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Abstract 

A basic consideration in large-scale assessments that use constructed response (CR) items, such 

as essays, is how to allocate the essays to the raters that score them. Designs that are used in 

practice are incomplete, in that each essay is scored by only a subset of the raters, and also 

unbalanced, in that the number of essays scored by each rater differs across the raters. In 

addition, all of the possible rater pairs may not be used. The present study examines the effects 

of these factors on parameter recovery and classification accuracy using simulations of a latent 

class model based on signal detection theory (SDT). Many tests also include more than one CR 

item, which introduces a nested or hierarchical structure into the design, in that raters are nested 

within essays (i.e., there are multiple raters per essay) and essays are nested within examinees 

(i.e., each examinee provides two or more essays). A hierarchical rater model (HRM) has 

previously been developed to recognize the nested structure. A version of the HRM that 

incorporates a latent class signal detection model in the first level, referred to as the HRM-SDT 

model, is presented. Parameter recovery in the HRM-SDT model is examined in simulations. 

The model is applied to data from several ETS tests. 

Key words: Constructed responses, signal detection theory, balanced incomplete block, 

hierarchical rater model, latent class 
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Many tests, such as the SAT® and GRE®, include constructed-response (CR) items, such 

as essays, in addition to multiple-choice (MC) items. The use of CR items necessitates the use of 

raters to score the items. A basic question is how to treat the rater scores. It is important to 

recognize, for example, that CR scores differ in a basic way from MC scores in that CR scores 

contain error, due to imperfect reliability of the raters and the possible presence of rater effects, 

whereas this is not the case for MC items, which can be objectively scored as right or wrong by 

either a person or a machine. The effects of rater reliability and rater effects in CR scoring are 

recognized in a latent class extension of signal detection theory (SDT; DeCarlo, 2002, 2005). In 

this approach, CR scores are viewed as being ordinal indicators of ordinal latent categories of 

essay quality. A prior report (DeCarlo, 2008a) examined parameter recovery and classification 

accuracy for latent class SDT models in fully crossed designs (where each essay is scored by 

every rater) and in incomplete designs (where each essay is scored by only some raters). The 

present report extends this research by examining some issues that arise when essays and raters 

are used in large-scale assessments. 

First, in terms of the allocation of essays to raters, the designs used in large-scale 

assessments are necessarily incomplete, in that there are too many essays for a complete design 

to be used. Instead, each essay is typically scored by two raters out of a pool of perhaps several 

dozen raters. The effect of incompleteness was studied in prior research (DeCarlo, 2008a) by 

using a balanced incomplete block (BIB) design, which offers a useful baseline for comparison. 

In a BIB design, as applied to essay scoring, all possible rater pairs are used, each rater scores the 

same number of essays, and each pair of raters scores the same number of essays. Although a 

BIB design is statistically efficient, there are practical limitations to implementing it in large-

scale assessments. For example, it is difficult to keep the number of essays scored by each rater 

equal given that, among other things, different numbers of examinees take the test each test day 

and the raters differ with respect to how long it takes to score a given set of essays. It also can be 

difficult to use all of the possible rater pairs, since there are a large number of possible pairs 

(e.g., 1,225 for 50 raters) and not all of the raters are available all of the time. So too, it is 

difficult to balance the number of essays scored by each pair of raters. As a result, in practice 

each rater typically scores a different number of essays and all of the rater pairs are not used, and 

so the design is not balanced with respect to the number of essays scored by each rater and with 
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respect to the number scored by each rater pair. The present study uses simulations to examine 

the effects of these factors on parameter recovery and classification for a latent class SDT model. 

Second, many tests include more than one CR item, and so another issue that arises is 

how to model the multiple sets of CR scores for each examinee. It is important to recognize that, 

for multiple CR items, there are not only multiple raters nested within each CR item (i.e., each 

essay is scored by more than one rater), but also multiple CR items nested within examinees 

(e.g., each examinee writes more than one essay). The nested structure means that the sets of CR 

scores should not be treated as being independent. To recognize the nested structure, a 

hierarchical rater model (HRM) has been introduced (see Patz, Junker, Johnson, & Mariano, 

2002). In the version of the model presented here, which will be referred to as the HRM-SDT 

model, a latent class SDT model is used in the first level and an item response theory (IRT) 

model is used in the second level (DeCarlo, 2008b). Specifically, in the first level of the model, 

the CR scores are used as ordinal indicators of the quality of an essay, as in the usual latent class 

SDT model. In the second level the essay qualities are used as ordinal indicators of a continuous 

underlying ability, as in the usual IRT model. The approach recognizes the dependence that 

arises from having each examinee provide two essays; it also provides information about the 

difficulty and discriminability of the CR items. The current study presents results for simulations 

where parameter recovery for the HRM-SDT was examined. Also presented are applications of 

the model to large-scale tests that include two essays or three problem-solving exercises. 

This report is organized as follows: First, the latent class signal detection model is 

reviewed. Some issues that arise with incomplete and unbalanced designs are discussed, 

followed by a presentation of results for simulations of unbalanced incomplete designs. Next, the 

HRM-SDT model is introduced, followed by simulations that examine parameter recovery. The 

last section applies the model to several real-world data sets. 

Latent Class Signal Detection Theory 

Latent class signal detection theory has been discussed in a previous research report 

(DeCarlo, 2008a) and in several publications (DeCarlo, 2002, 2005), and so it is only briefly 

described here. Each essay is viewed as belonging to one of several latent categories of quality, 

with the latent categories defined by the scoring rubric. The task for each rater is to determine 

which category each essay belongs to. A basic idea of SDT is that a rater’s judgment depends on 
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(a) his or her perception of the quality of the essay and (b) his or her use of response criteria, 

which reflect what the rater considers to be, for example, no mastery, little mastery, fair mastery, 

and so on; thus it is recognized in SDT that there may be individual differences in the way raters 

use the response categories. A rater is viewed as arriving at a judgment for each essay by using 

his or her perception of the essay together with response criteria. 

SDT summarizes the data by providing two rater measures — a discrimination parameter 

d, which indicates how well the rater discriminates between the latent categories, and response 

criteria ck, which reflect how the rater uses the response categories. In SDT, d has an 

interpretation as the distance between underlying probability distributions (e.g., of perception), 

whereas ck are criteria located relative to the underlying distributions. Figure 1 shows an example 

with four latent categories (and so there are four perceptual distributions, one for each latent 

category) and responses of one to four (and so there are three response criteria). 

| c2 c3

"1" "2" "3" "4"

|
dc1

0
|
2d

|
3d

 

Figure 1. A representation of signal detection theory. 

The Latent Class SDT Model 

The above assumptions lead to a statistical model where the observed score of a rater 

serves as an ordinal indicator of the quality of an essay; the quality of an essay in turn is viewed 

as being a latent categorical variable on an ordinal scale. More specifically, the latent class SDT 

model for rater j is a model of the cumulative response probability given the latent category, 

p(Yj ≤kj | X # = x# ) = F(cjk −dj x# ) (1) 
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(cf. DeCarlo, 1998), where Yj is the response variable for rater j, with values kj that range from 1 

to Kj, X # is a latent categorical variable with values of x# = 0 to K−1 (i.e., it is assumed that there 

are K latent categories, defined by the scoring rubric), cjk are K−1 response criteria for the jth 

rater and kth response category, with cj0 = −∞, cjK = ∞, and cj1 < cj2 <...< cj,K−1, dj is a 

discrimination parameter for the jth rater, and F is a cumulative distribution function (CDF). 

