in magnitude across the restricted and unrestricted models).
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(1998) or Clogg (1995) for further discussion and references.  The focus
here is on the use of the statistics in the context of latent class signal
detection analysis.

A practical goal is to classify the cases into one of the latent classes using
the observed response patterns.  This can be done using the posterior
probability of X* for a given response pattern, which for three observers can
be written as p(X*|Y

1
, Y

2
, Y

3
).  Note that, from Bayes’ theorem,

(6) ( ) ( ) ( )
( ) ( )

* *
1 2 3*

1 2 3
* *

1 2 3
1

, , |
| , , ,

, , |
C

c

p X p Y Y Y X
p X Y Y Y

p X p Y Y Y X
=

=
∑

which shows that the posterior probabilities are determined by the latent
class sizes, p(X*) and by p(Y

1
, Y

2
, Y

3
|X*) the latter of which depends on the

signal detection parameters, as shown by Equations 4 and 5.  Thus, given
estimates of the latent class sizes, the criteria, and the detection parameters,
Equation 6 can be used to assign each case to the latent class for which its
estimated posterior probability of class membership is highest (Goodman, 1974).

It is also of interest to measure the quality of the classifications.  First,
note that the estimated posterior probabilities can be used to obtain an
estimate of the expected proportion of cases correctly classified (see Clogg,
1995; Dayton, 1998),

(7) ( )*
1 2 3max | , , / ,C s

s

P n p X Y Y Y N = × ∑

(again illustrated for J = 3 observers) where s indicates each unique response
pattern (e.g., there are S = KJ unique patterns, as noted above), n

s
 is the

frequency of each pattern (i.e., number of cases with a particular pattern;
note that either observed or estimated frequencies can be used, as noted by
Clogg, 1995), max p(X*|Y

1
, Y

2
, Y

3
) is the maximum posterior probability

(across the latent classes) for a given response pattern, and N is the total
number of cases.  In words, if the maximum estimated posterior probability
for a particular response pattern was, for example, .70 for Class 1, then one
would expect that classifying all cases with that response pattern into Class
1 would result in 70 percent of the cases being correctly classified.  For the
entire sample (and all the response patterns), the expected proportion
correctly classified is then simply a weighted average of the maximum
posterior probabilities for each pattern, as shown by Equation 7.
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Next, note that if one simply classifies all the cases (i.e., the entire
sample) into the latent class with the largest size, then one can expect to
correctly classify that proportion of cases (i.e., by chance).  A statistic that
corrects for this is lambda, which can be written as

(8)
( )

( )
*

*

max
,

1 max

CP p X

p X

−
=

−
�

Equation 8 shows that values of lambda greater than zero indicate that using
the posterior probabilities to classify cases gives an increase in the proportion
correctly classified over and above that obtained by simply assigning all
cases to the latent class with the largest size.  Another (equivalent) view of
lambda is that it reflects the relative reduction in classification error (Clogg,
1995; Goodman & Kruskal, 1954), where the classification error is simply
one minus P

C
.

With respect to the multiple sclerosis data, the estimated latent class sizes
are .36 and .64 for Classes 1 and 2, respectively, with Class 2 representing the
higher event, which can be interpreted as consisting of patients who possibly
have multiple sclerosis.  The estimate of the proportion correctly classified is
.94, and so the estimate of lambda is (.94 – .64)/(1 – .64) = .83, which means
that there is a relative increase of 83% in the proportion correctly classified
by using the observers’ response patterns over simply classifying all cases
into the latent class with the largest size.  This suggests good classification,
although it should be noted that there is an upward bias in the estimate of the
proportion correctly classified, because estimation and classification are
performed on the same set of data; to take this into account, Clogg (1995)
suggested an approach based on multiple imputation (which merits further
research).

