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An application of a dynamic model of judgment
to magnitude production

LAWRENCE T. DECARLO
Teachers College, Columbia University, New York, New York

A dynamic model of judgment, together with a model of stimulus context effects, is applied to mag-
nitude production (MP) and magnitude estimation (ME) experiments. Participants’ responses in MP
were correlated across trials, as is typically found for ME. The magnitude of the autocorrelation, how-
ever, was small, which suggests that participants in MP tend to rely more heavily on a long-term frame
of reference. Second, a stimulus context effect found for ME did not appear for MP, most likely because
of the different nature of the task (i.e., intermediate values of the stimulus were heard while the partic-
ipant produced a response). A fit of an earlier regression model, on the other hand, suggests that the
number presented on the previous trial in MP has a large contrastive effect on the current response. The
present model offers a different view of this result, in that it shows that a negative coefficient for the ear-
lier model is consistent with a positive judgmental effect. The regression effect noted by Stevens and
Greenbaum (1966), which is a value of the estimated ME exponent that is smaller than the inverse of the
estimated MP exponent, was also found; it is shown that the effect did not arise from bias in estimation.

In magnitude estimation (ME), stimuli are presented to
participants and they are instructed to assign numbers pro-
portional to their sensation magnitudes (see Gescheider,
1997; Stevens, 1986). Magnitude production (MP) reverses
the situation in that numbers are presented and participants
attempt to produce sensation magnitudes that are propor-
tional to the numbers. It is well known that participants’ re-
sponses in these types of tasks are not independent over tri-
als, but rather are correlated. Although many studies have
examined these sequential effects in ME experiments or re-
lated categorization and absolute identification experiments
(e.g., Cross, 1973; DeCarlo, 1994; Garner, 1953; Holland
& Lockhead, 1968; Ward 1973, 1979; Ward & Lockhead,
1970), few studies (to my knowledge) have examined se-
quential effects in MP, with the exception of a study by
Green, Luce, and Duncan (1977) that is discussed below.

The present article shows that MP is useful for com-
paring and contrasting different models and theories of
sequential effects. In particular, a dynamic model of
judgment (DeCarlo, 1990) is applied MP. It is shown that
the model provides insight into the structure of data ob-
tained in ME and MP experiments and offers a simple
account of similarities and differences found across the
two procedures. The article begins with a brief review of
the dynamic model as previously applied to ME, fol-
lowed by an application of the model to MP.

Dynamic Judgment
A basic assumption in magnitude scaling experiments
is that participants’ judgments are proportional to their sen-
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sation magnitudes. There is, however, more than one way
to make proportional judgments. One approach, for ex-
ample, is to assign a reference response, say R, (i.e., an
arbitrary modulus), to a reference sensation, say W, (i.e.,
an arbitrary standard). On each trial, participants then
compare their current sensation W, to their reference sen-
sation W, and give a response R, so that the relation be-
tween R, and R, reflects the relation between W, and W,

Ro_%,

R, W, U M)
where v, represents random error. Rearranging gives

R =agWv, (1a)

where the proportionality constant o, = Ry/ W,. This shows
that one way to make proportional judgments is to use a
long-term frame of reference ay, which consists of an ar-
bitrary response R, given to a reference sensation W,
Equation 1 represents the simple judgmental model of
proportionality assumed by Stevens (1986); the basic as-
sumption is that participants produce response relations,
Ri/R,, that approximate sensation relations, ¥,/W¥,. Equa-
tion 1a shows that the assignment of an arbitrary response
to a reference sensation in essence sets a unit of measure-
ment o, that is assumed to remain constant over time.

This approach is not the only way one can make pro-
portional judgments. Another approach is to use the sen-
sation and response from the previous trial as reference
points. In this case, each sensation is compared with the
previous sensation, and the participant gives a response
that has the same relation to the previous response,

Re _ W,
= Vi,
Rt—l LIJ'(—ZI.

)

152



DYNAMIC JUDGMENT IN MAGNITUDE PRODUCTION

which is essentially the idea underlying the response ratio
hypothesis of Luce and Green (1974). The above can be
rearranged as

R =a Wy, (23)

from which it is apparent that all judgments are made rela-
tive to a short-term frame of reference, o, _; =R, _ /¥, _1;
note that the proportionality constant in this case varies
over time. To see how the error structure of Equation 2a
differs from that of Equation 1a, substitute a lagged ver-
sion of Equation 23,

Ria= (Rt—Z /LIJt—Z)LPt—th—li
for R, _; in Equation 2 and rearrange, which gives
R = LIJt(Rt—Z / th—Z)VtVt—l'

Repeating this procedure for R, _ 5, R; _ 3, and so on down
to R, gives

Ry =ayW Vv, ViV, p ...V, (2b)

which shows that if the approach to the task shown by
Equation 2 is used, then responses will again be propor-
tional to sensation magnitudes, with proportionality con-
stant a, = R,/W,. Note, however, that the error structure
of Equation 2b differs from that of Equation 1a in that er-
rors from previous trials (i.e., v; _ 4, v, _ ,) affect the cur-
rent response in Equation 2b but not in Equation 1a.

Thus, there are at least two ways to make proportional
judgments. The important aspect of Equations 1a and 2b
is that they show that the error structure provides informa-
tion about the judgment process—if judgments are made
relative to a stable reference, as in Equation 1, then the er-
rors do not have effects extending over trials, whereas if
judgments are made to a short-term reference, as in Equa-
tion 2, then the errors have effects extending over trials.