Note that the use of values of 0, 1,..., K−1 for x# in Equation 1 implements an equal distance 

restriction, in that it constrains the distances between the underlying distributions to be equal for 

adjacent distributions, and so the distances are multiples of each other (i.e., the first distance is d, 

the second is 2d, the third is 3d; see DeCarlo, 2002, 2005, 2008a). As noted earlier, the model 

can be viewed as a type of discrete factor model, and is also related to located latent class models 

and discrete IRT models (DeCarlo, 2002, 2005). 

The latent class SDT model can be incorporated into a restricted latent class model by 

using differences between the cumulative response probabilities to get the probability for each 

response category. Thus, for K response categories, 

p(Yj =kj | X # = x#) = F(cjk − dj x#)                                                      kj = 1 

p(Yj = kj | X # = x#) = F(cjk − dj x# ) − F(cjk–1 − dj x# )                1 < kj  < Κj. (2) 

p(Yj =kj | X # = x#) = 1 − F(cjk−1 − dj x#)                                           kj = Kj 

The above probabilities are used in a restricted latent class model (see Clogg, 1995; Dayton, 

1998), which is a model for the response patterns across raters, 

p(Y1 = k1, Y2 = k2,..., Yj = kj) =  Σx# p(X # = x#) Π j p(Yj = kj | X # = x#), (3) 

where the summation is over the values of the latent classes (i.e., x#), the product is over the J 

raters, and an assumption of local independence is made, that is, 

p(Y1 = k1, Y2 = k2,..., Yj = kj | X #) = Π j p(Yj = kj | X #). 

The above represents a standard restricted latent class model, and so it can be fit with several 

software packages, such as LEM (Vermunt, 1997), Latent Gold (Vermunt & Magidson, 2007), or 



5 

 

Mplus (Muthén and Muthén, 2007; note that the latent class SDT model can be implemented in 

Mplus as a nonparametric confirmatory factory analysis model). 

Incomplete Designs 

Complete (fully crossed) designs, where each essay is scored by every rater, are not used 

in practice for large-scale assessments because there are typically a large number of essays to be 

scored and there are limitations to the number of essays each rater can score. This necessitates 

the use of incomplete designs; for example, each essay in large-scale assessments typically is 

scored by two raters out of a pool of raters. The essays can be allocated to the raters according to 

different rating designs (see Hombo, Donoghue, & Thayer, 2001). Prior research on the latent 

class SDT model has examined balanced incomplete block (BIB) designs (DeCarlo, 2008a), 

which are efficient (Fleiss, 1986) and serve as a useful baseline. In the current context, a BIB 

design uses all possible pairings of the raters, balances the number of essays scored by each rater, 

and balances the number of essays scored by each pair of raters. The present report extends prior 

research by examining, in addition to BIB, unbalanced designs, where raters score different 

numbers of essays and not all rater pairs are used; this is closer to the type of design that is used 

in real-world assessments, as noted below. 

Estimation. The essays are allocated to the raters, and so the data in rating designs are 

missing by design. To use the terminology of Rubin (1976), data that are missing by design are 

missing completely at random (MCAR; note that the results are also valid with the weaker 

assumption of missing at random). The approach to fitting the model with missing data is to 

maximize the likelihood for the various subsets of raters that score each essay. First, consider the 

situation where three raters grade each and every essay in a fully crossed design. The log 

likelihood is 

log L = Σi log Σx# p(X # = x#) p(Yi1 = k1| X # = x#) p(Yi2 = k2| X # = x#) p(Yi3 = k3| X # = x#),       (4) 

where Yij is the score for examinee (essay) i for rater j. Next, consider an incomplete design 

where Essay 1 is scored by only Raters 1 and 2, Essay 2 is scored by only Raters 1 and 3, and so 

on. Then the log likelihood for the first case, with Raters 1 and 2, is 

log L1 = log Σx# p(X # = x#) p(Y11 = k1| X # = x#) p(Y12 = k2| X # = x#), 
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and for the second case, with Raters 1 and 3, is 

log L2 = log Σx# p(X # = x#) p(Y21 = k1| X # = x#) p(Y23 = k3| X # = x#), 

and similarly for the remaining cases. Thus, in the presence of missing data, the log likelihood is 

based on the subsets of raters for which we have observations, and so all available information is 

used for each case. See the technical manual of Latent Gold (Vermunt & Magidson, 2005) for 

further details on estimation in latent class models with missing data using maximum likelihood 

(or posterior mode) estimation. 

Connectedness. When using fewer than all of the possible pairs of raters, one has to take 

care that the raters are all connected, so that d, for example, is on a common scale and can be 

compared across all of the raters; any non-connected raters cannot be compared to the other 

raters. For example, if Raters 1 and 2 grade one set of essays and Raters 3 and 4 grade a second 

set of essays with no overlap of essays, then Raters 1 and 2 can be compared to each other, but 

they cannot be compared to Raters 3 or 4 (without making further assumptions). On the other 

hand, all of the raters can be compared if Rater 1 has some overlapping essays with Rater 3, for 

example (i.e., at least three rater pairs are needed for all of the raters to be connected when there 

are four raters). The issue is related to earlier discussions in the literature about comparing 

treatment effects in block designs, in terms of whether treatment contrasts are estimable (e.g., 

Eccleston & Hedayat, 1974; Weeks & Williams, 1964); note that in the current context, the 

essays (examinees) correspond to blocks and the raters correspond to treatments. 

For the situation with J raters and two raters per block (essay), at least J−1 rater pairs 

must be used in order for all of the raters to be connected. For example, one can simply pair J−1 

of the raters with the Jth rater, that is, for 10 raters, one can use the nine pairs (1, 10), (2, 10), (3, 

10), and so on, with the result that all of the raters will be fully connected. Simply put, each rater 

is paired with the same rater (e.g., Rater 10), and so all of the raters can be compared to each 

other. Another option is to use a spiral-like design, with the nine pairs being (1,2), (2,3), (3,4), 

and so on (which is simple to implement and helps with balancing). This design was used here 

for the unbalanced condition because it is simple to implement, is used in practice, and allows 

one to create unbalanced data with some control over how many essays each rater scores. 

Lack of balance. The present report examines the effect of a lack of balance, that is, 

situations where the raters score different numbers of essays instead of an equal number. The 
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type of design used is shown in Table 1, with the rows referring to groups of essays and the 

columns to raters. For example, the first row of Table 1 shows that Raters 2 and 5 score the same 

20 essays. The last row of the table shows that the 10 raters score a total of 50, 60, 120, 140, 200, 

230, 280, 310, 370, or 400 essays each. Note that the basic nine adjacent pairs needed for the 

raters to be fully connected are used, along with a 10th pair that was added so that each rater is 

paired with two other raters. Thus (10/45) × 100 = 22% of the possible 45 rater pairs are used, 

which is close to the lower limit for connectedness of 20% (i.e., for 10 raters, a minimum of nine 

rater pairs are required, giving (9/45) × 100 = 20%). The total number of essays scored is 1,080, 

with each rater scoring an average of 216 essays (to match the BIB design). Note that for the BIB 

condition (and in the original fully crossed data), the population values of d were ordered, in 

increasing magnitude, from Rater 1 to 10 (and the incomplete data were created from the original 

fully crossed data, see below). Thus for the incomplete design the raters were randomly allotted 

to the 10 columns of the design, as shown in Table 1, so that the sample size was not 

systematically related to the value of d. 