In summary, the example shows that one can have good detection but
poor agreement, in this case because the response criteria differed across
the observers, and similarly, one can have good classification but poor
agreement (classification depends on detection, the latent class sizes, and the
number of observers).  The latter point is relevant because in practice the
goal is often to classify cases.  Thus, it is important to determine if poor
agreement arises because detection is poor, in which case classification
might also be poor (this depends in part on how many observers there are),
or if agreement is poor because of differences in the criteria across
observers, as in the current example, in which case classification might be
good (e.g., if detection is good).  The relevant information is provided by the
estimates of the detection and criteria parameters from the SDT analysis.
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Some Notes on Rater Training.  Here it is noted that the view via SDT
also has implications for the training of raters.  For example, in the context
of performance assessment in education, Congdon and McQueen (2000)
noted that “Presumably, the rater training which is a common feature of
rating programs is in part intended to maximize inter-rater agreement.
However, even extensive training has little effect on the standards
maintained by raters...” (p. 164).  In light of SDT, agreement depends on
two aspects of the observers’ performance, namely their use of response
criteria and their ability to detect.  With respect to classification, however,
detection is of primary importance.  To illustrate, Figure 2 shows the
effects of detection and response criteria for a model with two latent
classes (with sizes of .4 and .6 for the lower and higher classes,
respectively) and three observers giving binary responses.  In particular,
the figure shows the proportion correctly classified for a latent class
logistic SDT model where either the detection or criterion for one observer
was varied and those for the other two observers remained constant.  Of
course, the relation between the observers’ parameters and the proportion

Figure 2
The top panels show, for a logistic SDT model with binary responses, the effect on the
proportion correctly classified of varying detection for one observer, with the parameters for
two other observers remaining constant; the bottom panels show the effect of varying the
criterion for one observer, with the parameters for two other observers remaining constant.
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correctly classified is more complex (a variety of situations where the
parameters were varied in different combinations were examined), but
Figure 2 is representative of the results.

The top and bottom left panels of Figure 2 show situations where
detection is moderate for two observers (d

2
 and d

3
 = 2, Q = .76) and the

criteria are located midway between the two distributions (other locations
were examined as well).  The top left panel shows that the proportion
correctly classified increases nearly linearly as detection for one observer
increases from zero to six.  The bottom left panel shows that, with detection
for all three observers fixed at two, varying the location of the criterion for
one observer has only a small effect on the proportion correctly classified.
The top and bottom right panels show a situation where detection for one
observer is poor (i.e., d

2
 = 1, Q = .46), detection for a second observer

is good (d
3
 = 4, Q = .91), and the criteria are again located at the midpoints.

The top right panel shows that when detection (d
1
) is low, the proportion

correctly classified is higher than that in the top left panel, which suggests
that good detection for even one observer (d

3
 = 4) out of three has a large

effect on the proportion correctly classified.  Second, the panel shows that
the proportion correctly classified increases when d

1
 is greater than about 2.

In contrast, the bottom right panel shows that varying the location of the
observer’s criterion through a wide range has virtually no effect on the
proportion correctly classified.

In short, Figure 2 illustrates that the best way to increase classification
accuracy for a given set of observers is by increasing detection.4  As noted
above, rater training tends to emphasize agreement (Congdon & McQueen,
2000; Quellmalz, 1985), which from the perspective of SDT involves in part an
attempt to get raters to use similar response criteria; research has shown,
however, that this is difficult to do, even with extensive training.  Moreover,
because the criteria have little effect on classification accuracy, the focus on
agreement is in some ways misdirected.  Rather, the primary goal should be
to improve observers’ detection, since this has the largest effect on
classification accuracy; the latent class SDT model might be useful in this
regards, in that it allows one to examine the influence of a factor (e.g., training,
instructions, practice, etc.) separately in terms of its effects on detection and/
or the response criteria.  With respect to response criteria, the main goal should
be to ensure that observers do not locate them far out in the decision space,
which would result in little or no use of a response category (which can lead
to estimation problems); in signal detection research, for example, observers
are often instructed to try to use all of the response categories.

4 Classification accuracy is also increased by using more observers (with nonzero d
j
); it is

important to consider in the design phase of a study how many observers it is practical to use.
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Validation

As with any model, issues arise as to the validity of the model, its
interpretation, and its application within a particular substantive context.
Two basic aspects that should be assessed are the validity of the
classifications and the validity of the SDT parameters.

