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Abstract 

Rater behavior in essay grading can be viewed as a signal-detection task, in that raters attempt to 

discriminate between latent classes of essays, with the latent classes being defined by a scoring 

rubric. The present report examines basic aspects of an approach to constructed-response (CR) 

scoring via a latent-class signal-detection model. The model provides a psychological framework 

for CR scoring and includes rater parameters with a clear cognitive basis. Simulations are used to 

examine how well rater parameters and latent-class sizes are recovered as well as the accuracy of 

classification. The relation of rater parameters to agreement statistics and classification accuracy 

is examined. The effects of using a balanced, incomplete block design are compared to those for 

a fully crossed design. The model is applied to several ETS datasets. 

Key words: Constructed responses, rater effects, signal detection theory, latent class models, 

classification, agreement, incomplete block design 
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Introduction 

Essays and other constructed-response (CR) items must be scored by raters. The use of 

raters to score CR items raises questions about how raters perform the task, an understanding of 

which in turn is important for the choice of a model of rater behavior. One approach is to view 

raters as attempting to classify each essay into a latent category, where the latent categories are 

defined by a scoring rubric. For example, a 1–6 scoring rubric, as used in the SAT®, GRE®, and 

Praxis™, can be viewed as defining six latent categories of essays, with the task of raters being 

to determine to which of the six categories each essay belongs. When viewed in this way, the 

task becomes one of signal detection, in that raters attempt to discriminate between latent 

categories of items. This suggests the use of a latent-class version of signal-detection theory 

(SDT) as a model of rater behavior. The approach offers a psychological framework for 

understanding CR scoring and includes rater parameters that have a clear cognitive basis. Up to 

this point, latent-class SDT models have been used primarily in medical diagnosis (see DeCarlo, 

2002). However, the approach recently has been used in education and in particular as a model of 

rater behavior in essay scoring (DeCarlo, 2005). The present report examines this approach in 

more detail. 

An immediate benefit of an approach to CR scoring via SDT is that it clarifies that the 

scores assigned by raters reflect two basic aspects of the task, a perceptual aspect and a decision 

aspect. This is illustrated in Figure 1. 
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Figure 1. A representation of signal detection theory. 
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The perceptual aspect of the task refers to the view that, for holistic scoring, raters base 

their scores in part on their perception of the overall quality of an essay. A basic assumption in 

SDT is that the perceptions can be viewed as being realizations of a continuous, random variable 

with a specified probability distribution, such as the normal or logistic (other distributions can be 

used through the use of different link functions; see DeCarlo, 1998). In particular, it is assumed 

that there is a probability distribution for each latent class of essay, with a different location for 

each class, as shown in Figure 1. That is, Figure 1 shows that, for a 1–4 scoring rubric, it is 

assumed that raters attempt to discriminate between four latent classes of essays. Additionally, 

the perceptions of the quality of essays from a particular latent class can be represented by a 

probability distribution, with the result of four distributions, one for each latent class, with 

different locations. 

Of basic interest in SDT is a rater’s ability to discriminate between the latent classes, as 

measured by a discrimination parameter d, which is interpreted in SDT as a measure of the 

distance between the underlying perceptual distributions; a higher value of d indicates better 

discrimination and distributions that are further apart. In the version of SDT considered here, 

referred to as an equal spacing SDT model (DeCarlo, 2002, 2005), it is assumed that the raters 

perceive the latent classes as being equally spaced, and so the distance between perceptual 

distributions is the same for adjacent distributions, which gives distances of d, 2d, 3d, and so on, 

as shown in Figure 1. Note that the equal spacing is in the raters’ perceptions, and not the latent 

classes, which are only assumed to be ordinal. As shown below, the equal-distance restriction is 

implemented in the model by scoring the latent classes as 0, 1, 2, and so on. 

The decision aspect of the task has to do with a rater’s use of the response categories, that 

is, what a rater considers to be a Category 4 versus a Category 3, for example. In SDT, a rater’s 

category usage is reflected by his or her use of response criteria, ck, which delineate the K 

categories, as shown in Figure 1. It is widely recognized that some raters tend to assign high 

scores (leniency), whereas others tend to assign low scores (strictness); in terms of SDT, this 

simply reflects the raters’ arbitrary use of response criteria, which are lower (i.e., further to the 

left) for lenient raters and higher for strict raters. The locations of the response criteria also 

reflect any and all other peculiarities in the rater’s response usage, such as avoiding end 

categories or spacing the categories unequally. Thus, SDT separates perceptual aspects of the 
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task (a rater’s ability to discriminate between the latent categories), from decision aspects (a 

rater’s use of response criteria). 

Another way to represent the model is shown in Figure 2, which uses a diagram similar to 

that used in structural equation modeling (e.g., see Kline, 2005). The observed responses, Yj, 

consist of ratings, such as from 1–6. As is well known in statistics and psychometrics, models 

with ordinal responses can be motivated by assuming a continuous underlying variable (e.g., 

Agresti, 2002), which is shown for each rater j as Ψj in Figure 2. In the SDT approach, Ψj 

represents a rater’s perception of the overall quality of an essay, as shown in Figure 1. As noted 

above, it is assumed that raters arrive at their observed responses by using their perceptions in 

conjunction with response criteria, shown as c in Figure 2. The arrows from Ψj to Y (actually it’s 

the probability of Y, and not the observed Y, but the diagram is simplified) are curved to indicate 

that the relation between the mean of Ψj and the response probabilities is nonlinear. As noted 

above and represented in Figure 2, the mean of the Ψj distribution is shifted by dj across the 

latent classes, which are denoted here as X # (i.e., X # is used here to denote a latent categorical 

variable, whereas X* is commonly used in statistics and econometrics to denote a latent 

continuous variable). 

 

Figure 2. A structural equation-like representation of latent-class signal-detection theory. 



4 

The latent-class SDT model can be written as follows. Consider the situation where J 

raters examine N cases (e.g., essays) and assign a discrete score k to each case, where 1 ≤ k ≤ K 

and K is the number of response categories. For the equal-distance version of the SDT model, the 

model is 

p(Yj ≤ k | X# = x#) = F(cjk − dj x#) (1)  

where Yj is the response variable for rater j (e.g., a 1–6 response), X # is a latent categorical 

variable with values of x # from 0 to K−1 (note that this particular scoring implements the equal 

distance restriction), cjk are K−1 strictly ordered response criteria for the jth rater and kth 

response category, dj is the discrimination parameter for the jth rater, and F is a cumulative 

distribution function; the logistic cumulative distribution function is used here. 

To complete the model, Equation 1 is incorporated into a restricted latent class model, as 

shown in DeCarlo (2002, 2005). A latent-class model is a model for the probability of the 

response patterns (k1, k2,…, kJ) for the J raters and can be written as 

p(Y1 = k1,…,YJ = kJ) = ∑x# p(X # = x#) p(Y1 = k1,…,YJ = kJ |X # = x#), (2) 

where the summation is over the latent classes X#. With an assumption of local independence, the 

second term on the right becomes 

p(Y1 = k1,…,YJ = kJ |X # = x#) = ∏j p(Yj = kj |X # = x#), (3) 

where the product is over the J raters. The latent-class SDT model of Equation 1 is then used for 

the product on the right in Equation 3 by differencing the cumulative probabilities to get 

response probabilities, as done for item-response theory models such as the graded-response 

model (Samejima, 1969). Equations 1 and 3 are then incorporated into Equation 2 to complete 

the model. Note that, for the version of the latent-class SDT model considered here, which has K 

ordinal response categories for K latent classes, a minimum of three raters is generally needed in 

order for the model to be identified; this is not an issue for the large-scale assessments examined 

here, because many raters are used; yet, it is relevant when pooled data are analyzed (see the 

section on the second writing test below). 

As has been noted previously (DeCarlo, 2002, 2005), from a statistical perspective, the 

latent-class SDT model is closely related to several other models discussed in psychometrics. For 
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example, it can be viewed as a discretized version of the graded-response model (see Heinen, 

1996) and is also related to the D-factor models of Vermunt and Magidson (2007). The 

difference is that D-factor models use adjacent category logits, whereas SDT uses cumulative 

links, because of the motivation in terms of underlying distributions. Indeed, it should be clear 

from Figure 2 that the latent-class SDT model is a type of factor analysis model, albeit with a 

discrete factor. Previous research (DeCarlo, 2002, 2005) has compared the latent-class SDT 

model with D-factor models and item-response theory models. 

The present report examines an approach to CR scoring via latent-class SDT. A basic 

goal is to obtain information, through simulations, about how well the parameters are recovered 

and how accurate the classifications are. We have little or no information about this at this time. 

Also investigated are the relation of rater parameters to agreement statistics and the relation of 

rater discrimination to classification accuracy. 

For large-scale assessments, incomplete designs are a necessity, because there are a large 

number of essays; thus, not all of the raters can score all of the essays. Instead, each essay is 

graded by a subset of raters, typically 2. This makes it possible for a relatively small number of 

raters to score a relatively large number of essays. For example, if a balanced, incomplete block 

(BIB) design is used, with each essay scored by 2 raters, a total of 1,080 essays can be scored by 

10 raters, with each rater scoring 216 essays. The present report examines incomplete designs 

and compares the results to those obtained with complete (fully crossed) designs. Applications to 

real-world data are also presented. 

Simulated Data: Fully Crossed Design 

First examined are fully crossed designs, which provide a useful reference point for the 

incomplete designs examined below. Estimation and classification are examined using a range of 

values for the rater parameters that is consistent with that found for real-world data. 

Methods 

The simulated data were generated using SAS software macros written by the author 

(used in DeCarlo, 2005, and modified as needed for the current studies). Data for 10 raters 

discriminating between six latent classes by giving one to six responses were simulated. The 

latent class sizes were chosen to approximate a normal distribution (see Appendix A), which is 

consistent with the results found for the exams analyzed below. A range of values of d from 2–5 
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was used, which covers a range of detection from moderate to excellent (for the logistic model) 

and is consistent with that found for real-world data. For example, for the large-scale assessment 

examined below, the values of d for 44 raters ranged from 1.8–5.3. One also has to make 

decisions about the location of the criteria for the different values of d. A general approach, used 

here, is to locate the criteria at the intersection points of adjacent distributions, which has the 

convenient property that the relative locations of the criteria remain the same as d varies; some 

conditions where the criteria are not at the intersection points are also examined below. Relative 

to d, this means that the first through last criteria are located at ½d, 1½d, 2½d, and so on. That is, 

it should be obvious that the intersection points for symmetrical distributions are at the point 

midway between the two adjacent distributions. So, for example, for six latent classes and a d of 

2, the six distributions will be at 0, 2, 4, 6, 8, and 10 and the five response criteria will be at 1, 3, 

5, 7, and 9, and similarly for other values of d. A sample size of 1,080 was used for all 

conditions; the size of 1,080 was used instead of simply 1,000 because the incomplete design 

examined below is fully balanced for 10 raters with a sample size of 1,080. Each condition 

consisted of 100 replications. 

Data generation consisted of three steps. First, values for the latent variable X # (i.e., 0, 1, 

2, …, K−1) were generated using a multinomial distribution, where the latent class sizes were 

used as the probabilities for each latent-class category. Next, the generated values of X # were 

used in Equation 1 along with the population parameters cjk and dj to get cumulative response 

probabilities for each rater and response category, using a logistic distribution for F. To generate 

an observed response, the probabilities were compared to values obtained from a uniform 

random variable generated on an interval from 0–1. If the value was less than or equal to the 

probability for the lowest response category, then a response of 1 was assigned; if it was greater 

than the probability for the lowest category, but less than or equal to the value for the second 

category, then a response of 2 was assigned, and so on. 

Several software packages can be used to fit the latent-class SDT model, such as LEM 

(Vermunt, 1997), Latent Gold (Vermunt & Magidson, 2007), and Mplus (Muthén & Muthén, 

2007). Some small simulations indicated that Latent Gold tended to have good performance for 

the models considered here, and so it was used. In particular, a prerelease version of Latent Gold 

(demo Version 4.5), made available to the author, was used; Version 4.5 allows one to use syntax 

to specify a wide range of models, including the latent-class SDT model. Latent Gold uses the 
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expectation-maximization algorithm followed by the Newton-Raphson procedure to obtain 

maximum likelihood estimates of the parameters (unless Bayes constants are used; see the 

incomplete simulation below). A SAS macro written by the author was used to generate 100 

input files for the Latent Gold analysis and also a DOS batch file, which was used to call Latent 

Gold repeatedly to perform the analysis. Other SAS macros stripped out information from the 

Latent Gold output for each replication, and the results were combined in a file for the remaining 

analyses. 