Table 1 

An Unbalanced Incomplete Design (N = 1,080) 

          Rater 
   2  5  6  4   3   9  10   1   8   7 Total 
 
      20 20 
   40 40 
    80 80 
     60   60 
      140 140 
         90   90 
        220 220 
         150 150 
          250 250 
  30           30 
            1080 
Total/Rater 50 60 120 140 200 230 310 370 400 280 
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Linkage. As noted above, a design with two raters per essay can be fully connected with 

the use of only J−1 rater pairs out of a possible [(J × (J−1)]/2 rater pairs. For example, if there 

are 40 raters, then the raters will be fully connected with the use of 39 rater pairs out of a 

possible 780 pairs (i.e., 5% of the total possible unique pairs). Another issue that arises has to do 

with the degree of linkage in the design. The degree of linkage refers (in part) to the percent of 

the possible rater pairs used in the design. A basic question of interest is whether there is any 

benefit to using more than the minimum number of rater pairs needed for connectedness. This 

will be examined in the present report in both balanced and unbalanced designs by increasing the 

number of rater pairs and examining the effects on estimation and classification. 

An aspect of the degree of linkage in incomplete designs that has not, to my knowledge, 

been noted before is that it affects the relative sparseness of the data. For example, consider the 

situation with 40 raters using a 1 to 5 response. For a BIB design with two raters per essay, there 

are 52 × (40 × 39)/2 = 19,500 possible response patterns, and so unless the sample size is very 

large, there likely will be many patterns with few or no observations, and so the data will be 

quite sparse. However, for a spiral design, using the minimum number of rater pairs for 

connectedness (i.e., 39), there are only 52 × 39 = 975 possible response patterns, and so the 

number of patterns with no observations will be smaller and the frequencies per response pattern 

will be larger. In addition, with the spiral design the number of essays scored by each rater pair 

will be larger than for the BIB design. Both of these factors might have effects on estimation that 

offset any loss due to having fewer rater pairs. The effects of linkage will be examined here 

using conditions where both the balance and linkage are varied. 

Boundary problems and posterior mode estimation. It was noted in a previous 

research report that a problem arises when the latent class SDT model is applied to data from 

incomplete designs (DeCarlo, 2008a). The problem is that estimates of the parameters that are on 

the boundary are often found, such as estimates of zero (or one) for one or more of the latent 

class sizes, or estimates of d that are infinite or large with indeterminate standard errors. 

Problems of this sort are well known in latent class analysis (e.g., Clogg & Eliason, 1987; Maris, 

1999), and several solutions have been proposed. One approach is (partly) Bayesian, in that the 

parameters are treated as random variables instead of as fixed values to be estimated. For 

example, the latent classes have a multinomial distribution with parameters, p(X #), that are the 
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latent class sizes; the parameters can be assumed to also have a probability distribution, such as 

the Dirichlet, which is a conjugate prior for the multinomial, in that the posterior is also 

Dirichlet. 

This approach is used in posterior mode estimation (PME, also called maximum a 

posteriori estimation; see Galindo-Garre & Vermunt, 2006; Gelman, Carlin, Stern, & Rubin, 

1995; Maris, 1999; Schafer, 1997; Vermunt & Magidson, 2005). In posterior mode estimation, 

the maximum of the log posterior function is found, where the log posterior function is the log 

likelihood function plus a log prior. Posterior mode estimation can be viewed as maximum 

likelihood estimation (MLE) with a penalty for solutions that are close to the boundary; it 

basically smooths the estimates away from the boundary. Galindo-Garre and Vermunt (2006) 

presented a simulation that suggested PME gave more reliable parameter estimates and standard 

errors than either MLE or parametric bootstrapping. Galindo-Garre, Vermunt, and Bergsma 

(2004) presented a simulation that suggested advantages of PME over a full Bayesian approach 

via Monte Carlo Markov chain (MCMC) methods; they also noted that PME is less 

computationally intense than MCMC. In the context of latent class SDT, simulations presented 

in DeCarlo (2008a) suggest that PME (using Bayes constants of 1, see below) ameliorated 

boundary problems and led to good recovery of the population parameters and standard errors 

(for a range of values found in real-world data). 

With respect to priors, Galindo-Garre and Vermunt (2006) examined several 

noninformative priors (Jeffreys, normal, and Dirichlet) in a simulation and suggested versions of 

the Dirichlet prior that appeared to perform well (and are simple to implement); these priors are 

implemented in Latent Gold 4.5, which was used here. With respect to the latent class sizes, the 

prior smooths the estimates, slightly, towards equality, which helps prevent the occurrence of 

class sizes of zero or one. With respect to the rater responses, the prior makes the conditional 

response probabilities slightly more equal and so, in the present context, the prior smooths 

estimates of d towards zero and thereby prevents indeterminate values; the version of the 

Dirichlet prior used in Latent Gold for the response variables also preserves their marginal 

distributions (for details see Vermunt & Magidson, 2005; in the context of SDT this basically 

means that the smoothing pertains primarily to d, and not cjk). The hyperparameters of the 

Dirichlet prior are specified in Latent Gold through the use of Bayes constants (which also have 

an interpretation in terms of adding observations to the data). The simulations presented below 
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offer additional information about the performance of PME with Dirichlet priors in latent class 

SDT and in a hierarchical SDT rater model. 

Simulations: Unbalanced, Incomplete Designs 

This section presents simulations of BIB designs and unbalanced designs with both full 

and partial linkage. It should be noted that the design of the simulations was guided in part by the 

observations that, for several large-scale tests that were examined, anywhere from 200 to10,000 

essays were obtained on any given test day; the essays for a given test day were in turn scored by 

anywhere from 10 to 80 raters, with each rater scoring anywhere from 1 to 600 essays. Thus for 

the simulations, the basic design consisted of 10 raters scoring 1,080 essays (because the BIB is 

fully balanced for 1,080), with each rater scoring 216 essays (or an average of 216 in the 

unbalanced condition), so that the number of raters, number of essays, and essays scored per 

rater are all comparable to those found in practice. 

For the BIB design with full linkage, all 45 possible rater pairs were used, each rater 

scored 216 essays, and each rater pair scored 24 essays. Also examined is an unbalanced design 

with full linkage; the number of essays scored per rater ranged from 60 to 400, and all 45 rater 

pairs were used. In BIB and unbalanced designs with near minimum linkage, close to the 

minimum number of rater pairs was used (10 out of 45, or 22%; note that 9 out of 45, or 20%, is 

the minimum for connectedness) to obtain information about estimation with a near-minimum 

number of rater pairs (while still maintaining balance in that each rater pair appears twice). BIB 

and unbalanced designs with moderate linkage, 20 out of 45 rater pairs, also were used to 

examine the effects of degree of linkage. 