A dynamic model of relative judgment (DeCarlo,
1990; DeCarlo & Cross, 1990) explicitly recognizes that
there is more than one approach to the task. The idea of
the model is that judgment is affected by both the short-
and long-term frames of reference defined above, so that
the frames are weighted as follows:

R, = (Ro / q"o)l_/\ LIJt(Rt—l / Lpt—l)/\ Vis 3)

with 0 = A = 1. A basic idea of Equation 3 is that judg-
ment is relative to both short- and long-term frames of
reference. If A =0, then all judgments are made relative
to the long-term frame, R/, and Equation 3 reduces to
Equation 1. If A= 1, then all judgments are made relative
to the short-term frame, R, _ /W, _ 4, and the model re-
duces to Equation 2. Values of A between zero and unity
indicate that both frames of reference affect judgment,
and in this way A provides a measure of the relative in-
fluence of the two reference frames. Equation 3, referred
to here simply as the dynamic judgment model, can be
viewed as a dynamic generalization of the classic model
of proportional judgment of Stevens (1986) and the re-
sponse ratio hypothesis of Luce and Green (1974).
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The implications of Equation 3 for the error structure
of magnitude estimates can be shown by using the ap-
proach noted above; that is, repeated substitution in
Equation 3 for R, _ 4, R; _ ,, and so on down to R, gives

_ Ao ot
Ri=a Wi v vi,...v) (4)
which shows that errors from previous trials have a geo-
metrically decaying influence on the current response.
Another way to write the error process of Equation 4 is

R =a, thetA—th ) (5)

where ¢, is nonrandom error (i.e., it is correlated with
previous values of itself; that is, it is autocorrelated; for
details, see DeCarlo, 1994; DeCarlo & Cross, 1990).
These equations can be transformed from a multiplica-
tive to an additive relationship by taking logarithms, in
which case the logarithm of the error process in Equa-
tion 5 gives a first-order autoregressive [AR(1)] error
process, which is a basic type of process considered in
time series analysis (e.g., Box & Jenkins, 1976); note
that the logarithm of the error process in Equation 4
gives the moving average representation of the AR(1)
error process. Previous research (DeCarlo, 1990, 1992;
1994; DeCarlo & Cross, 1990) has shown that, for ME
and cross-modality matching experiments, the residuals
obtained from a fit of a logarithmic transform of Stevens’
power law are in fact well described by an AR(1) error
process.l

In addition to providing a theoretical basis for AR(1)
errors, the dynamic judgment model also suggests how
to possibly gain some control over the autocorrelation.
For example, if the instructions are varied so that they
emphasize one reference frame over another, then the
observed autocorrelation should be affected in a pre-
dictable way. In particular, the autocorrelation should be
larger when the immediate frame of reference is empha-
sized, and this result has been found in several studies
(DeCarlo, 1990, 1994; DeCarlo & Cross, 1990). In ad-
dition, in an experiment by Ward (1987), larger auto-
correlation was found with ratio ME instructions (which
emphasize the previous trial) than with “absolute” ME
instructions.

In summary, the dynamic judgment model provides a
theoretical basis for the autocorrelation typically found
in magnitude scaling experiments: Autocorrelation arises
because of the influence of different frames of reference
on judgment. Equation 3 shows that the autocorrelation
parameter A provides a measure of the relative influence
of the two frames of reference. The theory also suggests
how the autocorrelation can be, in part, controlled.

Stimulus Context Effects

A large body of research has shown that prior stimu-
lation appears to affect the current perception in magni-
tude scaling, categorization, and identification tasks
(e.g., Cross, 1973; Garner, 1953; Holland & Lockhead,
1968; Ward, 1973). One approach to modeling this stim-
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ulus context effect is to expand the power psychophysi-
cal model of Stevens (1986) to include an effect of the
previous stimulus intensity, also via a power function,

W, = Stﬁsty—lét' (6)

where & is random perceptual error. The parameter yre-
flects the magnitude of the effect of the previous stimu-
lus intensity on the current perception and its sign indi-
cates the direction of the effect. For example, Equation 6
with a positive value of ywould indicate that prior stim-
ulation had an additive effect on the current perception;
note that Equation 6 with positive yalso predicts a neg-
ative time-order error (see Hellstrom, 1985) in that if the
same stimulus is presented twice in a row, it will be per-
ceived as being greater in intensity on the second pre-
sentation. Cross (1973) introduced a variation of this
where a positive value of yindicates an assimilative ef-
fect in that the perception of S, is larger when S, _ ; is
greater than S; and is smaller when S, _ ; is less than S;,
and in this way the perception “assimilates” toward the
previous stimulus intensity (whereas in the additive
model of Equation 6, with a positive y; the perception of
S, is larger regardless of whether S, _ ; is greater than or
less than S,). It has previously been shown (DeCarlo &
Cross, 1990) that Cross’s version of the model differs
from Equation 6 only in that it replaces the exponent 3
of S; with 8 — y(and so a positive value of ydecreases
the exponent).

Assuming that there are both judgment effects and
stimulus context effects, in the sense of Equations 5 and
6, substituting the latter into the former and taking loga-
rithms gives

logR, = logat, + BlogS, +y10gS,, + A6, +u,, (7)

wheree, _; =log ¢ _, and u, = log v, + log &. Equation 7
generalizes Stevens’ regression model by including both
alagged regressor (log S; _ ;) and an AR(1) error process
(Ae,_ 4 +uy); it shows that a fit of the model provides di-
rect estimates of the parameters yand A, which reflect
two types of context effects: an effect due to a judgmen-
tal process (i.e., the relativity of judgment, as indicated
by A) and an effect due to a perceptual or memory pro-
cess (i.e., a stimulus context effect, as indicated by ).
Prior research has shown that the estimate of yfor ME of
loudness tends to be small and positive and, as noted
above, the estimate of A is positive (DeCarlo, 1992, 1994;
DeCarlo & Cross, 1990).

The next section shows that the dynamic model of
judgment (Equation 3), developed above for ME, and the
stimulus context model (Equation 6) can both be imme-
diately applied to MP.

Dynamic Judgment and Stimulus Context in MP

In MP, numbers are presented to participants and their
task is to adjust a stimulus intensity so that their sensation
magnitudes are proportional to the numbers. Thus, the re-
sponses are produced stimulus intensities and the stimuli
are presented numbers, which is the reverse of ME.