One complication that must be recognized is known as label switching (McLachlan & 

Peel, 2000). In the current context, label switching has to do with the coding of the latent 

categorical variable X #, in that it is arbitrary as to which class is assigned a value of zero. For 

example, in some cases, the classes will be labeled as 0, 1,…, K−1, and in other cases as K−1, 

K−2,…, 0. The maximized log likelihood has the same value for the switched solution, the main 

consequence for the latent class SDT model is that the sign of d is reversed as is the order of the 

latent classes. In addition, when label switching occurs, one has to add K−1 times d to the 

obtained criteria estimates in order to obtain estimates of c. The SAS macro that stripped out and 

summarized the data checked for label switching and adjusted the computations appropriately. 

Results 

Rater parameters and latent-class sizes. Appendix A presents, for the rater parameters 

and latent-class sizes, the population parameters, the mean parameter estimates, the bias, the 

(absolute) percent bias (the parameter estimate minus the population value, divided by the 

population value, times 100; the absolute percent bias is shown here because the direction is 

obvious from the sign of the bias), and the mean squared error (MSE) for fits of the model to the 

100 sets of simulated data. 

Tables A1–A3 show that estimation is excellent for values of d from 2–4. The bias and 

MSE for the rater parameters are small, with a percent bias of generally less than 1% for d and 

less than 2% for c; percent bias less than 5% is usually viewed as trivial, values from 5–10% as 

moderate, and over 10% as large (e.g., Flora & Curran, 2004); here, percent bias of 10% or less 

is viewed as acceptable. The MSE is small, being less than 0.10 for values of d from 2–4, and 

generally less than 0.50 for the c. Estimation of the latent class sizes is also quite good, with a 

percent bias of less than 2%. 
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For d = 5, there were problems with convergence, with convergence for only 48 out of 

the 100 replications; Table A4 is based on the 48 cases where the program converged. It is not 

surprising to encounter estimation difficulties of this sort with larger values of d because the 

tables being analyzed become more sparse; that is, there tend to be more zero and low-count 

cells as d increases. In terms of a two-by-two table, for example, it should be apparent that the 

entries will concentrate more along the diagonal as d increases (and will all be on the diagonal 

for perfect discrimination). The fact that estimation problems arise with large values of the slope 

parameter (i.e., d) is well known in, for example, logistic regression (e.g., Hosmer & Lemeshow, 

1989; Rindskopf, 2002). 

Table A4 shows that, for the converged cases, estimation of d is very good, with a 

percent bias of 3% or less and a MSE of less than 0.10. With respect to the response criteria, the 

percent bias is larger but is generally less than 10%, except for the first criterion, which tends to 

have larger percent bias, around 12%. However, the MSEs for the response criteria are 

considerably larger, in the range of 10–20, which indicates that the estimates of c have large 

variability across replications. Estimation of the latent-class sizes is also problematic, with a 

small percent bias for the middle classes but large percent bias (> 20%) for the end classes. 

Tables A5 and A6 show examples where shifted criteria were used for ds of 2 and 3. In 

this case, the criteria for 2 of the 10 raters were shifted down from the intersection points 

locations by 2, the criteria for 2 other raters were shifted down by 1, the criteria for another 2 

raters were shifted up by 1, the criteria for another 2 raters were shifted up by 2, and the criteria 

for the remaining 2 raters were left at the intersection points. Tables A5 and A6 show that 

shifting the locations of the criteria had little effect on estimation, with the percent bias being 

below 5% for both the rater parameters and the latent class sizes. 

Standard errors. Appendix B presents results for the evaluation of the standard errors of 

d and the latent-class sizes (the response criteria are not of central interest; there are also some 

complexities with respect to evaluating the standard errors of c in a simulation because of label 

switching). Tables B1–B4 show that estimation of the standard errors of d is good, with a percent 

bias of 10% or less for values of d from 2–4; the standard errors of the latent class sizes also 

appear to be well recovered. For d of 5, the percent bias is larger, up to about 20% for the 

standard error of d. The percent bias is also larger for the latent-class sizes, particularly for the 

first and last classes, where it is around 90%. Table B4 shows that, for a d of 5, the bias is 
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consistently negative for the standard errors of both d and the latent class sizes, and so the 

standard errors tend to be underestimated. Tables B5 and B6 show that, for the shifted criteria 

conditions, the bias for the standard errors is again small for values of d of 2 and 3. 

To summarize, Appendixes A and B show that estimation of d and its standard error is 

quite good for values of d in the range of 2–5, whereas the response criteria and latent-class sizes 

are accurately estimated for values of d in the range of 2–4 but are less well estimated for a value 

of d of 5. Overall, the results indicate that if one wishes to assess the performance of the raters, in 

which case d is of primary interest, then one can obtain a good idea of rater performance, in that 

d is accurately estimated for the range of values examined here, which is similar to the range 

found in practice. 

Classification. Table 1 shows the classification accuracy (proportion correctly classified) 

for values of d ranging from 2–5. PCpred is the predicted proportion correctly classified and is 

obtained from the posterior probabilities (it is basically the average of the maximum posterior 

probabilities across cases); this value is obtained when the model is fit and is therefore available 

for both simulated and real-world data. In contrast, PCobt is only available in a simulation and is 

the obtained proportion of cases that were actually correctly classified in the simulation, where 

the cases are classified into the class with the maximum posterior probability. Table 1 also shows 

lambda (see Dayton, 1998; DeCarlo, 2002), both predicted and obtained, and two measures of 

association with the true latent classes, namely the Pearson correlation r and taub. Lambda 

adjusts the proportion correct using the largest latent class size, 

λ = [PC – max p(X #)]/[1− max p(X #)],  (4) 

and reflects the improvement in classification accuracy over and above simply classifying all of 

the cases into the class with the largest size. 

Table 1 shows that the predicted proportion correctly classified (PCpred) is .92 for a d of 2 

and is over .98 for ds from 3–5. A high value of PC is expected because the accuracy of 

classification increases with the number of raters, and 10 raters per essay is a relatively large 

number (as compared below to an incomplete design with only 2 raters per essay). For values of 

d from 2–4, the obtained proportion correctly classified (PCobt) is close to the predicted value. 

Table 1 also shows that PCpred overestimates PCobt (the difference is very small in this case), as 

was also found by DeCarlo (2005). For a d of 5, the obtained PC is considerably smaller (.34); 
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this likely occurs in part because of poor estimation of the latent class sizes for a d of 5, 

particularly for the end classes, as was noted above. The problem appears to be that in situations 

with large d (and small d, though not shown), one or more of the estimated latent-class sizes 

tends to zero or near zero, and so the classifications tend to be off by one class (or more). This 

can be shown by computing the proportion correctly classified within one class, which was .99 

or larger in every case, including d = 5. Note that, even with poor classification accuracy for a d 

of 5, the Pearson correlation (.93) and taub (.93) are high, and so the classifications still reflect 

the order of the latent classes. 

Table 1 

Proportion Correctly Classified and Correlations With True Latent Classes, Fully Crossed 

Design 

d PCpred PCobt  λpred λobt taub r 

Intersection-point criteria 

2  .919 .916  .891 .887 .978 .960 

3  .986 .985  .981 .979 .996 .993 

4  .998 .988  .997 .984 .999 .999 

5a  .986 .335  .982 .104 .931 .932 

Shifted criteria 

2  .911 .908  .880 .876 .975 .957 

3  .981 .981  .975 .974 .995 .991 

Note. Ten raters per essay. d is the SDT discrimination parameter; PCpred is the predicted 

proportion correct; PCobt is the obtained proportion correct.  
a The d = 5 condition includes only 48/100 replications where the program converged. 

Table 1 also includes conditions for ds of 2 and 3 where the response criteria were shifted 

from the intersection points for 8 out of 10 raters (up or down by 1 or 2, see Appendix A). It is 

interesting to compare classification accuracy in these conditions to that for the intersection point 

criteria conditions. Table 1 shows that, for a d of 2 and 3, shifting the criteria has little effect on 

PC, either predicted or obtained, with a reduction in PC for shifted criteria of less than 1%. This 
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shows that, for a fully crossed design, the criteria locations have little effect on classification 

accuracy. 

Agreement. Table 2 shows the relation between d and agreement statistics. The agreement 

proportions and weighted kappas are the average, for each replication, across the 45 pairs of rater 

combinations. That is, they are the average pairwise agreement, which in turn is then averaged 

over the 100 replications. For weighted kappa, Cicchetti-Allison weights were used, as 

documented in the FREQ procedure of SAS. A value of Kendall’s coefficient of concordance W 

(Kendall & Smith, 1939), based on all 10 raters, was also computed for each replication and then 

averaged over the 100 replications. In contrast to the simple agreement statistic and Kappa, 

which only consider pairwise relations, W is a measure of agreement across all of the raters (W 

examines agreement in rankings across the raters, where the rankings are obtained within each 

rater by using their scores); the fact that it takes into account that there are 10 raters is likely 

why, as shown next, W tends to be larger than the agreement statistic or kappa. 

The upper part of Table 2 is for the conditions with intersection-point criteria locations; 

the table shows that agreement increases from .27 to .75 as d varies from 1–5; weighted kappa 

ranges from .28 to .84 and Kendall’s W ranges from .47 to .90. In contrast, Table 1 shows that 

PC is greater than .90 for values of d from 2–5. For example, for d = 2, agreement is .37 (from 

Table 2), whereas the proportion correctly classified is .92 (from Table 1). Thus, agreement can 

be low while classification accuracy is high. 

Table 2 

Average Pairwise Agreement and Weighted Kappa 

d 
Criteria 1 2 3 4 5 

Intersection-point criteria 
Agreement .267 .366 .502 .636 .752 
Weighted kappa .283 .492 .645 .754 .836 
Kendall’s W .469 .717 .838 .899 .936 

Shifted criteria 
Agreement — .290 .380 .482 — 
Weighted kappa — .388 .533 .638 — 
Kendall’s W — .711 .829 .881 — 
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The lower portion of Table 2, for three conditions with shifted criteria, shows that 

agreement again increases with d. Most important, Table 2 shows that the percent agreement and 

kappa are smaller for the shifted criteria as compared to the intersection-point criteria. For 

example, for a d of 3, agreement decreases by 12%, that is, from 50% for intersection-point 

criteria to 38% for shifted criteria, which shows that agreement is heavily affected by the criteria 

locations, as is weighted kappa (an interesting result is that the shifted criteria only appear to 

have a small effect, less than .02, on Kendall’s W). In contrast, Table 1 shows that, for a d of 3 

with shifted criteria, PC decreases by less than one half of a percent. This shows that shifting the 

response criteria has a large effect on agreement but only a small effect on classification 

accuracy, which suggests limitations of using agreement in practice. 

Discussion 

The simulations show that, for a fully crossed design with 10 raters, the rater parameters 

are accurately recovered for a range of discrimination from 2–4, with d being accurately 

estimated for a range of 2–5. The response criteria and latent-class sizes are well recovered for ds 

from 2–4 but are less well recovered for values outside of this range. Of course, these results 

depend in part on the software being used and the particular set of parameters. For example, 

Latent Gold 4.5 accurately recovered the rater parameters for a range of d from 2–4, but there 

were problems even within this range with LEM (Vermunt, 1997), mostly a problem of obtaining 

latent-class size estimates of zero. Latent Gold has options, such as Bayes constants, that can 

help to ameliorate problems of this sort; this will be examined in future studies (also see the 

section on incomplete designs below). 

An important result is that classification accuracy increases with the raters’ level of 

discrimination, as does agreement. Thus, classification accuracy can be increased by improving 

raters’ discrimination. The levels of agreement, however, are not very informative about 

classification accuracy, as they are not meant to be. For example, for a d of 3 in a fully crossed 

design, agreement is 50% and weighted kappa is 64%, which are low to moderate, whereas 

classification accuracy is 98%, which is excellent. Thus, classification accuracy is high, yet 

average pairwise agreement is poor to moderate. 

Another important result shown in Table 2 is that agreement is heavily affected by the 

response criteria locations; for example, agreement dropped by over 10% when the criteria were 

shifted for some of the raters, whereas the effect on classification accuracy was negligible (less 
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than 1%). These results support the view that the discrimination parameter d is more informative 

in terms of evaluating the raters’ performance and the resulting classification accuracy. For 

example, the simulation shows that, with 10 raters in a fully crossed design, classification 

accuracy is high for values of d of 2 or more. The results also show the advantage of using 

model-based classifications over simply averaging the scores, in that rater differences in 

response criteria have little effect on the model-based classifications, as shown in Table 1 (more 

on this below). 