Methods 

The simulated data were generated using SAS macros written by the author; earlier 

macros were modified as needed for the current studies. Data for 10 raters discriminating 

between six latent classes by giving 1-6 responses were simulated. The latent class sizes were 

chosen to approximate a normal distribution (.08, .17, .25, .25, .17, .08), which is consistent with 

results found in previous research. Prior research has found a mean value of d for several large-

scale assessments in the vicinity of 3 to 4 with an approximate normal distribution. Thus for all 

conditions a range of values of d from 1 to 5 were used, which covers a range of detection from 

poor to excellent (for the logistic model) and is consistent with that found for real-world data. 
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The distribution of d was approximately normal, with values for the 10 raters of 1, 2, 2, 3, 3, 3, 3, 

4, 4, and 5. As in prior research (DeCarlo, 2008a), the response criteria were located at the 

intersection points of adjacent distributions, which has the convenient property that the relative 

locations of the criteria remain the same as d varies; it also appears to be a reasonable 

approximation to what is found with real-world raters (see DeCarlo, 2008a). Specifically, 

relative to d, the first through last criteria are located at ½d, 1½d, 2½d, and so on, because the 

intersection points for symmetrical distributions are midway between two adjacent distributions. 

So, for example, for six latent classes and a d of 2, the six distributions will be at 0, 2, 4, 6, 8, and 

10, and the five response criteria will be at 1, 3, 5, 7, and 9, and similarly for other values of d. 

Specifics of data generation are given in a prior report (DeCarlo, 2008a). Data were first 

generated for a fully crossed design. The BIB and unbalanced incomplete data were then created 

from the fully crossed data by inserting missing values according to the design. For example, for 

the BIB, blocks of all possible pairs were created and all other data points were set to missing. 

For the unbalanced simulation, missing values were inserted according to the design (e.g., Table 

1). Each condition consisted of 100 replications. The specific designs used for both the balanced 

and unbalanced conditions, with BIB and spiral designs, are shown in Appendix A. 

To see how the total sample size was determined for the BIB condition, note that the 

following conditions hold for a BIB design (see Fleiss, 1986): 

gr = nk, 

g ≤ n, 

λ (g − 1) = r (k − 1), (5) 

where g is the number of raters, r is the number of essays scored by each rater, n is the number of 

examinees (essays), k is the number of raters that score each essay (i.e., the block size), and λ is 

the number of essays scored by each pair of raters. For the design examined here, it follows from 

the first equation that 10 × 216 = 1,080 × 2, which shows that when each essay is scored by 2 

raters out of 10, a total of 1,080 essays are scored if each rater scores 216 essays. Further, 

substituting 10 for g, 216 for r, and 2 for k in the last relation of Equation 5 shows that each rater 

pair scores 24 essays (which is λ). Note that if one wanted to use 1,000 essays (n) with each rater 

scoring 200 essays (r), then it follows from Equation 5 that λ is not a whole number (it is 22.22); 
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this shows that Equation 5 imposes constraints on n and r (given a choice of the number of 

raters, g, and the number of raters per essay, k) if λ (the number of essays scored by each rater 

pair) is to be a whole number. 

Several software packages can be used to fit the latent class SDT model, such as LEM 

(Vermunt, 1997), Latent Gold (Vermunt & Magidson, 2007), and Mplus (Muthén & Muthén, 

2007); Latent Gold (Version 4.5) was used here. Latent Gold uses the EM algorithm followed by 

the Newton-Raphson procedure to obtain maximum likelihood estimates of the parameters. Only 

minor modifications of the algorithms for MLE are needed for PME; Schaefer (1997) noted, for 

example, that any algorithm used for MLE, such as the iterative proportional fitting algorithm 

commonly used for log-linear models, can easily be modified to find posterior modes when 

Dirichlet priors are used for the conditional response probabilities and latent class probabilities 

(p. 307; also see Gelman et al., 1995). 

A SAS macro written by the author was used to generate 100 input files for the Latent 

Gold analysis and also a DOS batch file, which was used to call Latent Gold repeatedly to 

perform the analysis. Other SAS macros stripped out information from the Latent Gold output 

for each replication, and the results were combined in a file for the remaining analyses. The SAS 

macro that stripped out and summarized the data checked and corrected for label switching, as 

described in a previous report (DeCarlo, 2008a). Another problem is that the solution could 

represent a local maximum; to decrease the likelihood of this, the number of sets of starting 

values was increased from the default of 10 to 20. One also has to check that the solution 

converged before reaching the maximum number of iterations. 

Results 

Rater parameters and latent class sizes. Appendix B presents, for the rater parameters 

and latent class sizes, the population parameters, the mean parameter estimates, the bias, the 

percent bias (the bias divided by the population value, times 100), and the mean squared error 

(MSE) for fits of the model to the 100 sets of simulated data. 

Table B1 shows results for the BIB condition, where all 45 possible rater pairs were used. 

The table shows that, for the rater discrimination parameter d, recovery is good, with a percent 

bias of less than 10% for all 10 raters; the MSE is also small, less than 0.6. The bias tends to be 

negative, which means that d tends to be underestimated. The table shows that the percent bias is 
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largest for the largest value of d (5, for Rater 10). With respect to c, the bias and MSE tend to be 

larger than those for d, but with percent bias still generally under 10%. The percent bias tends to 

be large for the first criterion for each rater; however, this depends in part on the arbitrary 

location of the zero point (which is why the percent bias is more meaningful for slope parameters 

like d and less so for location parameters like c). The percent bias is larger for criteria associated 

with the largest values of d, such as for Rater 10. With respect to estimation of the latent class 

sizes, the percent bias is less than 10% except for the end classes, which have large positive bias; 

in particular, the latent class sizes of 0.08 tend to be over-estimated as 0.10. 

Table B2 shows results for the unbalanced design, where all 45 rater pairs were again 

used, with the raters scoring different numbers of essays. With respect to d, the bias is less than 

10% in all cases, with three notable exceptions. First, the percent bias is large for the two raters 

who scored the fewest number of essays (Raters 2 and 5, who scored 50 and 60 essays, 

respectively, as shown in Table 1). Second, as in the BIB condition, the bias is large for the 

largest value of d (5, for Rater 10). Thus the results suggest that a lack of balance leads to larger 

bias. With respect to the response criteria c, the same patterns as found in the BIB condition 

appear, in that the percent bias is larger for Raters 2 and 5, who graded the smallest number of 

essays, and Rater 10, who has the largest value of d. With respect to the latent class sizes, there is 

virtually no difference from the balanced design, in that the middle class sizes are well 

recovered, with a percent bias of less than 10%, whereas the end classes are overestimated (again 

with 0.08 estimated as 0.10). 

Table B3 presents results for 10 raters each scoring 216 essays in a balanced design with 

“near-minimum” linkage, in that only 10 out of 45 possible rater pairs were used (the design is 

shown in Appendix A). The percent bias is again generally less than 10%, and the bias tends to 

be negative. The percent bias for raters with the largest values of d, Raters 4 and 5, is large and 

negative, and so high values of discrimination tend to be underestimated, as found above. 

Compared to the BIB design with 45 rater pairs, the bias for d is larger but only slightly so, with 

just two raters (Raters 8 and 10, with the largest values of d) having a percent bias greater than 

10%. The bias tends to be larger for the response criteria, with the largest bias for the raters with 

the largest values of d. With respect to the estimates of the latent class sizes, the results are 

nearly identical to those for the BIB design, with good estimation of the middle class sizes and 

positive bias for the end classes. 
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Table B4 shows results for 10 raters in an unbalanced design with near-minimum linkage 

(i.e., 10 out of 45 possible rater pairs). The effect of a lack of balance again appears to be an 

increase in the bias, with the largest effects generally for the raters with the smallest sample sizes 

or the largest values of d. With respect to estimation of the latent class sizes, the results are 

nearly identical to those found in the other conditions. 