The dynamic model of judgment can immediately be
applied to MP. Note, for example, that one approach to
the task is for participants to compare the current num-
ber N, to a reference number N, and to then produce a
sensation magnitude W, that stands in the same relation
to a reference sensation Wy,

WM
l"JO NO

For the short-term reference case, participants com-
pare the current number to the previous number and pro-
duce a sensation magnitude that stands in the same rela-
tion to their previously produced sensation magnitude,

L\
.
LIJI—l Nl—l

As before, if both frames of reference affect judgment,
then the dynamic model of relative judgment is

W =(LP0 / No)l_/\ Nt(th—l/Nt—l)AVt' (8)

which is simply Equation 3 rewritten for MP. This equa-
tion can also be reexpressed in the same manner as Equa-
tion 5, which gives

W= (1/ g )Ny v, (8a)

where ay = Ny/W, (as in ME, where a, = Ry/W,). Equa-
tion 8a shows that, if the above approach to judgment is
used, then the produced sensation magnitudes are pro-
portional to the presented numbers and the (log trans-
formed) error process is again AR(1).

The model for stimulus context effects is the same as
before—namely, Equation 6, which in this case allows
for stimulus context effects of the prior (produced) stim-
ulus intensity on the current sensation (it is assumed that
numbers are perceived veridically). Substituting Equa-
tion 6 into Equation 8, solving for S{ (where the prime is
used to indicate that the stimulus intensity is produced
by the participant) and taking logarithms gives

log S, = (—1/[3) loga, +(1/B) log N,
~(v/B)t0gSiy +(A1B)ers +(L/B)ur,  (9)

keeping in mind that the produced stimulus intensity S;
is the response variable. Equation 9 has two basic impli-
cations. First, the error process is, as for ME, predicted
to be AR(1) (note that the scaling constant 1/8simply af-
fects the variance of u,). Second, Equation 9 shows that
if yis positive, as found for ME, then the coefficient of
the lagged produced stimulus intensity should be nega-
tive for MP. These predictions are examined next in a
within-subjects design where each participant served in
MP and ME experiments; the results are compared with
those of a study by Green et al. (1977) where ME and
MP conditions were also used (within subjects).
Equation 9 shows that the current log response (log S;)
should be regressed on the log of the current number
(log Ny) and the log of the previous response (log S{ _ ,),
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allowing for an AR(1) error process. A difficulty arises
with estimating the parameters of Equation 9 in the usual
way, however, because of the combination of a lagged
dependent variable (log S; _ ;) on the right side of the
equation together with an AR(1) error process (see the
Appendix); the problem is well known in econometrics
and is discussed in texts such as Greene (2000) and John-
ston (1984). Fortunately, it is easily dealt with; maximum
likelihood estimates of the model’s parameters were ob-
tained here using SAS (Release 8.02) employing the
DEPVAR option in PROC AUTOREG (see the Appen-
dix); the Appendix also notes an approach that can be
implemented with standard software for regression.

METHOD

Participants

The participants were 8 students enrolled in an introductory psy-
chology course. All participants claimed to have normal hearing.
Each participant served in two sessions, which consisted of ME of
loudness and MP of loudness to presented numbers. Four of the par-
ticipants performed ME first, followed on a different day by MP;
the other 4 performed MP first, followed on a different day by ME.

Apparatus

A General Radio Company oscillator was used to generate 1000-Hz
tones. The tones were presented binaurally through Grason Stadler
headphones (TDH-39). The presentation of the stimuli and record-
ing of the participant’s responses were controlled by an IBM per-
sonal computer using a BASIC program written by L.T.D. Each par-
ticipant was run one at a time in a sound-attenuating chamber
(Industrial Acoustics Company) that contained headphones, a ter-
minal, an intercom, and a KAT. The KAT is a pad with a surface that
maps to the terminal; movements of a stylus or finger across the
surface of the KAT moved an arrow on the terminal.

For ME, the order of presentation of the 12 stimuli, which ranged
from 40 to 89.5 dB in 4.5-dB steps, was determined by sequences
of 120 trials generated by the uniform probability generator of SAS.
The selected sequences had at least five presentations of each stim-
ulus intensity. The autocorrelation function (ACF) and partial auto-
correlation function (PACF) for each sequence were examined (for
examples of the use of these functions in time series analysis, see
Box & Jenkins, 1976); the (six) selected sequences had no signifi-
cant correlations for at least the first five lags. For MP, the stimu-
lus to be adjusted was initially turned on at one of 50 values, rang-
ing from 40 to 89 dB; the initial value sequences were generated
using the uniform probability generator of SAS and had no signif-
icant correlations for at least the first five lags of the ACF, and no
significant cross-correlations with the stimulus presentation se-
quence it was paired with for at least the first five lags.

Procedure

Each participant served in two sessions that were separated by
1-4 days. The participants were first shown how to use the KAT.
They were then required to practice using the KAT by entering five
responses. For ME, the practice responses were numbers, whereas
for MP, the practice responses were stimulus intensities adjusted by
the participant.

Magnitude estimation. The participants were first given a prac-
tice session where they were required to make numerical estimates
of eight line lengths, approximately 2, 3, 6, 12, 24, 48, and 192 mm
in length, presented at least once each for a total of 20 trials. Ratio
ME instructions were used: Participants were instructed to compare
their current sensation with their previous sensation and produce a
response that had the same relation (ratio) to their previous response.
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Upon completion of the first practice session, participants were
given a second practice session that consisted of 20 trials with the 12
stimuli (1000-Hz tones) used in the experiment; the stimuli ranged
from 40 dB to 89.5 dB in steps of 4.5 dB. Participants were told that
the purpose was to familiarize them with the range of stimuli used
in the experiment. The experiment, which consisted of 120 trials,
then followed. On each trial, 1 of the 12 stimuli (same as in the sec-
ond practice session) was presented for 1 sec. About 0.5 sec after the
offset of each tone, a numerical keypad appeared on the terminal; the
keypad consisted of the numbers 0-9, a period (for decimals), and a
clear entry key (to correct mistakes). Participants controlled the
movement of an arrow on the terminal by moving a stylus or their
finger across the surface of the KAT. Each digit of the chosen num-
ber could be entered by locating the arrow on a number and press-
ing a button on the KAT. The final response could be entered by
moving the arrow to a box labeled “Enter” and pressing a button on
the KAT. The next trial began 1 sec after the response was entered.