Assessing Classification.  This aspect of validation is the same as for
ordinary latent class analysis, and so will only be briefly touched upon;
examples of validation in latent class analysis can be found in Aitkin,
Anderson, and Hinde (1981), Dayton (1998), and in chapters in Rost and
Langeheine (1997).  In some situations, information about the true states of
cases might be available or might become available at a later time (e.g., in
medicine or psychology); the known cases can then be used to validate the
classifications.  In other situations, known cases might not be available, but
some other type of information might be available that can be used to validate
the classifications (e.g., criterion validity).  For example, in educational
applications such as writing assessment, grades on exams or grade point
average are often used as criteria in this way.

An issue that arises when known cases are not available is whether the
latent classes correspond exactly to true categories.  Uebersax (1988) noted,
for example, that assuming an identity between the latent classes and true
categories “is not implausible in many cases” (p. 409), but this has been a
topic of some debate; for a discussion of this and other issues in the context
of latent class analysis and item response theory, see Uebersax (1988) and
the references therein.  Here it is noted that, for a particular application, the
identity issue should be considered, and, as part of the study design, one
should consider what type of evidence as to validity can be obtained (e.g.,
criterion variables).

Assessing SDT Parameters.  With respect to assessing the signal
detection parameters, a basic question of interest is whether or not the
estimated d

j
 actually reflect the observers’ ability to discriminate between

latent events.  This can be assessed in several ways, depending on whether or
not cases with known statuses are available.  If they are, then one approach
would be to use the known cases in another session with the same set of
observers.  The estimates of d

j
 could then be compared to those obtained in

a session using unknown cases (note that the data from both sessions could be
fit simultaneously); if the values were similar across the sessions (or perhaps
just had a similar rank ordering), then that would suggest that the d

j
 reflect

some basic aspect of the observers, such as their ability to discriminate.
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The availability of known cases also offers other interesting possibilities.
For example, estimation might be improved if one can include a proportion
of known cases in with the unknown cases in the rating session; this is
discussed as partial classification in mixture analysis (McLachlan & Peel,
2000) or as training data in the Mplus user’s guide (Muthén & Muthén, 1998);
note that a latent class signal detection model with partial classification can
be fit using Mplus or LEM.

The situation is more complex in the absence of known cases.  First, it
is useful to note that a similar problem exists in item response theory and in
confirmatory factor analysis; validating d, for example, is analogous to
validating the discrimination parameter in item response theory or the factor
loadings in confirmatory factor analysis.  An approach similar to that used
in those areas can be applied.  For example, it would be of basic interest to
determine if detection was invariant for a given set of observers over
repeated sessions; similar values of d

j
 across sessions would provide

evidence that d
j
 measures a stable characteristic.  This is analogous to

research in item response theory that has studied the invariance of item
parameters across different groups of examinees (see Hambleton &
Swaminathan, 1985; Lord, 1980) or over time (e.g., Hoskens & Wilson,
2001), and to research in confirmatory factor analysis that has studied the
invariance of factor loadings across groups or time (e.g., Alwin & Jackson,
1981; Byrne, Shavelson, & Muthén, 1989).  Note that, from the view via
SDT, one would expect that discrimination might be invariant, but not the
criteria (so there is only a partial invariance); also note that conclusions with
respect to the criteria can differ, depending on which criteria measure is
used, as discussed previously.

A useful aspect of the view via SDT is that it also suggests new
experiments.  For example, it would be interesting to try to induce observers
to vary their criteria across different sessions, say by varying the
instructions, and to see the effect, if any, on the SDT parameters, which is
analogous to earlier research in experimental psychology with known cases;
this could provide evidence for the validity of the criteria (e.g., if they can be
systematically affected by instructions) and/or the detection parameter
(e.g., if it is stable as the criteria vary).  One could also try to experimentally
manipulate discrimination, perhaps by varying factors such as amount of
practice.  Another possibility would be to use a contrasted-groups approach.
For example, instead of using expert raters as gold standards (i.e., error
free), one can allow for error in their judgments and compare them to a group
of non-experts; the model could be fit to the data of both groups
simultaneously and the estimated discrimination parameters compared;
higher values for the experts could be viewed as evidence that d

j
 reflects an
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observer’s ability to discriminate.  These and other possibilities remain to be
explored in future research.