Tables B5 and B6 show results for a spiral-like design with moderate linkage (20 out of 

45 possible rater pairs). With respect to the rater parameters, the results are comparable to those 

obtained for the near-minimum linkage condition, except that the bias and MSE are slightly 

smaller. Estimation of the latent class sizes is also comparable to that found in the other 

conditions. Thus it appears that increasing the number of rater pairs from 10 to 20 offers at most 

a small improvement in recovery of the rater parameters or the latent class sizes. 

Standard errors. Appendix C presents results for the evaluation of the estimates of the 

standard errors of d and the standard errors of the latent class sizes. The standard error estimates 

are computed using standard asymptotic theory (i.e., using the inverse of the observed 

information matrix; for details see Vermunt & Magidson, 2005). The bias is obtained by 

computing the standard deviation of the parameter estimates across the 100 replications (SD in 

the tables, which serves as the population value), and subtracting it from the mean of the 

estimated standard errors (i.e., across the 100 replications, which is the Mean SE shown for each 

parameter in the table). 

Table C1 shows that the bias in the estimates of the standard errors is generally less than 

10%, except for large values of d (4 or 5), where the SEs tend to be overestimated. The bias for 

the SEs of the latent class sizes is less than 10%, except for the sixth latent class. Table C2 shows 

that a lack of balance leads to larger bias (greater than 20%) for the SEs of d for the two raters 

with the smallest samples sizes (50 and 60); the bias is positive, and so the SEs are 

overestimated. For the remaining raters, however, the bias is similar to that found in Table C1, 

with overestimation of the SEs for large values of d. The bias for the SEs of the latent class sizes 

in Table C2 is also comparable to that found in Table C1. 

Tables C3 and C4 show results for the condition with only 10 rater pairs. Table C3 shows 

that the percent bias for the SEs of the d parameters is generally large and positive, and so the 

SE’s tend to be overestimated. The bias for the latent class sizes is smaller and similar to that 

found in Tables C1 and C2. Table C4 shows similar results, with about the same magnitude of 
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bias. Thus, whereas the tables in Appendix B show that using a near-minimum number of rater 

pairs has little deleterious effect on estimation of the rater parameters, Tables C1 and C3 show 

that there is a fairly large effect on the estimates of the standard errors of  the rater parameters, 

which are generally overestimated. The estimates of the standard errors for the latent class sizes, 

on the other hand, do not appear to be heavily affected by using fewer rater pairs or by having a 

lack of balance, as shown in Tables C1 through C4. 

Table C5 shows that, for the condition with 20 rater pairs, the bias of the SEs is generally 

small (i.e., under 10%) for the rater parameters and latent class sizes, except for large values of d. 

In contrast, Table C6 shows that the bias for the SEs of the rater parameters is large in the 

unbalanced condition. As in Tables C1 to C4, Tables C5 and C6 suggest that the SEs of the latent 

class sizes are adequately estimated. 

Overall, the results shown in Appendices B and C suggest that the estimation of d and its 

standard error are good for values of d in the range of 1 to 5; estimation of c tends to be poorer, 

depending in part on the value of d. Tables B1 to B6 show that using an unbalanced design 

increases bias for the rater parameters in both complete and incomplete linkage conditions. 

However, estimates of the latent class sizes and their standard errors do not appear to be heavily 

affected by a lack of balance. With respect to linkage, decreasing the linkage by using 10 or 20 

rater pairs in lieu of 45 led to perhaps a small increase in the bias, but the effect was relatively 

small. The effect of decreasing linkage appears to be primarily on the estimates of the standard 

errors of the rater parameters, which are overestimated; the latent class sizes and their standard 

errors, on the other hand, are reasonably well estimated in all conditions. 

Classification. Table 2 shows results for classification accuracy (proportion correctly 

classified) for the six conditions discussed above. Proportion correct (PC) is the estimated 

proportion of cases that are correctly classified and is obtained from the posterior probabilities (for 

a fit of the model see, e.g., Clogg, 1995); note that PC is available for both simulated and real-

world data (i.e., upon fitting the model, the PC can be estimated). In contrast, this is not the case 

for PCobt, which is only available in a simulation; specifically, PCobt is the obtained (not estimated) 

proportion of cases that were actually correctly classified in the simulation (i.e., PCobt is computed 

by comparing the classifications obtained from the posterior probabilities to the true latent classes; 

of course the true latent class for each case is only known in a simulation). Similarly, PCav is the 

proportion of cases that were correctly classified in the simulation by using the obtained average 
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score (rounded both up and down; the rounding that gave the largest value of PCav is the one that is 

reported). Table 2 also shows two measures of association between the classifications and the true 

latent classes, namely the Pearson correlation r and tau-b, again for both the model-based 

classifications (with subscript obt) and the average scores (with subscript av). 

Table 2 

Estimated and Obtained Proportion Correct and Correlations With True Latent Classes, 

Balanced and Unbalanced Designs, Varying Linkage 

Pairs PC PCobt PCav robt rav τb-obt τb-av  
45 balanced 0.747 0.730 0.661 0.927 0.910 0.874 0.846 
45 unbalanced 0.770 0.765 0.646 0.939 0.903 0.892 0.835 
20 balanced 0.740 0.719 0.668 0.922 0.911 0.868 0.848 
20 unbalanced 0.755 0.735 0.658 0.925 0.902 0.873 0.835 
10 balanced 0.744 0.733 0.654 0.931 0.910 0.880 0.846 
10 unbalanced 0.763 0.767 0.646 0.940 0.904 0.894 0.836 

Note. PC = estimated proportion correct; PCobt = obtained (in the simulation) proportion correct; 

PCav = obtained (in the simulation) proportion correct using the average score; robt and τb-obt are 

the obtained Pearson correlation and tau-b; rav and τb-av are the obtained correlation and tau-b for 

the average scores. 

Several results are apparent in Table 2. First, the estimated proportion correctly classified, 

PC, tends to overestimate the proportion actually correctly classified in the simulation (i.e., PCobt), 

although the overestimation is very small, generally around .02 or less. Overestimation of PCobt by 

PC has been noted earlier (DeCarlo, 2005, 2008a); note that a comparison of the results shown in 

Table 2 with those shown in Table 6 of DeCarlo (2005) shows that the overestimation is larger for 

smaller sample sizes (about 5% for a sample size of 300 and over 20% for a sample size of 100, 

compared to the 2% found here for a sample size of 1,080). 

Second, Table 2 shows that the proportion correctly classified using the average score, 

PCav, is in every case 5% to 10% lower than the proportion correctly classified using the model 

(i.e., PCobt). This shows that there is clearly a benefit to using the model-based classifications 

over the average scores, as found in other studies (DeCarlo, 2008a), assuming of course that the 

SDT model is appropriate. Table 2 also shows that the correlations of the average scores with the 
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true latent classes, rav and τb-av, also tend to be smaller than the correlations for the model-based 

classifications, robt and τb-obt. 