Magnitude production. The participants were first given a
practice session where they produced line lengths (using the KAT)
in response to the numbers 2, 3,5, 7, 10, 15, 20, 30, 50, 75, 125, and
200; the numbers are similar to those used by Green et al. (1977),
who noted that their choice of numbers followed in part from those
typically given by participants. The 12 numbers were presented in
a random order for a total of 20 trials. For the second practice ses-
sion (20 trials), participants used the KAT to adjust the intensity of
a 1000-Hz tone in response to the 12 numbers listed above. Partic-
ipants were instructed to compare each number to the previous
number and to produce a loudness with the same ratio to the previ-
ous loudness (i.e., ratio MP instructions). On each trial, a number
was presented for 2 sec in the middle of the terminal; immediately
after the number was presented, a 1000-Hz tone was turned on at
one of 50 random initial values ranging from 40 to 89 dB. The par-
ticipant could then adjust the intensity of the tone in 0.5-dB steps
by brushing a stylus or their finger across the surface of the KAT;
movements to the right increased the intensity, whereas movements
to the left decreased the intensity. It took about four strokes across
the surface of the KAT to adjust the intensity across the full range,
which was from 29 to 99 dB. Participants entered their response by
pressing a button on the KAT. The next trial began 1 sec after par-
ticipants entered their response. Following completion of the 20
practice trials, the experiment began. The experiment consisted of
120 trials and the procedure was the same as for the second prac-
tice session.

RESULTS

Mean and Variability of Responses

The left and right panels of Figure 1 present the me-
dians (across participants) of the mean log responses to
each log stimulus intensity (i.e., dB/20) for ME and to
each log number for MP, respectively. In both cases, the
trends are approximately linear.

Time Series Analysis of Residuals

The ACF and PACF function for the residuals obtained
from maximum likelihood fits of the structural part of
Equation 7 (ME) and Equation 9 (MP) were computed
and plotted separately for each participant (the structural
part involves only the regressors, and not the error pro-
cess; see SAS/ETS user’s guide, 1988). An AR(1) process
implies a geometrically decaying ACF and a PACF with
a drop after the first lag.

Figure 2 presents, for ME (upper panels) and MP
(lower panels), the group ACF and PACF plots for the
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Figure 1. The left panel shows the mean log response in magnitude estimation as a function of the
sound pressure level. The right panel shows the mean produced sound pressure level in magnitude
production as a function of the log of the presented number.

residuals. The group plots were determined in two steps.
First, the individual ACFs and PACFs were computed
and plotted separately for each participant using PROC
ARIMA of SAS (see SAS Institute, Inc., 1988). The me-
dians and interquartile ranges of the correlations were
then computed across participants for each lag and are
shown in the figure. The group plots provide a summary
of the individual plots (and the autocorrelations for indi-
vidual participants are given in Table 1).

For ME, the ACF plot shows an approximate geomet-
ric decay and the PACF plot shows a drop after the first
lag, which is consistent with an AR(1) error process.

This agrees with results found in previous studies for
ME (e.g., DeCarlo, 1994; DeCarlo & Cross, 1990). For
MP, the ACF and PACF plots show that the correlations
are small, and the plots are consistent with an AR(1)
error process in that the PACF shows a drop after the first
lag. The plots also show that the magnitudes of the cor-
relations are smaller for MP than for ME.

Regression Analysis

Table 1 presents, for each participant, the results for
fits of Equation 7 and Equation 9 for ME and MP, re-
spectively (see the Appendix for details on how the mod-
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Figure 2. The upper left and right panels show, for magnitude estimation, the autocorrelation

function and partial autocorrelation function, respectively, for the first eight lags. The lower left
and right panels show, for magnitude production, the autocorrelation function and partial auto-
correlation function, respectively, for the first eight lags.
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Table 1
Results for Each Participant for Magnitude Estimation (ME)
and Magnitude Production (MP)

Parameter Estimates for ME (Equation 7)

B y A
Participant Result  SE Result SE Result SE R?
1 036 0.01 0.05*> 0.01 .51** 0.08 .88
2 050 0.02 0.06** 0.01 .37** 0.09 .88
3 0.75 0.06 0.22** 0.06 .61** 0.07 .67
4 056 0.03 0.12** 0.03 .39** 0.09 .82
5 055 0.03 0.10** 0.03 .65** 0.07 .79
6 056 0.03 0.09** 0.03 .57** 0.08 .77
7 045 002 0.11** 002 .77** 0.06 .86
8 051 002 0.09** 002 .39** 0.09 .89
Parameter Estimates for MP (Equation 9)
1B —vyiB A

Result  SE Result SE  Result SE R2

1 179 0.07 —0.06 0.03 .37** 0.09 .86
2 166 0.07 -—0.09* 0.04 .41** 0.09 .85
3 121  0.06 0.08 0.05 .05 0.11 .78
4 186 0.05 —0.01 0.03 .06 0.10 .93
5 173 0.07 -0.10* 0.04 58** 0.08 .81
6 1.04 0.05 0.04 0.05 .24 010 .81
7 1.60 0.04 0.02 0.03 .12 0.10 .93
8 1.63 0.04 0.04 002 .11 0.10 .93

Note—Significance tests are not shown for the estimates of Sor 1/3be-
cause all the estimates are significant (i.e., several times larger than
their standard errors). *p<.05. **p<.0l.

els were fit). The values of R2 for both ME and MP,
which are generally about .80 or higher, show that the
data are well described by Equations 7 (for ME) and 9
(for MP) for each individual (the reported values of R2
are for both the structural and error parts of the model,
referred to as the total R2 in SAS; see the SAS/ETS user’s
guide, 1988).

For ME, the maximum likelihood estimates of 3 are
around 0.5. The estimates of yare positive and are sig-
nificantly different than zero for all 8 participants. The
estimates of the autocorrelation parameter A are all pos-
itive and significant, and are similar in magnitude to
those found in previous studies (where ratio ME instruc-
tions were used). For MP, the estimates of 1/(3 are all
greater than unity, as typically found (Participant 6’s
value is close to unity). The estimates of —y/[ are nega-
tive for 4 participants and positive for the other 4 partic-
ipants, but are small in magnitude and only two (which
are negative) are significant. The estimates of A are pos-
itive, but are significant for only 4 of the 8 participants.