Simulated Data: Balanced Incomplete Block (BIB) Design 

The above simulations offer basic information about parameter recovery and 

classification in fully crossed designs. However, in practice, the designs used are incomplete, in 

that not all the raters rate all of the essays. This section examines the performance of the latent-

class SDT model in situations with incomplete data. A BIB design, which is very efficient, is 

used. This provides information about the effects of incompleteness in a best case scenario and 

provides an important reference point for future studies using other types of incomplete designs, 

such as unbalanced designs. 

Methods 

The data generated for the fully crossed design were used. A SAS macro was used on the 

data to create missing values according to a BIB design for 10 raters and 1,080 cases, with each 

rater scoring 2 essays. The incomplete aspect of the design is that each essay is scored by only 2 

out of 10 raters, whereas the balanced aspect is that (a) each essay is scored by 2 raters, (b) each 

rater scores 216 essays, and (c) each rater is paired with every other rater an equal number of 

times. Each condition consisted of 100 replications. 

Data that are missing by design, as in the BIB, are missing completely at random (Rubin, 

1976). Latent Gold 4.5 was again used to fit the latent-class SDT model to the incomplete data, 

and SAS macros were used to strip out and summarize the data. Some pilot simulations showed 

that estimation problems occurred, and in particular latent-class sizes of zero or large values of d 

(with large or indeterminate standard errors) were found. Using Bayes constants of one (for the 

latent and categorical options; see Vermunt & Magison, 2007) appeared to eliminate these 

problems (use of Bayes constants smooths the parameter estimates and helps to prevent 

boundary problems). Thus, they were used for the incomplete simulations presented next; note 
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that, with the use of Bayes constants, one is using posterior-mode estimation, which includes log 

priors in the log likelihood function. The priors act as a penalty for solutions that are too close to 

the boundary of the parameter space, with the result that the parameter estimates are smoothed 

away from the boundary, as noted by Vermunt and Magidson (2005). 

Results 

Rater parameters and latent-class sizes. Appendix C presents, for the BIB conditions, the 

mean estimated parameters, the bias, the percent bias, and the MSE. Tables C1–C3 show that, for 

values of d from 2–4, the percent bias is generally 10% or less for d, but ranges to over 60% for 

c; similarly, the MSE is generally less than 0.3 for d but is larger for c. Some patterns also appear 

across the tables—the percent bias tends to be largest for the first criterion, whereas the MSE 

tends to be largest for the last criterion. Tables C1–C3 also show that the bias for the latent-class 

sizes is generally less than 10% for latent classes of 2–5 (at least for ds of 2 and 3) but is large 

for the first and last classes (which have the smallest sizes), with a percent bias of up to 80%. 

Table C4 shows a condition with shifted criteria for a d of 3; the percent bias for d is again 

generally 10% or less. However, the percent bias for the response criteria and latent-class sizes 

tends to be larger, and so shifting the criteria led to somewhat larger bias in the criteria and size 

estimates. 

Compared to the fully crossed design, the bias and MSE are larger for the BIB design, as 

expected, because of the large number of missing values. Overall, however, Appendix C shows 

that estimation of d is good for values of d from 2–4. Estimation of the latent-class sizes is also 

adequate; however, the smallest latent-class sizes tend to be overestimated. 

Standard errors. Appendix D presents, for the BIB conditions, tables that examine the 

performance of the standard errors for d and the latent class sizes. The bias is generally small to 

moderate, 10–15% or less, which indicates that the standard errors are reasonably well estimated. 

A comparison of Appendix D to Appendix B shows that the standard errors are larger for the 

BIB conditions than for the fully crossed conditions; for example, the standard errors are about 

0.10 for a d of 3 in a fully crossed design but are about 0.45 for a d of 3 in a BIB design. This 

reflects the fact that less information is available in the BIB design with two raters per essay, as 

compared to a fully crossed design. 

Classification. Table 3 presents the proportion correctly classified for the BIB design. As 

for the fully crossed design, the proportion correctly classified increases as d varies from 2–4, 
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with the obtained PC ranging from about 52–80%; the Pearson correlation and taub also increase, 

from about .80 to over .90. The condition with shifted criteria shows that the criteria only have a 

small effect on the PC and association measures. For example, for a d of 3, PCobt is 69.6% for 

intersection-point criteria and 68.2% for shifted criteria, which is a difference of less than 2%. 

Thus, shifting the criteria has little effect on classification accuracy (for model-based 

classifications, see below). Similarly, taub and r are both around .90 and differ across 

intersection-point and shifted criteria by only about .01. Table 3 also shows that PCpred 

overestimates PCobt, as found above for the fully crossed design and by DeCarlo (2005); for 

example, for a d of 3, PCpred is .74, whereas PCobt is .70. 

Table 3 

Proportion Correctly Classified and Correlations With True Latent Classes, Balanced 

Incomplete Block Design 

d PCpred PCobt  PCav  λ λobt taub  r 

Intersection-point criteria 

2 .623 .525 .575 .478 .360 .792 .866 

3 .744 .699 .708 .656 .594 .871 .926 

4 .843 .799 .803 .788 .729 .911 .951 

Shifted criteria 

3 .721 .682 .617 .627 .572 .871 .925 

4 .812 .801 .707 .747 .731 .912 .950 

Note. Two raters per essay. 

A comparison of Table 3 and Table 1 shows the effects on classification of using a BIB 

design over a fully crossed design. For example, for a d of 3, PCobt is about 70% for the BIB with 

2 raters per essay and is 98% for the fully crossed design with 10 raters per essay. Thus, there is 

a large effect of the number of raters per essay on classification accuracy, as expected. Table 3 

also shows the proportion correctly classified using the average of the two scores, PCav. This is 

of interest because the simple average is commonly used in practice. To assess classification 

accuracy for cases where the average had in-between values, such as 2.5, the scores were 

rounded both up and down; the results differed by less than .003, and the larger values of PCav 
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are reported here. Table 3 shows that, as before, classification accuracy increases with d. 

However, in contrast to the model-based classifications, PCav is considerably lower for the 

shifted criteria. For example, for a d of 3, PCav was 70.8% for intersection-point criteria locations 

but only 61.7% for shifted criteria locations, a decrease of almost 10%. Thus, the results for PCav 

show that the proportion correctly classified drops considerably for average scores if there are 

differences in the response criteria locations across raters, as in the shifted criteria condition. In 

contrast, criteria shifts have little effect on model-based classifications (PCobt). Thus, an 

advantage of the model-based approach is that classification accuracy is not affected by 

idiosyncrasies in raters’ response usage, whereas it is affected if average scores are used. 

Agreement. Table 4 shows agreement statistics, the proportion of exact agreement, and 

weighted kappa for the BIB simulation (note that Kendall’s W cannot be computed for the BIB 

design because of the missing values). Table 4 shows agreement between pairs of raters averaged 

over the 100 replications. A comparison of Table 4 to Table 2 shows only trivial differences, 

which is as expected. The only difference is that the fully crossed design first averages over the 

45 rater pairs for each essay, and then over the 100 replications, whereas for the BIB design, 

there is only 1 rater pair per essay, and so the averaging is only over the 100 replications. Table 4 

shows that agreement increases with the discrimination parameter d and that agreement is 

heavily affected by the response criteria, decreasing, for example, by 12% (50% to 38%) for a d 

of 3 and by 16% (64% to 48%) for a d of 4; the weighted kappas are also smaller. 

Table 4 

Agreement Proportions and Weighted Kappa 

d 

Criteria 1 2 3 4 5 

Intersection-point criteria 

Agreement .267 .368 .505 .636 .751 

Weighted kappa .268 .488 .643 .748 .832 

Shifted criteria 

Agreement — .292 .381 .483 — 

Weighted kappa — .422 .563 .655 — 



17 

Table 4 suggests that agreement statistics are informative about pairwise agreement, as 

they should be, but not about classification accuracy. For example, for a d of 3, Table 4 shows 

that agreement is only about 50% for intersection-point criteria and 38% for shifted criteria. 

However, Table 3 shows that classification accuracy is about 70% in both cases, and the 

measures of association are about .90. Thus, low agreement does not necessarily mean that the 

raters are performing poorly; the discrimination parameter is more informative in this regard, in 

that it provides information about how well the raters discriminate the latent classes and about 

how accurately the items are classified. 

Discussion 

The simulations provide basic information about various aspects of an approach to essay 

grading via SDT. First, the simulations show that estimation of the rater parameters, particularly 

the discrimination parameter, is good for both complete and incomplete designs (at least with the 

use of Bayes constants for incomplete designs), for the range of values examined here (d from 2–

5), which are comparable to those found in practice (see below). It should be noted that there 

tend to be estimation problems in incomplete designs, but the use of Bayes constants (of one) 

and posterior-mode estimation gave good results. Estimation of the latent-class sizes also appears 

to be adequate across values of d from 2–4 (again with the use of Bayes constants for incomplete 

designs), at least for the normal-like distribution of latent-class sizes examined here (as found for 

real-world data below). Larger values of d, such as 5, can lead to convergence problems and poor 

estimation of the response criteria and latent-class sizes. Classification is also adversely affected; 

d, however, still appears to be adequately estimated, which means rater performance can still be 

evaluated. An argument can be made for the use of average ratings in the situation where 

estimation problems arise because of large values of d, in that classification accuracy should be 

high (for average ratings) even with differences in the criteria locations; the use of larger values 

of Bayes constants in that situation also can be explored. 

Tables 1–4 provide useful information about expected performance in a signal-detection 

task as a function of rater discrimination. For a fully crossed design with 10 raters, Table 1 

shows that classification accuracy is excellent (>90%) even for the lowest value of 

discrimination examined; this occurs because there are many raters per essay. Measures of 

agreement, such as the percent agreement and weighted kappa, tend to be considerably smaller. 

Of greater practical interest is that, for a BIB design with 2 raters per essay, Table 3 shows that 
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70% or more of the essays are correctly classified for values of d of 3 or larger, whereas 

agreement is 50% or more and weighted kappa is 64%. Table 3 provides guidelines as to the 

levels of classification accuracy and agreement associated with a particular level of rater 

performance. 

In light of the above, requiring a specified level of agreement is shown to be a 

conservative approach. For example, suppose a minimum of 70% agreement is required. Table 4 

shows that this is associated with a level of discrimination of greater than 4, which is quite good, 

whereas Table 3 suggests that a d of over 4 is associated with an obtained classification accuracy 

of over 80%. Thus, a specified level of agreement is a strict criterion, which is fine as long as this 

is understood. In some situations, it might be more useful simply to consider expected 

classification rates rather than agreement levels. For example, if classification accuracy is desired 

to be 70% or greater, then requiring (an average) rater discrimination of 3 or larger (for the 

logistic model) seems quite reasonable. The above also shows that agreement is heavily affected 

by the response criteria locations, as expected, and so agreement can be misleading with respect 

to how good classification is. Estimates of d and c, on the other hand, provide important 

information about classification accuracy and whether raters are performing adequately or not. 

ETS Data 

This section applies the latent-class signal-detection model to the writing section of 

several ETS datasets. This application provides information about parameter values found in 

practice.  

Example 1: Writing Assessment 

The data examined here are scores given to essays written by 10,647 examinees as part of 

a large-scale writing assessment (note that 17 essays were dropped because of one or more 

missing scores and 4 more were dropped because 2 raters scored only 2 essays each). The essays 

were scored by 44 raters, who used a 1–6 response scale (a response of zero is also possible but 

was not used for the subset of essays examined here). Each essay was scored by 2 raters, with the 

44 raters each scoring anywhere from 33–1404 essays. 

Differences in response category usage were noted across the 44 raters. For example, 9 

raters used all of the response categories, Categories 1–6, whereas 27 raters used Categories 2–6; 

5 raters used Categories 2–5; and 1 rater each used Categories 1–5, 3–6, or 3–5. In some cases, 
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the restricted response range likely occurred because of a small sample size, for example, the 

rater who only used Categories 3–5 scored just 33 essays, and the rater who used Categories 3–6 

scored 137 essays. Yet, this was not always the case—the rater who used Categories 1–5 scored 

897 essays. From the signal-detection perspective, the differences in response category usage 

reflect individual differences in the response criteria locations. Lack of response category usage 

has been discussed in the measurement literature as an issue of null categories (see Wilson & 

Masters, 1993); for the analysis presented here, the response categories were downcoded (i.e.,  

2–6 becomes 1–5), which has no effect on the estimates of d (and c2 becomes c1, etc.). The 

effect, if any, of downcoding on classification accuracy in the context of the latent-class SDT 

model is being examined in current research. 