With respect to a lack of balance, Table 2 shows that PCobt is actually slightly larger in 

the unbalanced conditions than in the balanced conditions (perhaps because some of the raters 

score more essays), and so a lack of balance appears to have no detrimental effect on 

classification accuracy. With respect to the classifications obtained by using the average rater 

scores, a lack of balance reduces PCav by only about 1%. 

With respect to linkage, an interesting result shown in Table 2 is that the number of rater 

pairs used (i.e., 45, 20, or 10) appears to have little influence on classification accuracy. For 

example, correct classification (PCobt) for the spiral design conditions with only 10 rater pairs is 

as high (.733 and .767 for balanced and unbalanced) as in the BIB conditions with 45 rater pairs 

(.730 and .765). 

Discussion 

These simulations examine parameter recovery and classification in balanced and 

unbalanced designs with varying linkage. The results show that estimation is affected by a lack 

of balance and by having less than full linkage; however, the rater discrimination parameter d is 

generally well recovered, as are the latent class sizes. The largest bias is associated with the 

largest values of d, which tend to be underestimated. Note that underestimation of large values of 

d means that the raters actually are performing better than indicated by the estimate (which is not 

a problem, but it would be a problem if the opposite occurred — if small values of d were 

overestimated, then raters who perform poorly would appear to be better than they really were). 

The results also suggest that a lack of balance has a larger effect on parameter recovery than the 

number of rater pairs used (i.e., the degree of linkage); the effect of linkage on parameter 

estimation was fairly small (in terms of bias). Thus the results show that using a design with less 

than full linkage appears to result in little loss with respect to parameter recovery, with the main 

effect appearing to be larger standard errors. 

The results for classification accuracy are of particular interest. First, the results in Table 

2 show that there is nearly a 10% increase in classification accuracy obtained by using model-

based classifications in lieu of average scores. Of course the increase in PC depends on the 

parameters and design (and on the validity of the SDT model). However, other studies that have 
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used different parameters and designs also have found increases in classification accuracy in the 

range of 5% to 10% when model-based classifications were used in lieu of average scores 

(DeCarlo, 2008a). These results point to the potential advantage of using a model-based 

approach over simply averaging the raters’ scores; the next step is to conduct validity studies 

with real-world data. 

Second, Table 2 shows that a lack of balance has only a small effect on classification 

accuracy, which was reduced by less than 2%. An interesting result shown in Table 2 is that the 

degree of linkage appears to have virtually no effect on classification accuracy. Thus the degree 

of linkage appears to have little effect on either parameter estimation (in terms of bias for d) or 

on classification accuracy. This might occur because, as noted above, designs with less than full 

linkage are less sparse, in the sense that there are fewer possible response patterns; the fact that 

the number of essays for each rater pair is also larger in the spiral design than in a BIB design 

might also affect estimation and classification. 

In sum, the current results suggest that a design with the near-minimum number of rater 

pairs can be used with little loss in estimation or classification; the main loss appears to be an 

increase in the bias of the standard errors. The finding of little or no detrimental effect on 

classification of using a design with near-minimum linkage has important implications, in that it 

suggests one can use a simpler design, such as that used above, in lieu of a BIB design. A 

practical consequence is that, because there are considerably fewer rater pairs in the spiral design 

as compared to the BIB, allocation of the essays to raters is much easier to manage. For example, 

for a situation with 32 raters, as in the real-world data analysis presented below, there are 496 

rater pairs in a BIB design, but only 32 rater pairs in the spiral-like design used here. An 

advantage of having fewer rater pairs to manage is that it is easier to keep the design from getting 

highly unbalanced, whereas this is more difficult to do when there are hundreds of rater pairs to 

manage. As shown here, a lack of balance appears to have a more deleterious effect on 

estimation than using fewer rater pairs. Thus, whereas some large-scale assessments attempt to 

use nearly all (or all) of the possible rater pairs, the results presented here suggest that this may 

not be necessary. 

The next section examines another practical problem that arises in large-scale 

assessments, which is that some assessments include more than one CR item. This raises 
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questions about how to analyze multiple CR items within the framework of latent class signal 

detection theory. 

A Hierarchical Rater Model 

Many tests, such as the SAT, include only one CR item, such as an essay. However, some 

tests include more than one CR item; for example, the GRE has two CR items (essays on issue 

and argument tasks), whereas the PraxisTM Middle School Mathematics test (MSMAT) and 

Reading Across the Curriculum: Elementary (RACE) test (which is also a part of the Praxis 

series) each include three CR items, which are problem-solving exercises. Although one can 

analyze each essay separately, a more comprehensive model considers the multiple essays 

simultaneously. In particular, as discussed above, it is important to recognize the nested structure 

of the data, in that raters are nested within the essays and, when there is more than one essay, 

essays are nested within examinees. This structure is explicitly recognized by a hierarchical rater 

model (HRM), which was introduced by Patz (1996) and is discussed in Patz et al. (2002). Here 

it is shown that the latent class SDT model can easily be used for the first level of the HRM 

(DeCarlo, 2008b), which offers some advantages over the SDT-like model used by Patz et al. 

The model also can easily be fit using MLE or PME, whereas Patz et al. used a (more 

computationally intense) Markov Chain Monte Carlo (MCMC) approach. 

An HRM-SDT Model 

Figure 2 shows a representation of the HRM-SDT model with two essays per examinee. 

The first level of the model, which is simply a latent class SDT model, relates the observed 

scores of the raters (Yj), which are ordinal, to the latent class variables (X #
l), which also are 

ordinal. As discussed above, the observed responses Yj arise from the rater’s perception Ψ and 

their use of response criteria cjk, in that the distance of cjk from the conditional mean of Ψ 

determines the response probability; curved arrows are used in the figure to indicate the 

nonlinear nature of this relation. The arrows from X # to Ψ indicate that the mean of Ψ is shifted 

by dj as the latent category increases by one. In the second level of the model, the ordinal latent 

variables X # serve as indicators of the examinee’s ability (θ) via an item response theory (IRT) 

model (the generalized partial credit model is used here). The arrows from θ to Ψ are curved to 

indicate that the latent class variables X # have a nonlinear relation to an examinees’ ability, via 
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an IRT model, with parameters a and b, for the slope (discrimination) and category steps, 

respectively. 

Ψ1

Y1

Ψ2

Y2

Ψ3

Y3

X#1

C1 C2 C3

d1 d3
d2

Ψ4

Y4

Ψ5

Y5

Ψ6

Y6

X#2

C4 C5 C6

d4 d6
d5

θ
a1,b1 a2,b2

 

Figure 2. A representation of the HRM-SDT model. 

With matrices Y for the response patterns and X# for the latent class variables, and 

writing p(y) for p(Y = y) and p(x#) for p(X# = x#), the model can be written as 

p(y) =  Σx# ∫θ p(x#|θ) p(y|x#,θ) p(θ) dθ, (6) 

where p(y|x#,θ) is the rater component of the model (the first level) and p(x#|θ) is the model for 

the CR items (the second level). As before, an assumption of independence given the latent class 

variables X# is made, 

p(y|x#,θ) = Πjl p(yjl |x#,θ), (7) 

where j indicates the rater and l indicates the essay. An assumption of independence of the l 

latent classes given θ is also made, 

p(x#|θ) =  Πl p(xl 
# |θ). (8) 
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As before, the first level of the model consists of a latent class SDT model, 

p(Yjl ≤ yj | xl
 #) = F(cjkl −djl xl

 #). 