DISCUSSION

With respect to ME, the results are similar to those ob-
tained in prior studies (see Table 2 of DeCarlo & Cross,
1990): The estimates of the autocorrelation were posi-
tive and the estimates of the coefficient of the lagged log
stimulus intensity were small and positive. In terms of
the dynamic judgment model, these results can be inter-
preted as showing, respectively, that (1) judgment was
affected by both short-term and long-term frames of ref-
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erence, which were weighted about equally; and (2) the
prior stimulus had a small additive effect on the percep-
tion of the current stimulus.

With respect to MP, positive autocorrelation was
found, but it was smaller in magnitude than that found
for ME (in spite of the fact that participants in both the
MP and ME experiments were told to use the previous
response and sensation as the reference). This is an in-
teresting result in that it suggests that the short-term
frame might be weighted less heavily in MP than in ME;
a similar result appears in a study of Green et al. (1977),
as discussed below. Second, the estimates of the coeffi-
cient of the lagged log response were close to zero and
significant for only 2 of the 8 participants. The two sig-
nificant estimates were negative, which is consistent
with Equation 9 and indicates a positive effect of the
prior stimulus, since the coefficient provides an estimate
of —y/B. Thus, the results for MP are consistent with
those found for ME of loudness, in that the estimates of
yare positive (for nonzero values), but they also differ in
that the estimates are clearly close to zero for MP. The
implication is that MP differs from ME in that the stim-
ulus context effect is smaller or nonexistent. This seems
reasonable because, for ME, one value of each stimulus
was heard for 1 sec on each trial, whereas for MP, several
values of each produced stimulus were heard on each trial
while the participant adjusted the stimulus; this might re-
duce or eliminate the effect of the previously produced
stimulus.

The next section compares the present results to those
of Green et al. (1977), who presented estimates for a dif-
ferent regression model. In order to compare the results,
relations between the alternative model and the models
considered here are derived.

Jesteadt et al.’s Regression Model
Jesteadt, Luce, and Green (1977) proposed the fol-
lowing regression model to study sequential effects:

logR,= a, +a;logS; +a,logS,

+aglogRy +u;. (10)

The results found with this model, as applied to ME, are
discussed first, followed by an illustration of its applica-
tion to MP.

Magnitude estimation. It has previously been shown
that the estimates of a, and a, obtained for fits of Equa-
tion 10 are close to those obtained for Sand A in Equa-
tion 7. The estimates of d,, on the other hand, tend to be
large and negative, which is in contrast to the small pos-
itive values of the estimates of yfound for Equation 7.
The finding of a negative a, for fits of Jesteadt et al.’s
(1977) model has led some researchers to conclude that
the effect of the previous stimulus intensity is contrastive
for loudness estimation. The dynamic judgment model,
however, accounts for the contradictory results in that it
shows that a positive value of yin Equation 7 can be con-
sistent with a negative value of a, in Jesteadt et al.’s
model (see DeCarlo, 1992, 1994; DeCarlo & Cross,
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1990). This can be seen by substituting the stimulus con-
text model (Equation 6) into the dynamic judgment
model (Equation 3) and taking logarithms, which gives

logR,= (1-A)loga, +BlogS, +(y - AB)logS,

+AlogR 4= AylogS,; +u;. (11)

Note that omitting log S; _ , from the above results in a
model with the same regressors as Jesteadt et al.’s model.
Although Equation 11 differs from Equation 10 in that it
includes log S; _ », it has previously been shown (e.g.,
DeCarlo & Cross, 1990) that it allows one to closely pre-
dict the coefficients obtained for fits of Equation 7 from
afit of Equation 10 (and vice versa), as will also be shown
below.

Equation 11 provides an interpretation of the coeffi-
cients of Jesteadt et al.’s (1977) model (Equation 10) in
terms of the dynamic judgment model (Equation 3) and
the stimulus context model (Equation 6), which is really
the only purpose for deriving it. In particular, it suggests
that the estimate of a, for a fit of Jesteadt et al.’s model
is an estimate of y — AB. It follows that o, will be nega-
tive if y< AB, which appears to be the typical case for
loudness estimation. Thus, according to the dynamic
judgment model, negative values of a, are found for
loudness estimation with Jesteadt et al.’s model because
the coefficient of the lagged log stimulus regressor con-
founds perceptual (i.e., yand B) and judgment (i.e., A)
effects, and not because there is a contrastive effect of
the prior stimulus. This view is supported by several re-
sults found in prior research, as discussed by DeCarlo
(1992, 1994) and DeCarlo and Cross (1990).

The upper half of Table 2 presents the mean coeffi-
cients obtained for ME in the present study and those ob-
tained for ME (of loudness) in a study by Green et al.
(1977), who reported results for ME and MP in a within-
subjects design. Green et al. provided the coefficients
obtained for a fit of Jesteadt et al.’s (1977) model (Equa-
tion 10), and so the parameters of Equation 7 can be es-
timated (using Equation 11). Table 2 shows the results.
With respect to the dynamic judgment model, the left side
of the table shows that the mean coefficient of the lagged
log stimulus for Equation 7 was small and positive for
both studies and the autocorrelation was large and posi-
tive. The right side of the table shows that the results for
Equation 10 differ in that the mean coefficient of the
lagged log stimulus was large and negative in both the
present study and that of Green et al. This shows yet
again that a positive estimate of the coefficient of the
lagged log stimulus for Equation 7 can be consistent
with a negative estimate for Equation 10. Note that the
results are consistent with Equation 11; for example,
using Equation 11 and the results of the present study,
the coefficient of the lagged log stimulus for Equation 10
predicted from a fit of Equation 7 is 0.10 — 0.53 X
0.53 = —0.18, which is reasonably close to the estimate
of —0.13 obtained by fitting Equation 10.