The typical approach to arrive at a score for each essay is simply to add or average the 

two scores. This approach essentially treats the pool of raters for the first and second scores as 

being equivalent (for each score); that is, the data are pooled across raters and so are treated as 

being from a fully crossed design (i.e., there are two scores, collapsed across raters, for all 

essays). On the other hand, fitting the latent-class SDT model to the data in incomplete form, 

where dj and cjk are treated as rater-specific fixed effects, allows examination of any differences 

across the 44 raters who actually provided the scores. 

Figure 3 shows a histogram of the estimates of dj for the 44 raters, obtained by fitting the 

model to the data in incomplete form (again using Bayes constants of one). The estimates of d 

have a mean of 3.5 with a range of 1.9–5.4 and a standard deviation of 0.9. The estimates are 

approximately normally distributed, with a (Fisher’s g) skew of 0.05 (SE of 0.36) and kurtosis of 

-0.43 (SE of 0.70). Thus, there appear to be differences in discrimination across the 44 raters. 

Figure 4 presents a plot of the relative criteria (DeCarlo, 2005) for the 44 raters who 

scored the test. The relative criteria are 

rel cjk = cjk / (K−1) dj, (5) 

where K is the number of latent classes and the estimates obtained for cjk and dj are used in the 

above.  Equation 5 equalizes the location of the highest and lowest distributions across raters; for 

example, the lowest distribution is set at 0 and the highest at 1 in Figure 4. The horizontal lines 

show the intersection-point locations of the five response criteria, that is, the crossover points of 

the symmetric underlying distributions. Thus, Figure 4 compactly shows the locations of each 
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rater’s response criteria, relative to the intersection points of the six underlying distributions, 

which is informative about the raters’ use of the response categories. For example, for Rater 1, 

Figure 4 shows that the first two criteria are below the intersection point of the first and second 

distribution (and so Rater 1 is somewhat conservative with respect to giving responses of 

Categories 1 and 2), whereas the third, fourth, and fifth criteria are at the second, fourth, and fifth 

intersection points. 
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Figure 3. Distribution of d for the writing test. 

Overall, Figure 4 shows differences between raters in response category usage, both in 

terms of criteria locations and the number of categories used (as noted above). An interesting 

result that is apparent in the figure is that the raters tend to be conservative with respect to their 

use of the lower response categories, in that the first and sometimes second criteria tend to be 

well below the intersection-point locations (keeping in mind that in situations with four instead 

of five criteria, the first response was usually 2, and so the first criterion shown is actually c2, not 

c1). Figure 4 also shows that, in general, there are criteria that tend to lie on the second and fourth 

intersection points, whereas the first and last criteria tend to be below and above the first and last 

intersection points, respectively. Thus, Figure 4 shows that, according to the SDT model, raters 

appear to be conservative with respect to using categories such as 1 and 6, in that the 
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corresponding criteria tend to be well above or below the intersection point (which means that 

those responses are used less frequently).2 
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Figure 4. Relative criteria locations for 44 raters. 

The estimates of the latent-class sizes (with standard errors in parentheses) are .02 (.002), 

.14 (.01), .19 (.01), .46 (.02), .17 (.01), and .02 (.006). Thus, latent-class sizes of 1 and 6 are 

small, with the largest latent-class size being 4. Note that although latent classes of 1 and 6 have 

small sizes, the standard errors are small (because of the large sample size). Also note that the 

latent classes are approximately normally distributed, with some small, negative skew. The 

predicted proportion correctly classified, PCpred, is .74, which is consistent with values found in 

the simulation for ds of 3–4. For example, PCobt in Table 3 suggests that 70–80% of the cases 

might be classified correctly. A simulation using the obtained parameter estimates can be 

conducted to gain more detailed information about likely classification accuracy. 

In sum, an application of latent-class SDT to a writing assessment offers new and 

interesting results. First, it suggests that rater performance for the test is very good (average d of 

3.5), with some differences across raters in discrimination and response criteria. This, along with 

PCpred, suggests that classification accuracy is likely 70% or more. Second, the estimates of the 

response criteria suggest that the raters are conservative with respect to use of the lowest 

response categories and the highest category; this has never, to my knowledge, been noted before 

and merits further attention. It could occur, for example, because of the scoring rubric or other 

instructions given to the raters (e.g., that might lead them to believe that the lowest and highest 
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categories occur less frequently than they actually do). It is also interesting to note that this was 

not found for the analysis of data from the next test examined. Third, the estimated latent-class 

sizes suggest that most of the essays are classified into Category 4, with only about 2% classified 

into Categories 1 and 6; the distribution of the latent classes is also close to that for a normal 

distribution (with a small negative skew). 

Example 2: Writing Assessment 

For the second large-scale writing test examined, the scoring rubric consisted of 

categories from 1–5 (there is also a 0 category for essays that have, for example, little or no text 

or are not on the assigned topic; in this example, only 124 essays out of over 42,000 received 

scores of zero and so were not included in the analysis). This section presents an analysis of data 

from 42,608 examinees (after dropping 69 cases because of missing values and 124 more cases 

with zeroes), with 2 essays per examinee. Each essay had two scores (from various raters, the 

pooled data are analyzed here), with a third score given by an adjudicator when the two scores 

differed by 2 or more. For the first writing task, 3.9% of the essays had third (adjudicated) 

scores, whereas 2.6% of the essays for the second task had third scores. Data for the third scores 

can be viewed as being missing at random (Rubin, 1976), in that the probability that a value is 

missing is determined by an observed variable—the difference between the two observed scores 

(i.e., the value is missing if it is less than 2). The analyses presented here include the third scores. 

DeCarlo and Kim (2008) showed that estimation is good for adjudicated scores as along as a 

sufficient number are available, as is typically the case for large-scale assessments. Latent-class 

SDT models with five latent classes are fit to the data. In this analysis, the data are treated as 

coming from a fully crossed design (i.e., the data are pooled across raters) in order to obtain 

information about results for pooled data, as are commonly analyzed. Also, the data are being 

used in that form in current research on a hierarchical rater model.  

Table 5 presents results for the writing task. A latent-class, logistic, SDT model was fit to 

the data using all three scores, where the third score was only available for the adjudicated cases 

(3.9%). Table 5 shows that the estimates of d are similar across the three scores, being 3.8, 3.9, 

and 3.4, respectively. Note that the standard errors are larger for Score 3 because 96.1% of the 

scores were missing (there were still 1,661 third scores available). It is interesting to note that, 

despite the high degree of missing scores, the estimates of cjk and dj for the third score are close 
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to those obtained for the other two scores, which indicates that the behavior of the adjudicators 

was similar to that of the other raters. 

Table 5 

Results for the Second Writing Test Treated as a Fully Crossed Design 

Score 1 Score 2 Score 3 

Parameter Estimate SE Estimate SE Estimate SE 

d   3.77 0.05   3.88 0.06   3.39 0.20 

c1   1.73 0.07   1.84 0.07   1.26 0.29 

c2   5.47 0.11   5.59 0.12   4.43 0.33 

c3   8.98 0.12   9.22 0.14   7.86 0.45 

c4 12.35 0.16 12.67 0.17 11.03 0.59 

Table 5 shows that discrimination is again in the range of 3–4 (keeping in mind that five 

latent classes were used for this example, whereas six were used for the first example). It is also 

apparent that discrimination for the adjudicated score is about the same in magnitude as for the 

other two scores. The criteria estimates are also similar in magnitude across the three scores, 

with the criteria for Score 3 being slightly to the left of the other two scores, which indicates that 

the criteria for the third score were slightly more liberal (i.e., higher responses were used) than 

those for the other two scores. It is also interesting to note that, in all cases, the response criteria 

estimates in Table 5 are close to their intersection-point locations. For example, using the 

parameter estimate for d for the first score (3.8), intersection-point criteria locations will be at 

1.9, 5.7, 9.5, and 13.3, which are close in value to the estimates shown in Table 5 (1.7, 5.5, 9.0, 

and 12.3). Thus, it appears that, for pooled data, the response criteria tend to be located close to 

the intersection points of the underlying logistic distributions, which to my knowledge has not 

been noted before. 

With respect to the latent-class sizes (Table 6), the end categories are smallest, being .12 

and .08 for Categories 1 and 5, respectively, and are larger than that found for the first test 

examined above. The largest latent-class size is for Category 3, followed by Category 4; note that 

the latent-class sizes are also approximately normally distributed. The estimate of PCpred is .84. 

Just considering Scores 1 and 2, the agreement proportion is .58 and weighted kappa is .67. 
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Table 6 

Latent Class Sizes for the Second Writing Test  

Category p1 p2 p3 p4 p5 

Estimate .12 .17 .34 .29 .08 

SE < .01 < .01 < .01 < .01 < .01 

In sum, the results for the writing sections of several ETS tests showed consistent results 

with respect to rater parameters—discrimination appears to be in the range of 3–4 for a logistic 

SDT model (with five or six latent classes). Note that the SDT approach focuses attention on 

effect sizes for the raters, namely the magnitude of discrimination as measured by d, which is 

informative about rater performance and classification accuracy. The response criteria for raters 

in the second test appeared to be close to their intersection-point locations. The results also 

showed that the distribution of latent classes is slightly asymmetric (negatively skewed), but 

close to (discrete) normal. 

Summary and Conclusions 

The present report lays out the scope and potential of an approach to essay grading via a 

latent-class extension of SDT. The simulations provide basic information about parameter 

estimation and about the relation between discrimination, classification, and agreement; the real-

world analyses provide information about values of the rater parameters and latent-class sizes 

that are found in practice. 

The approach via SDT also informs several issues. For example, why is agreement of 

interest in scoring tasks such as essay grading? The answer is that high agreement suggests that 

the raters are detecting a construct, such as the latent classes defined in the scoring rubric. 

However, as shown here, agreement is at most only an indirect indicator of rater performance, in 

that it depends not only on the raters’ ability to discriminate between the latent classes, but also 

on their use of response criteria. For example, as shown here, the raters’ discrimination can be 

quite high and classification accuracy can be high, yet agreement can be quite low (e.g., if the 

criteria differ across raters). Thus, agreement only provides an indirect assessment of what is 

really of interest, which is how well the raters classify the essays. Here it is noted that estimates 

of the raters’ parameters, particularly d, are informative about rater performance and 
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classification accuracy. The recommendation is to supplement agreement statistics with 

estimates of the rater parameters d and c; at the least, this might provide information as to why 

raters disagree (see DeCarlo, 2002, for another example). 

An implication of the above for rater training, which was noted earlier (DeCarlo, 2002), 

is that it is probably more effective to monitor raters in terms of their discrimination parameter 

than by their level of agreement. Use of agreement might be unnecessarily strict. For example, it 

might suggest rater retraining or elimination in situations where it is not necessary, in that the 

rater discriminates adequately but has different response criteria. The estimate of d will provide 

valuable information about rater performance in that case, and the use of model-based 

classifications will likely have benefits as well. Thus, the approach via SDT might have cost 

benefits with respect to reducing unnecessary elimination or retraining of raters. Given that the 

above simulations showed that the discrimination parameter was accurately estimated for the 

range of values that appear to be found in practice, the latent-class SDT model should be a useful 

tool for monitoring rater performance. 

It also was shown that adjudicated cases can be included in the analysis. For an analysis 

of essays pooled across raters, discrimination was about the same for adjudicated essays as it was 

for the other essays. This finding makes sense for ETS tests, because the adjudicators are 

sometimes chosen from the general pool of raters, and so they should have similar discrimination 

to other raters. However, in some cases in the psychometrics literature, adjudicators are assumed 

to be experts; note that the latent-class SDT model allows assessment of expertise by using the 

data of all of the raters (or scores), as done above, and comparing the parameters across raters 

(experts should show large values of d and appropriate criteria locations). In the same way, the 

latent-class SDT model allows one to evaluate presumed gold standards used in medical and 

other research, as noted earlier (DeCarlo, 2002). 

Similarities across tests used by ETS were also found. For example, rater similarities 

were found across the essays used in the writing sections of the first and second tests, in that 

discrimination tended to be in the range of 3–4 for the logistic model. Note that this was also 

found for an analysis of a large sample of SAT essays (where ds of 3.5 and 3.1 were found; 

DeCarlo & Kim, 2008). It is also interesting to note that, for an analysis of a small sample (125) 

of college data scored by nonexperts (graduate students), the average value of d was 2.1 (for the 

logistic model; see DeCarlo, 2005), which is smaller than that found for the professional raters 
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used in the large-scale assessments examined here (where values of d from 3–4 were found). 