The above is incorporated into the right side of Equation 7 by differencing the cumulative 

probabilities, as shown above. The second level of the model treats the latent classes as ordinal 

indicators of ability using an IRT model. For example, using adjacent categories logits (see 

Agresti, 2002) gives the generalized partial credit (GPC) model (Muraki, 1992), 

log [p(Xl
 # = xl

 # |θ)/p(Xl
 # = xl

 #+1| θ)] = blx# −al θ, (9) 

where Xl
 # are ordinal latent categories for the lth CR item, xl

 # are discrete values that range from 

zero to one minus the number of latent classes, θ is a continuous latent variable (i.e., ability), and 

blx# and al are item step and discrimination parameters, respectively, for item l; note that the 

model is parameterized in a manner similar to that for the SDT model, in that lower categories 

are modeled (whereas in the usual version of the GPC model, higher categories are modeled). 

Starting with Equation 9, one can also write the model in terms of probabilities, as done by 

Muraki (1992) and others. 

There are many possible versions of the HRM-SDT model that can be examined in 

simulations. Examined here is a basic version of the model with two or three constructed 

response items and three indicators per CR item (fully crossed). This version of the model arises 

in practice when the data are pooled across raters (as is commonly done), thereby giving a fully 

crossed design (that ignores rater effects). Also note that, although each essay in large-scale 

assessments is typically scored by two raters, a third rater (an adjudicator) also is used for many 

tests, giving a total of three raters per essay; DeCarlo and Kim (2008) showed that including the 

third score is feasible and provides useful information. The real-world data examined below are 

also of this form. The simulations provide information about parameter recovery for the different 

components of the HRM-SDT model as well as information about the effect of using more CR 

items (three instead of two). 

Methods 

The hierarchical rater model previously has been fit using a fully Bayesian approach and 

the MCMC algorithm (e.g., Patz et al., 2002). The model as presented here, however, can easily 
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be fit using maximum likelihood estimation (or posterior mode estimation), employing any one 

of several widely available software packages. For example, the models were fit here using the 

syntax version of Latent Gold 4.5 (Vermunt & Magidson, 2007). The model can also be fit with 

the freely available software Lem (Vermunt, 1997), though only with MLE and not PME. 

Data 

For the simulation, data for the hierarchical rater model, parameterized as shown above 

(using the GPC for the IRT portion), were generated using SAS macros written by the author. 

Each dataset consisted of 3,000 observations; a total of 100 datasets were generated for each of 

two conditions: an HRM-SDT with two CR items and an HRM-SDT with three CR items. The 

population values of the parameters are shown in Appendix D; the values used were chosen 

because they are typical of those found in other studies. SAS macros were used to strip out and 

summarize the results from the Latent Gold output; further details about the simulations can be 

found in a prior research report (DeCarlo, 2008a). As before, the SAS macro that computed the 

final results checked and corrected for label switching. Note that the problem of label switching 

is more complex for the HRM-SDT model because it can occur both for the latent categorical 

variable X# and for the latent continuous variable θ, and so there are four possibilities that must 

be considered. In particular, when label switching occurs for X#, the sign of d is reversed, c has 

to be corrected by adding K − 1 times d to the obtained estimates of c, and the order of the latent 

class sizes is reversed; this is the same as above for the simple latent class SDT model. In 

addition, for HRM-SDT, label switching can occur for θ and not for X#, in which case the sign of 

a will be reversed, but the order for b will be correct. If label switching occurs for both θ and for 

X#, then the sign of a is correct, but the order of b is reversed. The SAS macro that combined the 

results for the 100 replications checked for these different possibilities and made the appropriate 

corrections to the parameter estimates. 

Some preliminary runs showed that problems with boundary problems occasionally 

occurred, and so PME was used, with Bayes constants of unity for the rater responses and the 

latent classes (as also used in the studies above). Note that the computer time for the situation 

with three CR items was found to be much longer than that for two CR items. The time to 

complete one of the (100) replications is determined by the time it takes to complete each 

iteration (which is slower for Newton-Raphson steps than EM steps), the number of iterations 
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needed for convergence, the number of sets of starting values that are used (10 were used here), 

and the number of nodes used for the continuous variable theta (10 nodes were used here). For 

the situation with two CR items, each replication took about 10 minutes to complete, however, 

for the situation with three CR items, each replication took about 2 hours to complete (and so the 

simulation took several weeks of continuous computer time).  

Results: Two CR Items 

The first section of Table D1 shows the parameter estimates for the signal detection part 

of the model, along with the bias, percent bias, and the mean squared error. With respect to the 

signal detection parameters, recovery of the discrimination parameter d is excellent, with a bias 

of 1.2% or less; the MSE is also small. The bias is also small for the response criteria, with a 

percent bias of under 5%. Overall, recovery of the signal detection parameters is excellent. 

The second section of Table D1 shows results for the IRT part of the model, that is, a 

GPC model that relates the six ordinal latent classes for each CR item to theta. The table shows 

that, for both CR items, the bias for estimates of the discrimination parameters a1 and a2 is fairly 

large, with a percent bias of 22.7% and 15.7%, respectively. The bias for the category step 

estimates blm is also generally large (greater than 10%). Computing the Monte Carlo standard 

error for the a parameters (as the standard deviation across replications divided by the square 

root of the number of replications) gives 95% CIs (confidence intervals) of (1.18, 1.27) and 

(1.24, 1.28), neither of which contain the population values of 1.0 and 1.5, respectively. This 

shows that the 100 replications were enough to detect significant bias. In contrast, a 95% CI for 

the estimate of the first d gives (1.99, 2.01), which contains the population value of 2.0 and 

simply reflects that the bias is very small; the results are similar for the other d parameters. Thus 

there is negligible bias for estimates of the rater parameters but significant bias for the CR item 

parameter estimates. 

It is interesting to note that the population value of a for the first essay (1.0) is 

overestimated (as 1.2), whereas the population value of 1.5 for the second essay is 

underestimated (as 1.3). This suggests that the estimates of a are shrunk towards a mean value, 

which would happen if the a parameters were random, as in multilevel models with random 

slope parameters (Raudenbush & Bryk, 2002). However, the a parameters are fixed, not random, 

in the HRM-SDT model, and so the reason for the shrinkage (if it is in fact occurring) is not 
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known. It is not due to the use of posterior mode estimation, because that smooths the a 

parameters towards zero, and not towards the mean (which can be verified easily with Latent 

Gold by using large values for the Bayes constants). An examination of the correlation matrix of 

the parameter estimates showed that the correlation of the estimates of the a parameters for the 

first and second item was large and negative (around −0.95), which would account for the over- 

and under-estimation noted above for a; note that the correlation was considerably smaller 

(−0.50 or less) for the situation with three CR items (examined next). 

Overall, the simulation suggests that parameters for the SDT part of the HRM model are 

well recovered, particularly the discrimination parameter d; recovery of the parameters for the 

IRT part of the model appears to be poorer. This likely occurs because there are only two 

indicators for the IRT model (i.e., two essays); this is examined in the next section, where an 

additional CR item is added. Also note that a prior simulation of the HRM-SDT with only two 

raters for each CR item (and two CR items; DeCarlo, 2008b) found large bias for both the SDT 

and IRT parts of the model, which suggests that the use of only two indicators, at either level, 

results in poor recovery. 