Thus, the upper half of Table 2 shows that the results
of the present study for ME are consistent with those ob-

Table 2
Mean Estimates for Magnitude Estimation (ME) and
Magnitude Production (MP) for the Current Experiment
and that of Green, Luce, and Duncan (1977)

Magnitude Estimation

Equation 7 Equation 10
Study B y A a, a, Oy
Current 0.53 010 053 054 -013 050
GLD 1977 0.44 0.062 0.53 0.44b —0.17b 0.53
Magnitude Production
Equation 9 Equation 10
1B -ylB A a; a, Oy

Current 1.56 —0.01 0.23 1.55 —0.43 0.24
GLD 1977 1.53 —0.02¢ 0.27 1.53d —0.44d 0.27

Note—GLD 1977 is Green, Luce, and Duncan (1977). aThe value of
y for Equation 7 was estimated from the results reported for Equa-
tion 10 as (a; X as) + a, (see Equation 11). 5The coefficients are
twice as big as those reported by GLD because they used sound power
(dB/10) whereas sound pressure (dB/20) was used here; using sound
power simply has the effect of halving the estimates of a; and a, (a;
is not affected). cThe value of —y/Bfor Equation 9 was estimated from
the results reported for Equation 10 as (a,/a;) + a; (see Equa-
tion 12). dThe coefficients are one half as big as those reported by
GLD because they used sound power (dB/10) whereas sound pressure
(dB/20) was used here; using sound power simply has the effect of dou-
bling the estimates of a; and a, (a5 is not affected).

tained by Green et al. (1977). The table shows that the
negative values found for the coefficient of the lagged
log stimulus intensity in Jesteadt et al.’s (1977) model for
ME of loudness are consistent with a positive stimulus
context effect in the dynamic judgment model, as shown
by the positive estimates of yfor fits of Equation 7.

Magnitude production. The implications of the dy-
namic judgment model for Equation 10 can be shown by
substituting Equation 6 into Equation 8 and taking loga-
rithms, which gives

logS; = (1/B)logN, =(A/ B)log N,
HA=(v/B)|logsi_,
+(Ay1B)logS;_, +(1/ B)u;. (12)

where the intercept, [(A — 1)/f] log a,, has been omitted
for clarity. Again, omitting log S; _ , from the results
above in a model with the same regressors as Jesteadt
et al.’s (1977) model, and in this way Equation 12 pro-
vides an interpretation of the coefficients of Jesteadt
etal.’s model in terms of the dynamic judgment model, as
applied to MP; specifically, a; = 1/8, a, = —AlB, and
a3 =A — (yIB) (note that a direct fit of Equation 10 will
give estimates that differ to some extent from those pre-
dicted by Equation 12 due to the omission of log S{ _ ,).
It is shown next that Equation 12 is useful for estimating
the coefficients of Equation 9 from a fit of Equation 10
(of course, one should fit Equation 9 directly; Equa-
tion 12 is used here because only estimates for a fit of
Equation 10 were available for Green et al.’s, 1977, study).

The lower half of Table 2 presents, for MP, the mean
coefficients for both the present study and that of Green
et al. (1977). The table shows that the results are again
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consistent across the two studies. With respect to the dy-
namic judgment model, the left side of the table shows
that the estimate of —y/f3 is negative and near zero for
both studies. Note that the estimate of yobtained by di-
viding y/ by the estimate of 1/ is essentially zero; as
noted above, this suggests that the stimulus context ef-
fect in MP is near zero, most likely because of the dif-
ferent nature of the task (i.e., participants must pass
through and hear other stimulus intensities before arriv-
ing at their final response). Second, the autocorrelation
(the estimate of A) is positive for both studies and smaller
than that found for ME; the implication is that partici-
pants in MP tend to rely more heavily on a long-term
frame of reference, regardless of the instructions.

With respect to Jesteadt et al.’s (1977) model, the right
side of the table shows that the major difference is that
the estimate of the coefficient of the lagged log number
(ay) is large and negative for both the present study and
that of Green et al. (1977); it is also larger in magnitude
than the estimate of the coefficient of the lagged log
stimulus intensity obtained for ME. In the absence of
theory, this would suggest a large contrastive effect of
the previous number on the perception of the current
number; the finding of a larger estimate for MP suggests
that the stimulus context effect for numbers is larger than
that for loudness. In my view, a contrast effect for num-
bers does not seem likely (although some might argue for
a contrast effect for numbers); moreover, the finding that
the effect is larger for numbers than for loudness seems
even less likely. In any case, the dynamic judgment
model offers a different view of these results. Specifi-
cally, Equation 12 shows that the coefficient of the
lagged log number in Jesteadt et al.’s model, a,, is an es-
timate of —A/. Thus, in terms of the dynamic judgment
model, the large negative values of a, found for fits of
Jesteadt et al.’s model to MP data arise because the coef-
ficient reflects a judgment effect (i.e., the autocorrela-
tion A), and not because there is a large contrastive effect
of the previous number.

In summary, the results for Green et al.’s (1977)
within-subjects ME and MP experiments are quite con-
sistent with the results found here. The present experi-
ments and those of Green et al. together support the view
that the coefficients of Equations 7 and 9 provide simple
measures of judgment and perceptual processes in mag-
nitude scaling tasks. The models also account for results
obtained for fits of Jesteadt et al.’s model that would oth-
erwise be puzzling, such as the large negative value of
the coefficient of the lagged log number in MP.

Prior research has shown that the dynamic judgment
model provides a simple account of other puzzling re-
sults found with Jesteadt et al.’s (1977) model. For ex-
ample, it has been shown that using ME instructions that
emphasize the short-term frame over the long-term
frame leads to a considerable increase in autocorrelation
(A), as expected, and also to an increase in (negative) o,
in Jesteadt et al.’s model, which is not expected (De-
Carlo, 1990, 1994; DeCarlo & Cross, 1990). Equation 11
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shows that this result is consistent with the parameter
constraint a, = y — AB: An increase in A should be ac-
companied by an increase in (negative) y — AB (keeping
in mind that o, is negative because AS is larger than pos-
itive ). Second, whereas the estimates of yfor fits of
Equation 7 were smaller with longer intertrial intervals
(ITIs), the results for fits of Jesteadt et al.’s model were
the opposite: The estimates of a, were negative and
larger for longer ITIs (see DeCarlo, 1992). This result is
counterintuitive in that it is expected that the magnitude
of the contrast should be smaller when the previous stim-
ulus is further removed in time and/or space. Equa-
tion 11, however, again sheds light on this result: If a, =
y — AB, then a decrease in positive ywill lead to an in-
crease in negative a, (again keeping in mind that y< Ag),
and a fit of Equation 7 showed that the estimate of ywas
indeed smaller for the longer ITI. Thus, the dynamic judg-
ment model combined with the stimulus context model to-
gether provide a simple account of several results found
with Jesteadt et al.’s model; see DeCarlo (1992, 1994) and
DeCarlo and Cross (1990) for further discussion. The re-
sults found here for MP add to this evidence.