This difference could reflect differences in the raters’ experience or differences in the quality of 

the essay item or the scoring rubric; further research on this is needed. In any case, there are 

clearly interesting patterns of results with respect to d, found both here and in previous studies. 

The latent-class SDT model offers a new perspective with which to examine CR data and 

suggests new directions for future research. 
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Notes 
1 Lawrence DeCarlo wrote this paper while under contract to ETS.  

2 It is interesting to note that the deviations from the intersection-point criteria locations appear to 

be in the direction of where optimal criteria would be located (see Wickens, 2002). Because 

Classes 1 and 6 have small sizes, the optimal criteria should be further to the left for c1 and 

further to the right for c5, which is exactly what was found. The estimates are, however, 

further to the left or right than the optimal locations. 
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Appendix A 

Parameter Estimates, Bias, Percent Bias, and Mean Squared Error for the Fully Crossed 

Conditions With 10 Raters 

Table A1 

Intersection Point Criteria, Fully Crossed, d = 2, N = 1,080 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

d1  2  2.022         0.022   1.100  0.006 
d2  2  2.003         0.003   0.150  0.008  
d3  2  1.992       −0.008   0.400  0.006 
d4  2  2.010         0.010   0.500  0.005 
d5  2  2.000         0.000   0.000  0.005 
d6  2  2.000         0.000   0.000  0.006 
d7  2  2.000         0.000   0.000  0.006 
d8  2  2.005         0.005   0.250  0.007 
d9  2  2.003         0.003   0.150  0.005 
d10  2  1.999       −0.001   0.050  0.006 
c11  1  1.006         0.006   0.600  0.031 
c12  3  3.036         0.036   1.200  0.030 
c13  5  5.049         0.049   0.980  0.057 
c14  7  7.065         0.065   0.928  0.075 
c15  9  9.088         0.088   0.977  0.103 
c21  1  1.009         0.009   0.900  0.031 
c22  3  3.014         0.014   0.466  0.033 
c23  5  5.022         0.022   0.440  0.046 
c24  7  7.020         0.020   0.285  0.088 
c25  9  9.041         0.041   0.455  0.131 
c31  1  0.981       −0.019   1.900  0.023 
c32  3  2.983       −0.016   0.533  0.031 
c33  5  4.980       −0.020   0.400  0.041 
c34  7  6.977       −0.023   0.328  0.063 
c35  9  8.981       −0.019   0.211  0.088 
c41  1  1.001         0.001   0.100  0.025 
c42  3  3.014         0.014   0.466  0.027 
c43  5  5.034         0.034   0.680  0.038 
c44  7  7.025         0.025   0.357  0.059 
c45  9  9.034         0.034   0.377  0.086 
c51  1  0.992       −0.008   0.800  0.022 
c52  3  3.013         0.013   0.433  0.028 
c53  5  5.004         0.004   0.080  0.045 

(Table continues) 
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Table A1 (continued) 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

c54  7  7.014         0.014   0.200  0.071 
c55  9  9.038         0.038   0.422  0.092 
c61  1  0.998       −0.012   1.200  0.023 
c62  3  3.007         0.007   0.233  0.033 
c63  5  4.994       −0.006   0.120  0.048 
c64  7  7.013         0.013   0.185  0.072 
c65  9  9.009         0.009   0.100  0.093 
c71  1  0.987       −0.013   1.300  0.023 
c72  3  3.013         0.013   0.433  0.029 
c73  5  5.011         0.011   0.220  0.052 
c74  7  7.016         0.016   0.280  0.083 
c75  9  9.023        0.023   0.255  0.113 
c81  1  0.999       −0.001   0.100  0.030 
c82  3  2.990       −0.010   0.333  0.033 
c83  5  4.981       −0.019   0.380  0.045 
c84  7  6.979       −0.021   0.300  0.072 
c85  9  8.983       −0.017   0.188  0.099 
c91  1  0.998       −0.002   0.200  0.025 
c92  3  3.010         0.010   0.333  0.032 
c93  5  5.013         0.013   0.260  0.042 
c94  7  7.002         0.002   0.028  0.071 
c95  9  8.995       −0.005   0.055  0.081 
c101  1  1.007         0.007   0.700  0.030 
c102  3  2.992       −0.008   0.266  0.029 
c103  5  4.998       −0.002   0.040  0.050 
c104  7  7.010         0.010   0.142  0.075 
c105  9  9.024         0.024   0.266  0.091 

Latent-class sizes 
Class 1  0.080  0.080         0.000   0.000 
Class 2  0.170  0.169         0.001   0.589 
Class 3  0.250  0.251       −0.001   0.400 
Class 4  0.250  0.250         0.000   0.000 
Class 5  0.170  0.170         0.000   0.000 
Class 6  0.080  0.081       −0.001   1.250    
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Table A2 

Intersection-Point Criteria, Fully Crossed, d = 3, N = 1,080 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

d1  3  3.007         0.007   0.233  0.009 
d2  3  3.024         0.024   0.800  0.011 
d3  3  3.038         0.038   1.267  0.013 
d4  3  3.006         0.006   0.200  0.010 
d5  3  3.017         0.017   0.567  0.012 
d6  3  3.013         0.013   0.433  0.011 
d7  3  3.031         0.031   1.033  0.011 
d8  3  3.009         0.009   0.300  0.009 
d9  3  3.009         0.009   0.300  0.013 
d10  3  3.030         0.030   1.000  0.010 
c11  1.5  1.500         0.000   0.000  0.037 
c12  4.5  4.529         0.029   0.644  0.040 
c13  7.5  7.545         0.045   0.600  0.071 
c14           10.5           10.540         0.040   0.381  0.119 
c15           13.5           13.536         0.036   0.267  0.177 
c21  1.5  1.511         0.011   0.733  0.028 
c22  4.5  4.545         0.045   1.000  0.440 
c23  7.5  7.567         0.067   0.893  0.078 
c24           10.5           10.612         0.112   1.067  0.135 
c25           13.5           13.591         0.091   0.674  0.232 
c31  1.5  1.533         0.033   2.200  0.040 
c32  4.5  4.584         0.084   1.867  0.050 
c33  7.5  7.591         0.091   1.213  0.092 
c34           10.5           10.625         0.125   1.190  0.149 
c35           13.5           13.634         0.134   0.993  0.238 
c41  1.5  1.511         0.011   0.733  0.040 
c42  4.5  4.505         0.005   0.111  0.045 
c43  7.5  7.497       −0.003   0.040  0.076 
c44           10.5           10.509         0.009   0.085  0.122 
c45           13.5           13.532         0.032   0.237  0.204 
c51  1.5  1.537         0.037   2.467  0.033 
c52  4.5  4.524         0.024   0.533  0.036 
c53  7.5  7.554         0.054   0.720  0.079 
c54           10.5           10.573         0.073   0.695  0.124 
c55           13.5           13.579         0.079   0.585  0.222 
c61  1.5  1.502         0.002   0.133  0.025 
c62  4.5  4.505         0.005   0.111  0.040 
c63  7.5  7.534         0.034   0.453  0.092 
c64           10.5           10.555         0.055   0.524  0.155 

(Table continues) 
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Table A2 (continued) 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

c65           13.5           13.549         0.049   0.363  0.204 
c71  1.5  1.556           0.056    3.733  0.034 
c72  4.5  4.567         0.067   1.489  0.045 
c73  7.5  7.567         0.067   0.893  0.080 
c74           10.5           10.613         0.113   1.076  0.143 
c75           13.5           13.630         0.130   0.963  0.211 
c81  1.5  1.484       −0.016   1.067  0.030 
c82  4.5  4.528         0.028   0.622  0.045 
c83  7.5  7.543         0.043   0.573  0.069 
c84           10.5           10.546         0.046   0.438  0.122 
c85           13.5           13.554         0.054   0.400  0.184 
c91  1.5  1.513         0.013   0.866  0.039 
c92  4.5  4.522         0.022   0.489  0.047 
c93  7.5  7.515         0.015   0.200  0.090 
c94           10.5           10.518         0.018   0.171  0.139 
c95           13.5           13.530         0.030   0.222  0.232 
c101  1.5  1.531         0.031   2.067  0.027 
c102  4.5  4.543         0.043   0.955  0.034 
c103  7.5  7.578         0.078   1.040  0.074 
c104           10.5           10.608         0.108   1.028  0.125 
c105           13.5           13.641         0.014   0.104  0.215 

Latent-class sizes 
Class 1  0.080             0.079       −0.001   1.250 
Class 2  0.170  0.173         0.003   1.765 
Class 3  0.250  0.248       −0.002   0.800 
Class 4  0.250             0.251         0.001   0.400 
Class 5  0.170             0.169       −0.001   0.588 
Class 6  0.080  0.080          0.000   0.000 
 
 
Table A3 

Intersection-Point Criteria, Fully Crossed, d = 4, N = 1,080 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

d1  4  4.009         0.009   0.225  0.017 
d2  4  4.021         0.021   0.525  0.020 
d3  4  4.010         0.010   0.250  0.014 
d4  4  4.008         0.008   0.200  0.015 

(Table continues) 
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Table A3 (continued) 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

d5  4  4.027         0.027   0.675  0.016 
d6  4  4.012         0.012   0.300  0.018 
d7  4  4.018         0.018   0.450  0.018 
d8  4  4.018         0.018   0.450  0.018 
d9  4  4.028         0.028   0.700  0.018 
d10  4  4.007         0.007   0.175  0.018 
c11  2  2.003         0.034   1.700  0.032 
c12  6  6.033         0.033   0.550  0.054 
c13           10           10.042         0.042   0.420  0.125 
c14           14           14.047         0.047   0.335  0.201 
c15           18           18.042         0.042   0.233  0.343 
c21  2  1.997       −0.003   0.150  0.056 
c22  6  6.027         0.027   0.450  0.063 
c23           10           10.062         0.062   0.620  0.154 
c24           14           14.105         0.105   0.750  0.278 
c25           18           18.088         0.088   0.488  0.377 
c31  2  1.986       −0.014   0.300  0.047 
c32  6  6.003         0.003   0.050  0.071 
c33           10           10.056         0.036   0.360  0.104 
c34           14           14.012         0.012   0.085  0.177 
c35           18           18.032         0.032   0.177  0.280 
c41  2  1.975       −0.025   1.250  0.044 
c42  6  6.008         0.008   0.133  0.061 
c43           10           10.026         0.026   0.260  0.114 
c44           14           14.017         0.017   0.121  0.195 
c45           18            18.060         0.060   0.333  0.342 
c51  2  2.009         0.009   0.450  0.041 
c52  6  6.033         0.033   0.550  0.065 
c53           10           10.067         0.067   0.670  0.106 
c54           14           14.090         0.090   0.642  0.227 
c55           18           18.129         0.129   0.716  0.349 
c61  2  1.965       −0.035   1.750  0.041 
c62  6  6.023         0.023   0.383  0.079 
c63           10           10.034         0.034   0.340  0.130 
c64           14           14.049         0.049   0.350  0.213 
c65           18           18.041         0.041   0.227  0.417 
c71  2  1.985       −0.015   0.750  0.051 
c72  6  6.024         0.024   0.400  0.066 
c73           10           10.049         0.049   0.490  0.129 
c74           14           14.046         0.046   0.328  0.228 

(Table continues) 
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Table A3 (continued) 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

c75           18           18.102         0.102   0.566  0.377 
c81  2  2.012         0.012   0.600  0.048 
c82  6  6.017         0.017   0.283  0.076 
c83           10           10.054         0.017   0.170  0.138 
c84           14           14.053         0.017   0.121  0.242 
c85           18           18.080         0.080   0.444  0.387 
c91  2  2.024         0.024   1.200  0.037 
c92  6  6.023         0.023   0.383  0.054 
c93           10           10.083         0.083   0.830  0.136 
c94           14           14.107         0.107   0.764  0.213 
c95           18           18.128         0.128   0.711  0.325 
c101   2  2.011         0.011   0.550  0.044 
c102  6  6.005         0.005   0.083  0.067 
c103           10           10.009         0.009   0.090  0.119 
c104           14           14.006         0.006   0.042  0.252 
c105           18           18.001         0.001   0.005  0.357 