Extensions

The focus here has been on the utility of the two class signal detection
model, but there are several ways the basic model can be extended.  These
can be classified as extensions with respect to the signal detection part of the
model or with respect to the latent classes, such as increasing their number
or including additional latent variables.

With regards to extensions of the signal detection model, note that
although the focus here has been on the logistic model with ordinal responses,
the model is actually more general in that different link functions can be used,
and so a wide range of models can be considered.  Examples of using
different link functions with SDT models for observed events are given in
DeCarlo (1998); an example with latent events is given below.  Other
possibilities are to allow the variances of the underlying distributions to differ
across the latent classes, as in the unequal variance extension of the signal
detection model for observed events (Green & Swets, 1988), or to use a
mixture extension of SDT (DeCarlo, 2002).

Other extensions are with respect to the latent classes.  One option is to
increase the number of latent classes.  As discussed next, an interesting
extension is to increase the number of latent classes, but with a restriction
on the discrimination parameters.

An Equal Distance SDT Model.  In the two class SDT model, the values
for x*

c
 = 0, 1 for c = 1, 2  and p(X*) is estimated.  One extension uses more

values for X* and in particular x*
c
 = 0, 1, ..., C – 1 for the c = 1 to C latent

classes.  Here I note that SDT provides a simple interpretation of the
resulting model.  The approach is similar to that used in log-linear association
models, as discussed by Clogg (1988), with the difference that the later are
formulated within a log-linear framework (i.e., the models use adjacent
category logits, not cumulative links).  The extended SDT model discussed
here (with logit link) can be viewed as a latent class extension of  the uniform
association model for cumulative odds ratios discussed by Agresti (1990); it
is also more general in that other links can be used.

Specifically, let the values of X* be x*
c
 = 0, 1, ..., C – 1 with p(X*) free,

as in the basic two class model (still with a sum to one constraint on the
probabilities).  This is tantamount to assuming that the C underlying
distributions are ordered and equally spaced within each observer.  That is,
Equation 2 shows that with this coding scheme, d

j2
 = 2d

j1
, where d

j1
 is the
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distance of distribution 1 from the reference distribution for observer j and
d

j2
 is the distance to distribution 2, d

j3
 = 3d

j1
, and so on.  Figure 3 provides

an illustration of the model with three latent classes.  The figure shows that
there is an equal spacing constraint, and so the model will be referred here
to as the equal distance SDT model.  The model is a restricted version of a
signal detection model with more than two latent classes, with the restriction
that the spacing of the distributions is equal within observers, but varies
across observers.  Note that, although values are assigned to X*, no
assumptions are made with respect to spacing of the latent classes (i.e., the
equal spacing is in the observers’ perceptions, not the latent classes); it is
only assumed that there are C (ordered) latent classes with sizes p(X*), with
a multinomial distribution used for p(X*).  This suggests a simple yet useful
generalization of the basic latent class SDT model.

Example: Equal Distance SDT.  A widely analyzed data set (e.g., Dillan
& Mulani, 1984; Uebersax, 1993c; Vermunt & Magidson, 2000) presented
in Dillon and Mulani (1984; and in Vermunt & Magidson, 2000) provides an
interesting example.  The task of three observers was to determine whether
each of 164 individuals were positive, neutral, or negative towards an object.
The approach via SDT assumes that the responses are ordered, with neutral

Figure 3
Latent Class Signal Detection Theory with Three Latent Classes and an Equal Distance
Restriction
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between positive and negative (responses were coded as 1 = negative, 2 =
neutral, and 3 = positive).  Dillon and Mulani (1984) noted that an unrestricted
latent class model with three classes provided a good fit of the data (several
of the smallest eigenvalues are zero, however, which indicates an empirical
identification problem; Dillon and Mulani noted that they added a constant to
the table cells, which is not done here).