Some Notes on Other Results

Positive and negative context effects. Although the
results discussed here suggest a positive stimulus con-
text effect for loudness estimation, this is not meant to
imply that, in general, the context effect is always posi-
tive (this simply appears to be the case for several con-
tinua, as shown by DeCarlo, 1994, DeCarlo & Cross,
1990, and Schifferstein and Frijters, 1992). For example,
Schifferstein and Frijters presented results that sug-
gested a negative stimulus context effect for sweetness
estimation. Moreover, it is important to note that a neg-
ative effect for sweetness was found both for a fit of
Jesteadt et al.’s (1977) model (Equation 10) and for a fit
of the model with autocorrelated errors (Equation 7), as
was also noted by Schifferstein and Frijters (p. 252). This
is consistent with the relation between the parameters of
the models discussed above. That is, if yis negative (in-
dicating a contrast effect), then a, = y — AB will be neg-
ative (for positive A and S, as is usually found). Thus, the
study of Schifferstein and Frijters provides evidence of a
contrast effect for sweetness estimation, with the direc-
tion of the effect remaining the same regardless of which
model is used (which is the crucial finding). On the other
hand, loudness estimation offers a different example
where a (possibly) positive context effect appears to be
negative if a different model is used.

The inverted-V and spatial-temporal errors. Some
other results found in studies of sequential effects have
also been noted; for details and a review of studies up until
the late 1990s, see Baird (1997). Here | comment on a re-
sult referred to as the inverted-V (or triangle) pattern. In
particular, Jesteadt et al. (1977) noted that, in addition to
successive responses being correlated, there was a pat-
tern to the correlations (note that this has been shown
only for data pooled across participants, and not for in-
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dividual data). Specifically, the pattern was that the cor-
relations were higher when successive stimuli were close
in value and smaller when successive stimuli were far-
ther apart. This suggests that a model with simple auto-
correlated errors might be incomplete. DeCarlo and Cross
(1990, p. 387) commented on this finding and noted that
the relative judgment model could be extended to include
the effect; they suggested using a dummy coded variable
that took on values of zero or one depending on the dis-
tance of successive stimuli, which is consistent with the
idea of an attention band, as discussed by Luce and
Green (1978). The resulting model is an extension of the
dynamic judgment model with time series errors (Equa-
tion 7) to a model with spatial-temporal errors. Estima-
tion of the model is more involved, and the model has
not been investigated to date. DeCarlo and Cross (1990)
noted that the extension offered a simple interpretation
of the inverted-V pattern—namely, that the short-term
frame is used when successive stimuli are similar and the
long-term frame is used when they are far apart, but they
also noted that the importance and psychological rele-
vance of the extension remains to be demonstrated.

The inverted-V pattern can be viewed as a second-
order effect; it suggests that the simple model with auto-
correlated errors might be incomplete. In a similar vein,
Stevens’ regression model is incomplete because it does
not account for correlated errors. Note, however, that this
does not mean that Stevens” model must be abandoned, but
rather that it should be extended to recognize the correla-
tion; this is accomplished by the dynamic judgment model,
which extends the model and provides a theoretical basis
for autocorrelated errors. Similarly, the inverted-V pat-
tern suggests possibly further extending the dynamic
judgment model to allow for a pattern of correlations,
which leads to models with spatial-temporal errors, as
discussed above. Note that the usual result of ignoring
autocorrelation or spatial autocorrelation is that the stan-
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dard errors are incorrect, so that significance tests can-
not be trusted. The parameter estimates are still unbi-
ased, however, which is important because the focus in
research on sequential effects has been on mean param-
eter estimates (as in Table 2). This means, for example,
that conclusions about the size of the stimulus context
effect across different conditions (e.g., different ITIs) are
likely still valid even if there is a spatial aspect of the auto-
correlations that is ignored. As another example, the in-
verted-V graphs presented in DeCarlo and Cross (1990)
showed that the correlations were larger for the condi-
tion where the short-term frame of reference was em-
phasized, so once again the conclusions are the same:
The instructions can be varied so as to affect the magni-
tude of the autocorrelation. The point is that a possible
second-order pattern in the errors does not necessarily
invalidate results found with the basic time series re-
gression model.

Figure 3 presents a graph of the correlations of the
(structural) residuals as a function of the difference be-
tween successive stimulus magnitudes (see the Appendix
in DeCarlo & Cross, 1990, for notes on computational
details). The left panel shows that an inverted-V pattern
appears for ME, whereas the right panel suggests that the
pattern might also appear for MP, although it is less clear
and the interquartile ranges (indicated by the brackets)
show that there is considerable variability across partici-
pants. The graph also shows that, relative to ME, the cor-
relations for MP tend to be smaller. So again, conclusions
about differences in autocorrelation across ME and MP
are the same as for the regression analysis—namely, that
the correlation appears to be smaller for MP than for ME.

Assimilation and the Regression Effect

The “regression effect” discussed by Stevens and
Greenbaum (1966) refers to the finding that the expo-
nent obtained for ME is smaller than the inverse of the
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Figure 3. The left panel shows, for magnitude estimation, the correlation of successive structural
residuals computed separately for each categorical stimulus difference. The right panel shows the
same for magnitude production. The categorical stimulus differences for the stimuli used here are
0=0dB, 1=4.5-13.5 dB difference, 2 = 18-27 dB difference, and 3 = 31.5-49.5 dB difference.