Latent-class sizes 
Class 1  0.080  0.081         0.001   1.250 
Class 2  0.170  0.173         0.003   1.765 
Class 3  0.250  0.250         0.000   0.000 
Class 4  0.250  0.249       −0.001   0.400 
Class 5  0.170  0.169       −0.001   0.588 
Class 6  0.080  0.079       −0.001   1.250 
 

Table A4 

Intersection-Point Criteria, Fully Crossed, d = 5, N = 1,080 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

d1  5  5.182         0.182   3.640  0.081 
d2  5  5.078         0.078   1.560  0.038 
d3  5  5.083         0.083   1.660  0.039 
d4  5  5.112         0.111   2.220  0.049 
d5  5  5.121         0.121   2.420  0.049 
d6  5  5.160         0.160   3.200  0.072 
d7  5  5.132         0.132   2.640  0.066 
d8  5  5.117         0.117   2.340  0.048 
d9  5  5.119         0.119   2.380  0.053 

(Table continues) 
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Table A4 (continued) 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

d10  5  5.099         0.099   1.980  0.030 
c11  2.5  2.874         0.374 14.960           13.727 
c12  7.5  7.285       −0.215   2.866           18.838 
c13           12.5            12.433       −0.067   0.536           20.090 
c14           17.5           17.526         0.026   0.148           20.020 
c15           22.5           22.204       −0.295   1.311           14.479 
c21  2.5  2.738         0.238   9.520           12.378 
c22  7.5  7.127       −0.373   4.973           17.725 
c23           12.5           12.172       −0.328   2.624           18.244 
c24           17.5           17.188       −0.311   1.777           17.150 
c25           22.5           21.766       −0.734   3.262           12.643 
c31  2.5  2.713         0.213   8.520           11.970 
c32  7.5  7.191       −0.309   4.120           17.564 
c33           12.5           12.143       −0.357   2.856           17.881 
c34           17.5            17.196       −0.304   1.737           17.239 
c35           22.5           21.196       −0.708   3.146           12.490 
c41  2.5  2.779         0.279 11.160           12.301 
c42  7.5  7.231       −0.268   3.573           18.071 
c43           12.5           12.228       −0.272   2.176           18.800 
c44           17.5           17.279       −0.224   1.280           18.123 
c45           22.5           21.859       −0.641   2.848           13.419 
c51  2.5  2.745         0.245   9.800           12.461 
c52  7.5  7.211       −0.289   3.853           18.537 
c53           12.5           12.554       −0.238   1.904           18.927 
c54           17.5           17.296       −0.204   1.165           18.262 
c55           22.5           21.963       −0.536   2.382           12.691 
c61  2.5  2.777       −0.277 11.080           12.484 
c62  7.5  7.271       −0.229   3.053           18.279 
c63           12.5           12.393       −0.107   0.826           17.977 
c64           17.5           17.458       −0.042   0.240           17.910 
c65           22.5           22.098       −0.402   1.726           12.967 
c71  2.5  2.797         0.297 11.880           12.937 
c72  7.5  7.216       −0.284   3.786           18.294 
c73           12.5           12.271       −0.228   1.824           19.218 
c74           17.5           17.340       −0.160   0.914           18.552 
c75           22.5           21.951       −0.549   2.440           13.467 
c81  2.5  2.795         0.295 11.800           12.718 
c82  7.5  7.195       −0.305   3.720           17.409 
c83           12.5           12.264       −0.236   1.832           17.837 
c84           17.5           17.322       −0.177   0.931           16.621 

(Table continues) 
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Table A4 (continued) 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

c85           22.5           21.864       −0.636   2.297           12.453 
c91  2.5  2.774         0.274 10.960           12.534 
c92  7.5  7.221       −0.279   3.720           18.044 
c93           12.5           12.238       −0.229   1.832           18.463 
c94           17.5           17.336       −0.163   0.931           18.268 
c95           22.5           21.983       −0.517   2.297           13.056 
c101  2.5  2.803         0.303 12.120           12.448 
c102  7.5  7.215       −0.285   3.800           18.148 
c103           12.5           12.238       −0.261   2.088           18.718 
c104           17.5           17.327       −0.173   0.988           18.601 
c105           22.5           21.749       −0.751   3.333           14.046 

Latent-class sizes 
Class 1  0.080  0.123         0.043  53.750 
Class 2  0.170  0.174         0.004    2.352 
Class 3  0.250  0.229       −0.021    8.400 
Class 4  0.250  0.218       −0.032  12.800 
Class 5  0.170  0.155       −0.015    8.823 
Class 6  0.080  0.101         0.021  26.250 
 
 
Table A5 

Shifted Criteria, Fully Crossed, d = 2, N = 1,080 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

d1  2  2.008         0.008   0.400  0.007 
d2  2  2.001         0.001   0.050  0.006 
d3  2  1.999       −0.001   0.050  0.008 
d4  2  2.009         0.009   0.450  0.006 
d5  2  1.999       −0.001   0.050  0.008 
d6  2  2.012         0.012   0.600  0.006 
d7  2  2.007         0.007   0.350  0.006 
d8  2  2.002         0.002   0.100  0.006 
d9  2  2.015         0.015   0.750  0.006 
d10  2  2.005         0.005   0.250  0.006 
c11           −1           −1.014       −0.014   1.400  0.042 
c12  1  1.005         0.005   0.500  0.024 
c13  3  3.024         0.024   0.800  0.032 
c14  5  5.021         0.021   0.420  0.048 

(Table continues) 
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Table A5 (continued) 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

 
c15  7  7.021         0.021   0.300  0.073 
c21           −1           −0.983         0.017   1.700  0.034 
c22  1  1.011         0.011   1.100  0.023 
c23  3  2.993       −0.007   0.233  0.037 
c24  5  5.011         0.011   0.220  0.054 
c25  7  7.014         0.014   0.200  0.080 
c31  0           −0.013       −0.013     —  0.029 
c32  2  1.982       −0.018   0.900  0.033 
c33  4  3.972       −0.028   0.700  0.043 
c34  6  5.978       −0.022   0.367  0.059 
c35  8  7.975       −0.025   0.313  0.084 
c41  0  0.019         0.019     —  0.031 
c42  2  2.031         0.031   1.550  0.029 
c43  4  4.034         0.034   0.850  0.046 
c44  6  6.050         0.050   0.833  0.072 
c45  8  8.058         0.058   0.725  0.115 
c51  1  0.971       −0.029   2.900  0.028 
c52  3  3.013         0.013   0.433  0.030 
c53  5  5.014         0.014   0.280  0.048 
c54  7  6.994       −0.006   0.086  0.070 
c55  9  9.017         0.017   0.189  0.092 
c61  1  1.019         0.019   1.900  0.035 
c62  3  3.034         0.034   1.133  0.038 
c63  5  5.045         0.045   0.900  0.061 
c64  7  7.064         0.064   0.914  0.093 
c65  9  9.055         0.055   0.611  0.126 
c71  2  2.004         0.004   0.200  0.031 
c72  4  4.019         0.019   0.475  0.039 
c73  6  6.018         0.018   0.300  0.065 
c74  8  8.036         0.036   0.450  0.108 
c75           10           10.053         0.053   0.530  0.143 
c81  2  2.007         0.007   0.350  0.030 
c82  4  4.010         0.010   0.250  0.042 
c83  6  6.020         0.020   0.333  0.062 
c84  8  8.018         0.018   0.225  0.097 
c85           10           10.025         0.025   0.250  0.137 
c91  3  3.035         0.035   1.167  0.032 
c92  5  5.037         0.037   0.740  0.047 
c93  7  7.042         0.042   0.600  0.062 

(Table continues) 
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Table A5 (continued) 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

c94  9  9.052         0.052   0.578  0.105 
c95            11           11.068         0.068   0.618  0.168 
c101  3  3.032         0.032   1.067  0.031 
c102  5  5.029         0.029   0.580  0.051 
c103  7  7.021         0.021   0.300  0.073 
c104  9  9.023         0.023   0.256  0.106 
c105            11           11.035         0.035   0.318  0.165 

Latent-class sizes 
Class 1  0.080  0.080        0.000   0.000 
Class 2  0.170  0.169      −0.001   0.588 
Class 3  0.250  0.248      −0.002   0.800 
Class 4  0.250  0.251        0.001   0.400 
Class 5  0.170  0.171        0.001   0.588 
Class 6  0.080  0.081        0.001   1.250 
 
 
Table A6 

Shifted Criteria, Fully Crossed, d = 3, N = 1,080 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

d1  3  3.008         0.008   0.267  0.014 
d2  3  3.017         0.017   0.567  0.013 
d3  3  3.014         0.014   0.467  0.018 
d4  3  3.020         0.020   0.667  0.011 
d5  3  3.021         0.021   0.700  0.012 
d6  3  2.999       −0.001   0.033  0.010 
d7  3  3.012         0.012   0.400  0.013 
d8  3  2.999       −0.001   0.033  0.011 
d9  3  3.005         0.005   0.167  0.014 
d10  3  3.016         0.016   0.533  0.011 
c11           −0.5           −0.519       −0.019   3.800  0.034 
c12  2.5  2.480       −0.020   0.800  0.034 
c13  5.5  5.509         0.009   0.164  0.070 
c14  8.5  8.513         0.013   0.153  0.142 
c15           11.5           11.525         0.025   0.217  0.211 
c21           −0.5           −0.513       −0.013   2.600  0.041 
c22  2.5  2.501         0.001   0.040  0.035 

(Table continues) 
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Table A6 (continued) 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

c23  5.5  5.545         0.045   0.818  0.065 
c24  8.5  8.543         0.043   0.506  0.123 
c25           11.5           11.570         0.070   0.609  0.192 
c31  0.5  0.509         0.009   1.800  0.035 
c32  3.5  3.518         0.018   0.514  0.046 
c33  6.5  6.547         0.047   0.723  0.098 
c34  9.5  9.548         0.048   0.505  0.192 
c35           12.5            12.570         0.070   0.560  0.299 
c41  0.5  0.505         0.005   1.000  0.035 
c42  3.5  3.514         0.014   0.400  0.039 
c43  6.5  6.515         0.015   0.231  0.064 
c44  9.5  9.546         0.046   0.484  0.109 
c45           12.5           12.578         0.078   0.624  0.162 
c51  1.5  1.494       −0.006   0.400  0.027 
c52  4.5  4.513         0.013   0.289  0.043 
c53  7.5  7.553         0.053   0.707  0.083 
c54           10.5           10.563         0.063   0.600  0.141 
c55           13.5           13.590         0.090   0.667  0.230 
c61  1.5  1.506         0.006   0.400  0.031 
c62  4.5  4.509         0.009   0.200  0.038 
c63  7.5  7.506         0.006   0.080  0.077 
c64           10.5           10.490       −0.010   0.095  0.124 
c65           13.5           13.498       −0.002   0.015  0.208 
c71  2.5  2.528           0.028   1.120  0.033 
c72  5.5  5.533         0.033   0.600  0.067 
c73  8.5  8.535         0.035   0.412  0.118 
c74           11.5           11.552         0.052   0.452  0.177 
c75           14.5           14.536         0.036   0.248  0.284 
c81  2.5  2.494         −0.006   0.240  0.030 
c82  5.5  5.507         0.007   0.127  0.052 
c83  8.5  8.504         0.004   0.047  0.098 
c84           11.5          11.508         0.008   0.070  0.154 
c85           14.5          14.525         0.025   0.172  0.241 
c91  3.5  3.521         0.021   0.600  0.042 
c92  6.5  6.511         0.011   0.169  0.065 
c93  9.5  9.532         0.032   0.337  0.136 
c94           12.5           12.537         0.037   0.296  0.224 
c95           15.5           15.549         0.049   0.316  0.322 
c101  3.5  3.532         0.032   0.914  0.038 
c102  6.5  6.526         0.026   0.400  0.052 

(Table continues) 
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Table A6 (continued) 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

c103  9.5  9.551         0.051   0.537  0.094 
c104           12.5           12.560         0.060   0.480  0.169 
c105           15.5           15.627         0.127   0.819  0.291 

Latent-class sizes 
Class 1  0.080  0.080        0.000   0.000 
Class 1  0.080  0.080        0.000   0.000 
Class 2  0.170  0.170        0.000   0.000 
Class 3  0.250  0.250        0.000   0.000 
Class 4  0.250  0.250        0.000   0.000 
Class 5  0.170  0.172        0.002   1.176 
Class 6  0.080  0.079      −0.001   1.250 
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Appendix B 