Table 4 presents goodness of fit statistics and information criteria for fits
of several models with three latent classes; all the models were specified and
fit using LEM (Vermunt, 1997a).  In this case, both the likelihood ratio and
chi-square statistics are shown, because they differ in some cases (whereas
this wasn’t the case for the examples presented above); this most likely
occurs because there are many cells with small expected frequencies (i.e.,
there are many with expected frequencies less than five, and several with
expected frequencies less than one), and so the goodness of fit statistics
should be viewed with caution.  For purposes of comparison, two models
used as examples in the Latent Gold user’s guide (Vermunt & Magidson,
2000) for this data were also fit (using LEM) and the results are included in
Table 4;5 they are labeled as association models, because they are latent
class extensions of row and uniform association models discussed by Agresti
(1990), and are basically log-linear models with scores (also see Clogg &
Shihadeh, 1994).  A basic difference between the SDT models and the

5 The results from LEM differ slightly from those given in the Latent Gold manual because
of technical differences; for example, the latter uses Bayes constants.  For Latent Gold,
setting the Bayes constants to zero, the Newton-Raphson iterations to zero, and the
convergence criteria to 0.1-8 gave identical or near identical results to LEM.

Table 4
Goodness of Fit Statistics and Information Criteria for Various Models, Equal
Distance SDT Example

df X2 p LR p AIC BIC

Association, 3 classes 12 21.10 0.05 17.93 0.12 778.74 822.14
Logit SDT, 3 classes 12 19.99 0.07 17.28 0.14 778.09 821.49
Association, 1 factor, 3 levels 15 30.58 0.01 20.79 0.14 775.60 809.69
Logit SDT, 3 equal distance 15 25.76 0.04 19.31 0.20 774.12 808.22
Log-log SDT, 3 equal distance 15 16.47 0.35 16.98 0.32 771.79 805.89

Note. X2 = chi-square test, LR = likelihood ratio test, AIC = Akaike’s information criterion, BIC
= Bayesian information criterion.
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association models is that the SDT models use cumulative links whereas the
association models use adjacent category logits.

The first two models in Table 4 with 12 degrees of freedom are not
nested and differ only with respect to the link function.  The first is an
association model that is equivalent to the ordinal indicator, three nominal
cluster model discussed by Vermunt and Magidson (2000, see p.138),
followed by a latent class logistic SDT model with three latent classes.  The
goodness of fit statistics suggest that the fit of both models is satisfactory.
The next three models have 15 df; the first is an association model with one
three level factor, which is referred to by Vermunt and Magidson (2000) as
an ordinal three-level factor model with ordinal indicators.  Next are two
equal distance three class SDT models with logit and log-log links.  Vermunt
and Magidson (2000) noted that, of the models they considered, the BIC
indicated that the association model with one three-level factor was the
preferred model.  Table 4 shows that both the AIC and BIC are smaller for
the equal distance SDT models and are smallest for the model with log-log
link (the log-log link implies that the underlying distributions are skewed to
the right).  Thus, the results suggest that the three class equal distance SDT
models provide a parsimonious description of the data.

Table 5 presents parameter estimates for the latent class logistic SDT
model with three classes (the logistic results are shown to allow comparison
to the other examples presented above).  The table shows that discrimination
is excellent, with the distance between each of the underlying distributions
being four or more.  Although the estimate of d

j
 for Observer B is higher than

that for the other two observers (Vermunt & Magidson, 2000, in essence
concluded that this observer detected best), the standard errors are large,
and a model with detection restricted to be equal across the three observers
gives a goodness of fit statistic of LR = 20.12, df = 17, p = .27.  The estimates

Table 5
Parameter Estimates for Latent Class Logistic Equal Distance Signal
Detection Model with Three Classes

d
j

SE c
j1

SE c
j2

SE

Observer A 4.06 0.56 2.23 0.59 6.33 0.94
Observer B 5.08 1.25 2.99 1.16 5.60 1.32
Observer C 4.07 0.52 1.66 0.48 5.74 0.80

Note. SE = standard error.
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of the latent class sizes for the negative, neutral, and positive classes are .21,
.36, and .43, respectively, whereas the estimate of P

C
 = .95 and � = .90 (note

that the latter estimate differs slightly from .91, computed with the values
reported here, because of rounding).

In summary, the results are concisely and meaningfully summarized in
terms of the latent class equal distance SDT model: (a) detection is good, (b)
the observers do not differ with respect to detection (or there is insufficient
information to detect differences across observers), (c) the observers
perceive the neutral class as being midway between the negative and positive
classes, and (d) classification appears to be good.  Note that a comparison of
latent class models with cumulative link functions to association models merits
further attention; the information criteria in Table 4, for example, suggest that
in this case the (SDT) models with cumulative links are preferred over the
(association) models with adjacent category logits, but the differences appear
to be small (in this example, the models are near equivalent in terms of fit, but
nevertheless are conceptually quite different).