DYNAMIC JUDGMENT IN MAGNITUDE PRODUCTION

MP exponent. This was also found here: The estimate of
[ obtained for ME was 0.53, and the estimate of (3 ob-
tained for MP by taking the inverse is 1/1.56 = 0.64; sim-
ilarly, for Green et al.’s (1977) study, the estimate of 3
for ME was 0.44 and the estimate of Sfor MP is 1/1.53 =
0.65.2 Thomas (1981), however, noted that the estimate
of Bobtained by taking the inverse of the estimate of 1/3
obtained for MP (i.e., with Equation 9) is biased. The es-
timate can be approximately corrected for the bias (see
Equation 10 of Thomas, 1981). With respect to the pres-
ent study, the correction factor (which is subtracted from
the estimate of 1/f3) is very small—the correction factor
is 02/(a3 X d), where 02 is the estimate of the residual
variance, a is the estimate of 1/ obtained for MP (from
Equation 9), and d is the sum of the squared deviations
for the predictor. For the 8 participants in the present
study, the largest value of 62 was 0.22, the smallest value
of a3was 1.12, and d was larger than 20, so the correc-
tion is less than 0.01. Thus, the correction is too small to
account for the difference of 0.11 between 0.64 and 0.53,
so the regression effect found here is not due to statisti-
cal bias; Thomas reported results for matches of bright-
ness to line length and line length to brightness that gave
similar results in that the bias was again too small to ac-
count for the regression effect.

Another possible explanation of the regression effect
was suggested by Cross (1973). As noted, in Cross’s ver-
sion of the model, the exponent B in Equation 6 is re-
placed by 3 — y. An interesting implication of this ver-
sion of the model is that if the size of the stimulus
context effect ()) in MP is less than that found for ME,
then a “regression effect” would result. That is, the esti-
mate of 8 — yobtained for ME would be smaller than the
estimate of 8 — yobtained by taking the inverse of the
coefficient of log N, for MP if ywas larger for ME than
for MP. As shown above, the estimate of ywas indeed
larger for ME than for MP in both the present study and
that of Jesteadt et al. (1977). Note that for the present
study, the difference between the mean estimates of 3
across ME and MP is 0.64 — 0.53 = 0.11, whereas for
Greenetal.’s (1977) study, the difference is 0.65 — 0.44 =
0.21; the difference between the mean estimates of yob-
tained across ME and MP is less than 0.10 for both stud-
ies. Thus, itis interesting that assimilation could account
for part (but not all) of the regression effect found in the
present study, but its magnitude is clearly too small to
account for the regression effect found in Green et al.’s
study. Further research on the regression effect is needed.

Summary

According to the dynamic judgment model, the corre-
lation over trials of participants’ responses in ME and MP
experiments arises from the comparative nature of the
task and the influence of different frames of reference on
judgment. The model makes specific predictions about
the dynamic structure of data obtained with ME and MP.
It is shown that the parameter estimates obtained for ME
and MP were consistent across the two procedures: The
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estimate of the autocorrelation was positive, albeit smaller
for MP than for ME, and the estimate of ywas positive,
but close to zero for MP. These results are only apparent,
though, when regression models suggested by the theory
presented here are used; an earlier regression model gives
different results. The experiments show that there are in-
variant aspects of sequential effects across ME and MP,
and the dynamic model of relative judgment provides a
simple interpretation of the results.
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NOTES

1. Of course, the model can be readily extended to allow for influ-
ences of frames further back than the first trial, which results in a higher
order autoregressive error process, but prior research suggests that ef-
fects from further trials back are at most very small, as also shown by
the PACF plots in Figure 2.

2. With respect to the individual data, note that 6 of the participants
clearly showed a regression effect, whereas Participant 4 did not, and
the effect was small for Participant 5.

APPENDIX
Some Notes on Estimation

Magnitude Estimation

It can be shown that it follows from Equation 7 (i.e., see Equation 11) that
logR,—AlogR,_; = (1— }\)IogorO + ﬁ(log S, —Alog 31-1)
+y(logS,, = AlogS,_,) +u;,

which shows that, given an estimate of A, the variables can be transformed as log R, — Alog R, _ 1, log S; — A
logS,_q,andlogS,_, — Alog S; _,, and the resulting error, u,, is uncorrelated. Thus, given an estimate of
A, ordinary regression can be performed on the transformed variables to obtain estimates of Sand y. This sug-
gests a two-step approach, which can easily be implemented in standard software for regression. The first step
is to obtain a consistent estimate of A by using the residuals obtained from a regression of log R, on log S and
log S; _ ;; this estimate can then be used to transform the variables as shown above, and the second step is to
perform regression on the transformed variables. This is the basis of various two-stage estimation procedures
(e.g., see Johnston, 1984). More efficient estimates can be obtained using PROC AUTOREG of SAS, as done
for the results presented here (using maximum likelihood).

Magnitude Production
Equation 9 implies (using Equation 12) that

logS; —AlogS{ = (1/B) (Iog N, —Alog Nt_l)
- (y /B) (Iog S{41-Alog 5{_2)
+ (1/ﬁ) Uy

where the intercept, [(A — 1)/B]log a,, has been omitted for clarity. This shows that the error term for the trans-
formed variables is uncorrelated. In this case, however, one cannot obtain an estimate of A by using the resid-
uals obtained from a regression of log S; on log N, and log S{_ because the estimate will be inconsistent (be-
cause of the presence of a lagged dependent variable on the right side of the equation). Several approaches to
this problem have been discussed (e.g., see Johnston, 1984). A simple approach is to use a grid search (start-
ing, e.g., with steps of 0.1) over the possible values of A, which are between —1 and 1. For each value of A,
the variables are transformed as shown above, and the value of A that minimizes the sum of the squared resid-
uals is taken as the estimate of A. A finer grid can then be used (e.g., steps of 0.01 around the initial estimate
of A). The final step is to use the estimate of A to transform the variables and to run a regression with the trans-
formed variables. The resulting parameter estimates will be consistent (and unbiased), but the standard errors
need to be corrected, as shown by Johnston (1984). For the results reported here, maximum likelihood esti-
mates were obtained using PROC AUTOREG of SAS (and the LAGDEP option; see SAS/ETS user’s guide,

1988).

(Manuscript received June 19, 2001;
revision accepted for publication April 12, 2002.)