Evaluation of the Estimated Standard Errors for d and the Latent-Class Sizes 

Table B1 

Intersection-Point Criteria, Fully Crossed, d = 2, N = 1,080 

Parameter          SD          Mean SE  Bias 
d1     0.078         0.080          −0.002 
d2     0.088         0.079          −0.009 
d3     0.075         0.078            0.003 
d4     0.071         0.079            0.008 
d5     0.072         0.079            0.007 
d6     0.075         0.079            0.004 
d7     0.082         0.079          −0.003 
d8     0.076         0.079            0.003 
d9     0.072         0.079            0.007 
d10     0.078         0.079            0.001 

Class Size 1   0.008         0.009            0.001 
Class Size 2   0.013         0.013            0.000 
Class Size 3   0.014         0.015            0.001 
Class Size 4   0.013         0.015            0.002 
Class Size 5   0.013         0.013            0.000 
Class Size 6   0.010         0.009            0.001 
 
 
Table B2 

Intersection-Point Criteria, Fully Crossed, d = 3, N = 1,080 

Parameter                SD                 Mean SE             Bias 
d1     0.096         0.103             0.007 
d2     0.104         0.103           −0.001 
d3     0.108         0.104           −0.004 
d4     0.099         0.103             0.004 
d5     0.104         0.103           −0.001 
d6     0.108         0.103           −0.005 
d7     0.102         0.103             0.001 
d8     0.096         0.103             0.007 
d9     0.113         0.103           −0.010 
d10     0.098         0.103             0.005 

Class Size 1   0.008         0.008             0.000 
Class Size 2   0.013         0.012           −0.001 
Class Size 3   0.013         0.013             0.000 
Class Size 4   0.015         0.023             0.008 
Class Size 5   0.012         0.012             0.000 
Class Size 6   0.008         0.008             0.000 
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Table B3 

Intersection-Point Criteria, Fully Crossed, d = 4, N = 1,080 

Parameter                SD                 Mean SE             Bias 
d1     0.131         0.132            0.001 
d2     0.142         0.133          −0.009 
d3     0.119         0.132            0.013 
d4     0.125         0.132            0.007 
d5     0.124         0.133            0.009 
d6     0.135         0.132          −0.003 
d7     0.134         0.133          −0.001 
d8     0.136         0.133          −0.003 
d9     0.131         0.133            0.002 
d10     0.136         0.133          −0.003 

Class Size 1    0.009         0.008          −0.001 
Class Size 2    0.012         0.012            0.000 
Class Size 3    0.015         0.013          −0.002 
Class Size 4    0.012         0.013            0.001 
Class Size 5    0.011         0.011            0.000 
Class Size 6    0.008         0.008            0.000 
 
 
Table B4 

Intersection-Point Criteria, Fully Crossed, d = 5, N = 1,080 

Parameter          SD                 Mean SE             Bias 
d1     0.219         0.182           −0.037 
d2     0.181         0.177           −0.004 
d3     0.181         0.177           −0.004 
d4     0.193         0.179           −0.014 
d5     0.185         0.179           −0.006 
d6     0.217         0.180           −0.037 
d7     0.221         0.179           −0.042 
d8     0.187         0.179           −0.008 
d9     0.197         0.178           −0.019 
d10     0.142         0.178             0.036 

Class Size 1   0.103         0.011           −0.092 
Class Size 2   0.075         0.012           −0.063 
Class Size 3   0.040         0.013           −0.027 
Class Size 4   0.039         0.012           −0.027 
Class Size 5   0.074         0.012           −0.062 
Class Size 6   0.103         0.010           −0.093 
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Table B5 

Shifted Criteria, Fully Crossed, d = 2, N = 1,080 

Parameter          SD                 Mean SE             Bias 
d1     0.082         0.084            0.002 
d2     0.080         0.084            0.004 
d3     0.080         0.082            0.002 
d4     0.088         0.082          −0.006 
d5     0.077         0.080            0.003 
d6     0.091         0.081          −0.010 
d7     0.079         0.082            0.003 
d8     0.081         0.084            0.003 
d9     0.077         0.084            0.007 
d10     0.079         0.084            0.005 

Class Size 1   0.010         0.010            0.000 
Class Size 2   0.012         0.013            0.001 
Class Size 3   0.013         0.015            0.002 
Class Size 4   0.016         0.015          −0.001 
Class Size 5   0.012         0.013            0.001 
Class Size 6   0.010         0.010            0.000 
 
 
 
Table B6 

Shifted Criteria, Fully Crossed, d = 3, N = 1,080 

Parameter          SD                 Mean SE             Bias 
d1     0.082         0.084            0.002 
d1     0.121         0.116          −0.005 
d2     0.114         0.116            0.002 
d3     0.136         0.112          −0.024 
d4     0.104         0.113            0.009 
d5     0.109          0.104          −0.005 
d6     0.101         0.103            0.002 
d7     0.113         0.112          −0.001 
d8     0.104         0.111            0.007 
d9     0.119         0.116          −0.003 
d10     0.105         0.116            0.011 

Class Size 1   0.008         0.008            0.000 
Class Size 2   0.011         0.012            0.001 
Class Size 4   0.014         0.013          −0.001 
Class Size 5   0.012         0.012            0.000 
Class Size 6   0.008         0.008            0.000 
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Appendix C 

Parameter Estimates, Bias, Percentage Bias, and Mean Squared Error for 

the Balanced Incomplete Block (BIB) Design 

Table C1 

Intersection-Point Criteria, Balanced Incomplete Block, d = 2, N = 1,080 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

d1  2  1.813        −0.187    9.350 0.154 
d2  2  1.786        −0.214  10.700 0.164 
d3  2  1.799       − 0.201  10.050 0.182 
d4  2  1.798        −0.202   10.100 0.157 
d5  2  1.839        −0.161    8.050 0.150 
d6  2  1.804        −0.196    9.800 0.144 
d7  2  1.793        −0.207  10.350 0.117 
d8  2  1.772        −0.228  11.400 0.149 
d9  2  1.824        −0.176    8.800 0.162 
d10  2  1.784        −0.216  10.800 0.148 
c11  1  1.018        −0.634  63.400 0.692 
c12  3  2.464        −0.536  17.866 0.819 
c13  5  4.493        −0.506  10.120 1.200 
c14  7  6.524        −0.476    6.800 1.776 
c15  9  8.613        −0.387    4.300 2.237 
c21  1  1.004        −0.606  60.600 0.603 
c22  3  2.464        −0.536  17.866 0.767 
c23  5  4.484        −0.516  10.320  1.143 
c24  7  6.482        −0.518    7.400 1.581 
c25  9  8.502        −0.498    5.533 2.273 
c31   1  1.023        −0.667  66.700 0.766 
c32  3  2.394        −0.606  20.200 1.002 
c33  5  4.457        −0.543  10.860 1.375 
c34  7  6.499        −0.501    7.157  2.095 
c35  9  8.568        −0.432    4.480 2.760 
c41  1  0.986        −0.642  64.200 0.646 
c42  3  2.406        −0.594  19.800 0.835 
c43  5  4.435        −0.565  11.300 1.122 
c44  7  6.516        −0.484    6.914 1.599 
c45  9  8.596          −0.403    4.477 2.213 
c51  1  0.348        −0.652  65.200 0.713 
c52  3  2.481        −0.519  17.300 0.905 
c53  5  4.576        −0.424    8.480 1.193 

(Table continues) 
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Table C1 (continued) 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

c54  7  6.630        −0.369    5.271 1.769 
c55  9  8.745        −0.254    2.822 2.275 
c61  1  0.360        −0.639  63.900 0.655 
c62  3  2.456        −0.543  18.100 0.726 
c63  5  4.493       − 0.506  10.120 1.030 
c64  7  6.462        −0.537    7.671 1.428 
c65  9  8.531        −0.468   5.520  2.002 
c71  1  0.384        −0.615  61.500 0.590 
c72  3  2.432        −0.567  18.900 0.719 
c73  5  4.468        −0.532  10.640 0.879 
c74  7  6.549        −0.450    6.428 1.275 
c75  9  8.568        −0.432    4.800 1.670 
c81  1  0.339        −0.661  66.100 0.719 
c82  3  2.384        −0.616  20.533 0.921 
c83  5  4.415        −0.585  11.700 1.116 
c84  7  6.456        −0.544    7.771  1.441 
c85  9  8.499        −0.501    5.566 2.022 
c91  1  0.439        −0.561  56.100 0.633 
c92  3  2.533        −0.466  15.533 0.835 
c93  5  4.570        −0.430    8.600 1.195 
c94  7  6.610        −0.390    5.571 1.654 
c95  9  8.693        −0.307    3.411 2.441 
c101  1  0.360        −0.640  64.000 0.654 
c102  3  2.415        −0.585  19.500 0.730 
c103  5  4.430        −0.570  11.400 1.001 
c104  7  6.455        −0.545    7.875 1.328 
c105  9  8.489        −0.511    5.677 2.069 

Latent-class sizes 
Class 1  0.080  0.146                    0.066  82.500 
Class 2  0.170  0.120                  −0.050  29.412 
Class 3  0.250  0.240                  −0.010    4.000 
Class 4  0.250  0.231                  −0.019    7.600 
Class 5  0.170  0.130                  −0.040  23.529 
Class 6  0.080  0.133                    0.053  66.250 
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Table C2 

Intersection-Point Criteria, Balanced Incomplete Block, d = 3, N = 1,080 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

d1  3  2.862       −0.137   4.567  0.231 
d2  3  2.885       −0.115   3.833  0.206 
d3  3  2.773       −0.226   7.533  0.246 
d4  3  2.857       −0.143   4.767  0.220 
d5  3  3.006         0.006   0.200  0.272 
d6  3  2.895       −0.105   3.500  0.223 
d7  3  2.908       −0.009   0.300  0.279 
d8  3  2.938       −0.006   0.200  0.209 
d9  3  2.892       −0.107   3.567  0.187 
d10  3  2.895       −0.148   4.933  0.206 
c11  1.5  0.888       −0.612 40.800  0.755 
c12  4.5  4.057       −0.443   9.844  0.886 
c13  7.5  7.117       −0.383   5.107  1.460 
c14           10.5           10.250       −0.250   2.381  2.636 
c15           13.5           13.353       −0.147   1.089  4.337 
c21  1.5  0.954       −0.546 36.400  0.598 
c22  4.5  4.059       −0.441   9.800  0.872 
c23             7.5  7.164       −0.336   4.480  1.415 
c24           10.5           10.340       −0.160   1.524  2.494 
c25           13.5           13.432       −0.068   0.503  3.829 
c31  1.5  0.879       −0.621 41.400  0.716 
c32  4.5  3.856       −0.644 14.311  0.970 
c33  7.5  6.906       −0.594   7.920  1.780 
c34           10.5  9.845       −0.655   6.238  2.578 
c35           13.5           12.975       −0.525   3.889  4.125 
c41  1.5  0.887       −0.613 40.867  0.681 
c42  4.5  4.060       −0.440   9.778  0.744 
c43  7.5  7.176       −0.324   4.320   1.478 
c44           10.5           10.206       −0.294   2.800  2.497 
c45           13.5           13.335       −0.165   1.222  3.745 
c51  1.5  1.007       −0.493 32.867  0.583 
c52  4.5  4.261       −0.239   5.311  0.956 
c53  7.5  7.451       −0.048   0.640  2.138 
c54           10.5           10.675         0.175   1.667  3.455 
c55           13.5           13.938         0.438   3.244  5.352 
c61  1.5  0.914       −0.586 39.067  0.643 
c62  4.5  4.038       −0.462 10.267  0.894 
c63  7.5  7.227       −0.273   3.640  1.530 
c64           10.5           10.296       −0.203   1.933  2.704 

(Table continues) 
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Table C2 (continued) 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

c65           13.5           13.547         0.047   0.348  4.229 
c71  1.5  0.907         −0.056    3.733  0.603 
c72  4.5  3.995       −0.505 11.222  1.044 
c73                  7.5  7.223       −0.277   3.693  1.978 
c74           10.5           10.318       −0.182   1.733  3.099 
c75               13.5           13.546       −0.046   0.341  5.751 
c81  1.5  0.994       −0.506 33.733  0.555 
c82             4.5  4.163       −0.337   7.489  0.736 
c83  7.5  7.355       −0.145   1.933  1.568 
c84           10.5           10.431       −0.069   0.657  2.449 
c85           13.5           13.687         0.187   1.385  4.363 
c91  1.5  0.994       −0.506 33.733  0.546 
c92  4.5  4.133       −0.366   8.133  0.669 
c93  7.5  7.176       −0.324   4.320  1.246 
c94                10.5           10.292       −0.208   1.981  1.932 
c95                13.5            13.456       −0.044   0.326  3.134 
c101  1.5  0.914       −0.586 39.067  0.559 
c102  4.5  4.076       −0.042   0.933  0.745 
c103  7.5  7.100       −0.399   5.320  1.381 
c104           10.5           10.171       −0.329   3.133  2.377 
c105           13.5           13.278       −0.222   1.644  3.870 