Covariates.  Another extension of the latent class SDT model is to
include covariates, as has been done for latent class models (e.g., Dayton &
Macready, 1988; van der Heijden, Dessens, & Bockenholt, 1996).  The most
general model allows for an effect of covariates on the latent class
probabilities and also direct effects of covariates on the response
probabilities.  Although either or both of these types of effects can be
included, attention must be given to the interpretation of the resulting model.
For example, from the perspective of SDT, allowing the covariates to affect
the response probabilities corresponds to a situation where the covariates
are viewed as factors that affect the observers’ perceptions (using
covariates in this way is analogous to allowing for a type of differential item
functioning in item response theory), whereas allowing them to affect the
latent class probabilities corresponds to a situation where interest centers on
using the covariates to predict latent class membership (e.g., to study group
differences, such as across gender or ethnicity; this is analogous to multiple
indicator, multiple cause models in structural equation modeling).  Research
on the use of covariates in latent class signal detection models is needed.

There are many other applications and extensions that can be considered.
For example, the latent class SDT model presented here can also be used in
situations where the observers rate only a portion of the cases, as done in
designs with a large number of cases.  There are then missing values (by
design) for each observer (i.e., the cases the observer did not rate).  The values
are missing completely at random (see Little & Rubin, 1987) and the latent
class SDT model can be fit (using LEM, for example) by analyzing subtables
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(with appropriate parameter restrictions across tables) and including an
indicator variable for the missing values, as discussed by Vermunt (1997a;
1997b).  Another extension is to relax the assumption of conditional
independence by, for example, introducing random effects (e.g., Qu, Tan, &
Kutner, 1996; Uebersax, 1999).  One can also consider multidimensional
models with additional categorical or continuous latent variables.  These
remain to be explored in future research.  Some issues and limitations should
also be noted: larger sample sizes or more observers might be needed for
adequate estimation with more complex models, for example, issues of
equivalent or near equivalent models (that possibly lead to different
conclusions) arise, and the need for validation is as important as ever.

Comments on Some Related Models.  The latent class SDT model is
closely related to located latent class models (Uebersax, 1993b, 1993c) and
to a latent trait finite mixture model discussed by Uebersax (1993a).  Using
Uebersax’s (1993c) notation (and the subscripts used here), a located latent
class model for ordinal responses can be written as

(9) ( ) ( )
1

| , , .
1 exp 1.7

ij j j c

j jk c

p Y k B
B

� �

� �

≤ =
 + − − 

For two classes, c = 1, 2, the above is equivalent to the two class SDT model
with a logit link and the following relations between the SDT parameters and
the located latent class parameters: c

jk
 = �

jk
, d

j
 = 1, �

j
 = 1/(1.7�

j
), B

1
 = 0, and

B
2
 = 1.  Uebersax (1993c) refers to �

j
 as a measurement error parameter;

the above shows that it is equivalent to the inverse of the scale parameter �
j

in the SDT model.  Note that, because d
j
 is restricted to be unity in the located

latent class model, �
j
 plays the same role as the detection parameter in the

latent class signal detection model; this simply reflects the arbitrary scale: in
SDT, d

j
 is the distance between the underlying distributions with the variance

fixed, whereas in located latent class analysis, the distance B
2
 – B

1
 is fixed

and �
j
 reflects the conditional precision (i.e., the variance of the underlying

distributions).  There are also differences in the approaches when applied to
more than two latent classes, a discussion of which is outside the scope of
the present article.

Another extension is to use a probability distribution for the latent
classes, in which case the models are closely related to discretized versions
of item response models (see Heinen, 1996).  For example, using a
discretized normal distribution for p(X*) and a logistic cumulative link
function gives a model that is closely related to the graded response model
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(Samejima, 1969).  The conceptualization of the model differs, however, in
that in SDT randomness arises from an observer’s perception of a case
whereas this is not the view with respect to item response theory.  It would
be informative to compare the different approaches in future research.