Latent-class sizes 
Class 1  0.080  0.109                    0.029 36.250 
Class 2  0.170  0.158                  −0.012   7.060 
Class 3  0.250  0.235                  −0.015   6.000 
Class 4  0.250  0.236                  −0.014   5.600 
Class 5  0.170  0.155                  −0.015   8.824 
Class 6  0.080  0.106                    0.026 32.500 

 
Table C3 

Intersection-Point Criteria, Balanced Incomplete Block, d = 4, N = 1,080 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

d1  4  4.011         0.011   0.375  0.017 
d2  4  3.918       −0.082   2.050  0.291 
d3  4  3.924       −0.076   1.900  0.356 
d4  4  4.052         0.052   1.300  0.265 
d5  4  3.969       −0.031   0.775  0.275 

(Table continues) 
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Table C3 (continued) 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

d6  4  3.943       −0.057   1.425  0.282 
d7  4  3.990       −0.010   0.250  0.305 
d8  4  4.003         0.003   0.075  0.304 
d9  4  3.918       −0.082   2.050  0.235 
d10  4  3.910       −0.090   2.250  0.267 
c11  2  1.529       −0.471 23.550  0.639 
c12  6  5.868       −0.132   2.200  1.234 
c13           10           10.015         0.015   0.150  2.331 
c14           14           14.189         0.189   1.350  3.759 
c15           18           18.452         0.452   2.511  6.089 
c21  2  1.536       −0.046   2.300  0.687 
c22  6  5.709          0.290   4.833  1.091 
c23           10  9.789       −0.211   2.110  1.980 
c24            14           13.811       −0.189   1.350  3.602 
c25           18           18.056         0.056   0.311  6.032 
c31  2  1.510       −0.490 24.500  0.576 
c32  6  5.715       −0.284   4.733  1.122 
c33           10  9.765       −0.234   2.340  2.232 
c34           14           13.824       −0.176   1.257  4.032 
c35           18           18.100       −0.099   0.550  7.133 
c41  2  1.645         0.355 17.750  0.623 
c42  6  5.889       −0.111   1.850  0.953 
c43           10           10.129         0.129   1.290  1.890 
c44           14           14.340         0.340   2.429  3.516 
c45           18           18.629         0.629   3.494  6.074 
c51  2  1.645       −0.492 24.600  0.655 
c52  6  5.813       −0.187   3.117  0.953 
c53           10  9.951       −0.049   0.490  1.924 
c54           14            14.107          0.107   0.764  3.541 
c55           18           18.256         0.256   1.422  5.612 
c61  2  1.511       −0.489 24.450  0.724 
c62  6  5.713       −0.286   4.767  1.059 
c63           10  9.860       −0.140   1.400  2.131 
c64           14           14.015         0.015   0.107  3.676 
c65           18           18.217         0.217   1.206  5.969 
c71  2  1.538         0.462  23.100  0.679 
c72  6  5.682       −0.318   5.300  0.931 
c73           10  9.943       −0.057   0.570  1.770 
c74           14           14.066         0.066   0.471  3.602 
c75               18           18.289         0.289   1.606  5.675 

(Table continues) 
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Table C3 (continued) 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

c81  2  1.594       −0.406 20.300  0.617 
c82  6  5.849       −0.151   2.517  1.103 
c83           10           10.037         0.037   0.370  2.067 
c84           14           14.227         0.227   1.621  3.900 
c85           18           18.364         0.364   2.022  5.797 
c91  2  1.511       −0.489 24.450  0.600 
c92  6  5.698       −0.302    5.033  0.844 
c93           10  9.802       −0.198    1.980  1.796 
c94           14           13.865       −0.135   0.964  3.060 
c95           18           18.020         0.020   0.111  4.817 
c101  2  1.472       −0.528 26.400  0.626 
c102  6  5.674         0.326   5.433  0.911 
c103           10  9.792       −0.208   2.080  1.764 
c104           14           13.850       −0.150   1.071  3.129 
c105           18           17.993       −0.007   0.039  5.073 

Latent-class sizes 
Class 1  0.080  0.094                    0.014  17.500 
Class 2  0.170  0.164                  −0.006    3.529 
Class 3  0.250  0.240                  −0.010    4.000 
Class 4  0.250  0.245                  −0.005    2.000 
Class 5  0.170  0.163                  −0.007    4.118 
Class 6  0.080  0.094                    0.014  17.500 
 
 
Table C4 

Shifted Criteria, Balanced Incomplete Block, d = 3, N = 1,080 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

d1  3  2.750       −0.250     8.333 0.240 
d2  3  2.688       −0.312   10.400 0.270 
d3  3  2.811       −0.189     6.300 0.225 
d4  3  2.753       −0.247     8.233 0.232 
d5  3  2.857       −0.143     4.767 0.260 
d6  3  2.833       −0.167     5.567 0.196 
d7  3  2.798       −0.202     6.733 0.214 
d8  3  2.800       −0.200     6.667 0.242 
d9  3  2.691       −0.309   10.300 0.281 

(Table continues) 
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Table C4 (continued) 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

d10  3  2.787       −0.213     7.100 0.258 
c11           −0.5           −0.861       −0.361   72.200 0.458 
c12  2.5  1.916       −0.584   23.360 1.028 
c13  5.5  4.858       −0.642   11.673 1.433 
c14  8.5  7.900       −0.600     7.059 2.094 
c15           11.5           10.940       −0.560     4.870 3.002 
c21           −0.5           −1.017       −0.517 103.400 0.749 
c22  2.5  1.818       −0.682   27.280 1.181 
c23  5.5  4.866       −0.634   11.527 1.506 
c24  8.5  7.773       −0.727     8.553 2.415 
c25           11.5           10.817       −0.683     5.939 3.151 
c31  0.5  0.005       −0.495   99.000 0.566 
c32  3.5  2.975       −0.525   15.000 0.743 
c33  6.5  6.142       −0.358     5.508 1.256 
c34  9.5  9.129       −0.371     3.905 2.128 
c35           12.5           12.181       −0.319     2.552 3.152 
c41  0.5           −0.011       −0.511 102.200 0.684 
c42  3.5  2.938       −0.562   16.057 1.031 
c43  6.5  5.930       −0.570     8.769 1.505 
c44  9.5  8.928       −0.572     6.021 2.473 
c45           12.5           12.035       −0.465     3.720 3.298 
c51  1.5  1.040       −0.460   30.667 0.792 
c52  4.5  4.068       −0.432     9.600 1.289 
c53  7.5  7.198       −0.302     4.027 1.845 
c54           10.5           10.311       −0.189     1.800 3.082 
c55           13.5           13.348       −0.152     1.126 4.606 
c61  1.5  0.902       −0.598   39.867 0.771 
c62  4.5  4.066       −0.434     9.644 1.005 
c63  7.5  7.134       −0.366     4.880 1.349 
c64           10.5           10.238       −0.262     2.495 2.226 
c65           13.5           13.270       −0.230     1.704 3.067 
c71  2.5  1.984       −0.516   20.640 0.778 
c72  5.5  5.066       −0.434     7.891 1.130 
c73  8.5  8.032       −0.468     5.506 1.680 
c74           11.5           11.169       −0.331     2.878 2.500 
c75           14.5           14.042       −0.458     3.159 3.555 
c81  2.5  1.903       −0.597   23.880 1.071 
c82  5.5  5.508         0.008     0.145 1.225 
c83  8.5  8.036       −0.464     5.459 2.157 
c84           11.5           11.165       −0.335     2.913 3.374 

(Table continues) 
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Table C4 (continued) 

Parameter  Value      Estimate          Bias % Bias  MSE 
Rater parameters 

c85           14.5           14.124       −0.376     2.593 4.423 
c91  3.5  2.855       −0.645   18.429 1.221 
c92  6.5  5.796       −0.704   10.831 1.889 
c93  9.5  8.750       −0.750     7.895 2.714 
c94           12.5           11.788       −0.712     5.696 3.746 
c95           15.5           14.546       −0.954     6.155 5.092 
c101  3.5  2.951       −0.549   15.686 1.313 
c102  6.5  5.990       −0.510     7.846 1.674 
c103  9.5  9.046       −0.454     4.779 2.446 
c104           12.5           12.143       −0.357     2.856 3.458 
c105           15.5           14.986       −0.514     3.316 4.925 

Latent-class sizes 
Class 1  0.080  0.110         0.030   37.500 
Class 2  0.170  0.152       −0.018   10.588 
Class 3  0.250  0.235       −0.015     6.000 
Class 4  0.250  0.230       −0.020     8.000 
Class 5  0.170  0.158       −0.012     7.059 
Class 6  0.080  0.115         0.035   43.750 
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Appendix D 

Evaluation of the Estimated Standard Errors for d and the Latent Class Sizes,  

Balanced Incomplete Block (BIB) Design 

Table D1 

Intersection-Point Criteria, Balanced Incomplete Block, d = 2, N = 1,080 

Parameter                SD                 Mean SE             Bias 
d1     0.347         0.334           −0.013 
d2     0.346         0.324           −0.022 
d3     0.378         0.326           −0.052 
d4     0.342         0.326           −0.016 
d5     0.353          0.336           −0.017 
d6     0.327         0.327             0.000 
d7     0.273         0.322             0.049 
d8     0.314         0.318             0.004 
d9     0.364         0.331           −0.033 
d10     0.320          0.323             0.003 

Class Size 1   0.037         0.040             0.003 
Class Size 2   0.050         0.049           −0.001 
Class Size 3   0.057         0.055           −0.002 
Class Size 4   0.060         0.055           −0.005 
Class Size 5   0.049         0.046           −0.003 
Class Size 6   0.030         0.039             0.009 
 
Table D2 

Intersection-Point Criteria, Balanced Incomplete Block, d = 3, N = 1,080 

Parameter                SD                 Mean SE             Bias 
d1     0.463         0.445           −0.018 
d2     0.442         0.447             0.005 
d3     0.443         0.424           −0.019 
d4     0.450         0.444           −0.006 
d5     0.524         0.481           −0.043 
d6     0.463         0.449           −0.014 
d7     0.523         0.454           −0.069 
d8     0.455         0.460             0.005 
d9     0.421         0.449             0.028 
d10     0.431          0.437             0.006 

Class Size 1   0.018         0.021             0.003 
Class Size 2   0.027         0.025           −0.002 
Class Size 3   0.029         0.029             0.000 
Class Size 4   0.029         0.029             0.000 
Class Size 5   0.027         0.025           −0.002 
Class Size 6   0.020         0.021             0.001 
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Table D3 

Intersection-Point Criteria, Balanced Incomplete Block, d = 4, N = 1,080 

Parameter                SD                 Mean SE             Bias  
d1     0.559         0.573            0.014 
d2     0.535         0.547            0.012 
d3     0.595         0.546          −0.049 
d4     0.515         0.573            0.058 
d5     0.526         0.558            0.032 
d6     0.531         0.552            0.021 
d7     0.555         0.556            0.001 
d8     0.554         0.562            0.008 
d9     0.480         0.542            0.062 
d10     0.512         0.543            0.031 

Class Size 1   0.015         0.014          −0.001 
Class Size 2   0.021         0.019          −0.002 
Class Size 3   0.024         0.023          −0.001 
Class Size 4   0.020         0.023            0.003 
Class Size 5   0.019         0.020            0.001 
Class Size 6   0.014         0.015            0.001 
 
 
Table D4 

Shifted Criteria, BIB, d = 3, N = 1,080 

Parameter                SD                 Mean SE             Bias  
d1     0.423         0.482            0.059 
d2     0.418         0.463            0.045 
d3     0.437         0.498            0.024 
d4     0.416         0.474            0.058 
d5     0.492          0.478          −0.014 
d6     0.413         0.475            0.062 
d7     0.419         0.485            0.066 
d8     0.452         0.489            0.037 
d9     0.432         0.467            0.035 
d10     0.464         0.498            0.434 

Class Size 1   0.025         0.026            0.001 
Class Size 2   0.028         0.027         ─0.001 
Class Size 4   0.032         0.029         ─0.003 
Class Size 5   0.031         0.029         ─0.002 
Class Size 6   0.031         0.027         ─0.004 
 