Conclusion

Signal detection theory with latent classes offers a simple and
psychologically motivated approach to situations where observers make
judgments about latent events.  The view via SDT suggests that a large body
of research and theory in psychology is relevant to models used in education,
medicine, biostatistics, and psychometrics.  There are many directions for
future research, including experimental studies and comparisons and
contrasts of different models.
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Appendix A
Sample LEM and Mplus Programs

LEM Program

* Binary response example (see Dayton, 1998)
* Table 3.1, Pleural thickening data (* denotes

comments)

lat 1 * there is 1 latent
variable (X)

man 3 * there are three manifest
variables (A,B,C)

dim 2 2 2 2 * dimensions of the
variables

lab X A B C * labels for the
variables

mod X * model statement for
p(X)

A|X cum(a) {cov(X,1)} * model statements for
c o n d i t i o n a l
probabilities

B|X cum(a) {cov(X,1)} * cum(a) gives a logit
link, design for cov
below

C|X cum(a) {cov(X,1)}
rec 8 * there are 8 records

in an external file
rco * the data include

record counts
wse separam.txt * write out the

standard errors to
“separam.txt”

des [0 1 0 1 0 1] * the design matrix,
three dummy coded Xs

dat dayton98.txt * the name of the data
file
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Mplus Program

TITLE: Ordinal response example, multiple
sclerosis data (see Landis & Koch, 1977).
See Appendix B for some comments on how the
model is parameterized.  Note: the chi-
square and likelihood ratio tests of model
fit are incorrect.  (and will be corrected
in a future release).  See Mplus discussion
at www.statmodel.com under “Latent
variable mixture modeling” then “Goodness-
of-fit statistics for mixture models”
(August 3, 2001 post).

! Comments follow exclamation points.

DATA: FILE IS C:\mplus\files\landis.txt;
! NOTE:if data are in tabular form, it must be

written out as individual records.
! This can be done using statistical packages (SAS

was used).
VARIABLE: NAMES ARE y1 y2;

CLASSES = class(2);
CATEGORICAL=y1-y2;

ANALYSIS: TYPE=MIXTURE; ESTIMATOR=ML;
MODEL: %OVERALL%

f1 by y1@1; f2 by y2@1;
! Factors are included above to allow for non-zero

means below.
[y1$1*-1] (1); [y1$2*0] (2); [y1$3*1] (3);
[y2$1*-1] (4); [y2$2*0] (5); [y2$3*1] (6);

! The numbers in parentheses restrict the
thresholds to be equal across the latent classes.

%class#1%
[f1@0 f2@0];
%class#2%
[f1*1 f2*1];

! The above statement allows the means to be non-
zero in one latent class.

! This gives the detection parameters.
OUTPUT: sampstat tech1;
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Appendix B
Some Notes on using LEM and Mplus

When fitting latent class SDT models with LEM, it should be recognized
that there are two equivalent solutions, because it is arbitrary which latent
class is used as the reference.  If the values of d

j
 are negative (and responses

are coded so that larger numbers indicate higher confidence), then the
thresholds give c

jk
, x*

1 
= 0 corresponds to the lower latent class, and x*

2 
= 1

corresponds to the higher class.  If the values of d
j
 are positive, then c

jk
 equals

the threshold value plus d
j
, x*

2 
= 0 is high and x*

1 
= 1 is low; note that the

standard errors of c
jk
 are then computed as the square root of the following:

the variance of the given threshold plus the variance of d
j
 plus two times the

covariance of the threshold and d
j
; these quantities can be obtained using the

wse command, as shown in Appendix A.
For both LEM and Mplus, it is also important to check that the solution

does not represent a local maxima by running the program several times with
different starting values.  If a larger value of the log-likelihood is obtained,
then the solution with a smaller value is a local maxima, and the solution with
larger value should be used.

For Mplus, the model is parameterized as a latent class model with two
(or more) classes and the criteria (thresholds) are restricted to be equal
across the classes.  Means are included by using factors; the model is given
by Equations 149-151 in the Mplus user’s guide (1998).  Note that, for the
current version (2.01), the goodness of fit statistics are incorrect, but this will
be corrected in a future release.