Results: Three CR Items 

Table D2 shows results for fits of the HRM-SDT model for the simulation with three CR 

items, again with three raters per item. The top section of the table shows that the signal 

detection parameters are again well estimated, with a bias of generally less than 5%. The next 

section of the table shows that, in contrast to the results found for two CR items, the parameters 

of the second-level IRT model are well estimated, with bias under 5%. Thus Table D2 shows that 

the addition of an additional indicator at level two of the model, namely a third CR item, 

markedly improves estimation of the level two parameters, that is, the parameters of the IRT 

model for the CR items. 

Overall, the results suggest that, with at least two CR items, the rater parameters are well 

recovered when there are three scores per essay, and so one can usefully evaluate rater 

performance and classification accuracy. On the other hand, the CR item parameters are well 

recovered primarily when there are at least three CR items per examinee. This means that if one 

wishes to compare different CR items in terms of item characteristics, then one should try to 

have at least three CR items. Another possibility (that potentially eliminates the need for more 
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CR items) is to include multiple-choice items in Level 2 as indicators of theta, which is being 

examined in current research (DeCarlo & Kim, 2009; Kim, 2009). 

ETS Data 

This section applies the HRM-SDT model to the writing section of two ETS datasets. The 

first example is the writing portion of a large-scale language test that includes two writing tasks 

for each examinee, whereas the second example involves a  test with three problem-solving 

exercises. 

Language Test: Data 

The data come from 42,608 examinees. Each essay was scored by two raters, with some 

essays scored by an additional rater, an adjudicator, when the first two scores differed by more 

than one. For the first writing task, 3.9% of the essays had a third (adjudicated) score, whereas 

2.6% of the essays for the second task had a third score. Data for the third scores can be viewed 

as being missing at random (Rubin, 1976), in that the probability that a value is missing is 

determined by an observed variable – the difference between the two observed scores (i.e., the 

value is missing if it is less than 2). The analyses presented here include the third scores; 

DeCarlo and Kim (2008) showed that estimation is good for adjudicated scores, as along as a 

sufficient number are available, as is the case here. Thus there are three scores per essay (one 

with a large percentage of missing values), giving a total of six scores for the two essays. 

The scoring rubric consisted of categories from 0 to 5. Note that a score of 1 to 5 

indicates a judgment of the quality of an essay, whereas a score of 0 indicates that there was no 

essay to be judged (i.e., a blank) or that it was written in the wrong language, and so on, and so 

one can argue for not including essays with scores of zero (e.g., a score of zero for a blank is not 

a judgment of an essay’s quality), which was done here; note that, for the sample used here, only 

124 essays out of 42,732 essays received scores of zero. 

An HRM-SDT model, as described above, was fit. The SDT component of the model, 

which is the first level, used the 1-to-5 essay scores from the three raters as ordinal indicators of 

five latent classes of essay quality for each essay. The IRT component (a GPC model), which is 

the second level of the model, used the 1-to-5 latent classes for the two essays as two ordinal 

indicators of examinee ability. In the analysis presented here, the data are treated as coming from 

a fully crossed design (i.e., the data are pooled across raters), in order to obtain information about 
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the HRM-SDT model as applied to pooled data. The model was fit using Latent Gold 4.5; as in 

the simulations above, posterior mode estimation with Bayes constants of unity for the response 

variable and latent categories was used. 

Results 

With respect to the rater parameters (in this case for the pooled raters), Table 3 shows 

that discrimination is in the range of 3.0 to 3.5, which is good discrimination (for the logistic 

model; for example, for d = 3.5, the odds ratio is 33 to 1; also see the previous research report). 

For the first writing task the estimate of d for the adjudicated score is slightly smaller than that 

obtained for the other two scores, whereas for the second writing task the estimates of d are all 

about the same. The criteria estimates are also similar across the three scores; however, those for 

the third score are to the left of (i.e., smaller than) those for the other two scores for the first 

writing task; this indicates that, for the second writing task, the adjudicated scores tended to be 

slightly more liberal. It is also interesting to note that in all cases the response criteria estimates 

in Table 3 are close to the intersection point locations. For example, for the first score an 

estimate of d of 3.4 means that, if the criteria were located at the intersection points, then they 

would be at 1.7, 5.1, 8.5, and 11.8, and the estimates shown in Table 3 (1.7, 5.4, 9.2, and 12.7) 

are quite close to these values. Thus it appears that, at least for pooled data, the response criteria 

tend to be located close to the intersection points of the underlying logistic distributions, at least 

for the language test examined here (cf. DeCarlo, 2008a). 

With respect to the CR item parameters, discrimination is high (4.19 for the first writing 

task and 2.94 for the second). The item step parameters are fairly similar across the two writing 

tasks. The last section of the table shows estimates of the latent class sizes. The largest latent 

class size is for Category 4, followed by Category 3. It is interesting to note that for both writing 

tasks the latent class sizes are slightly negatively skewed, which is in contrast to the 

approximately normal distribution of latent class sizes found for other tests (see DeCarlo, 

2008a); this might be a characteristic of language tests, but more research on this is needed. 

Mathematics Test: Data 

The second example is for a large-scale mathematics test used in certification. The test 

includes three CR items, which are problem-solving exercises, each of which is scored by two 

raters. The raters score the exercises on a 4-point scale, and so a latent class model with four 
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latent classes was used for the first level of the model (the SDT part); the generalized partial 

credit model was again used for the second level of the model (the IRT part). 

Table 3 

Results for HRM-SDT Model, Two Essays, Language Test 

 
Rater parameters 
     First writing task 
          First score      Second score       Third score 
Parameter Estimate   SE  Estimate   SE  Estimate   SE 
      d     3.42  0.04     3.46  0.04     2.94  0.16 
      c1     1.68  0.05     1.75  0.05     1.13  0.26 
      c2     5.38  0.08     5.41  0.08     4.25  0.31 
      c3     9.22  0.12     9.32  0.12     7.73  0.43 
      c4   12.70  0.14   12.83  0.14   10.80  0.52 
     Second writing task 
      d     3.28  0.04     3.33  0.04     3.32  0.23 
      c1     0.27  0.08     0.29  0.08     0.18  0.54 
      c2     4.54  0.10     4.59  0.10     4.28  0.45 
      c3     8.94  0.12     9.06  0.13     8.85  0.66 
      c4   12.47  0.15   12.64  0.15   12.45  0.78 
 
 
CR item parameters (generalized partial credit model) 
    First writing task  Second writing task 
Parameter  Estimate   SE  Estimate   SE 
      a      4.19  0.43     2.95  0.16 
      b1    −5.17  0.54   −6.24  0.31 
      b2    −2.84  0.26   −3.66  0.18 
      b3      0.37  0.06   −0.40  0.05 
      b4      4.21  0.41     3.03  0.16 
 
Latent class sizes 
    First writing task  Second writing task 
Parameter  Estimate   SE  Estimate   SE 
      p1       .12  < .01      .03  < .01 
      p2       .15  < .01      .11  < .01 
      p3       .27  < .01      .32  < .01 
      p4       .29  < .01      .37  < .01 
      p5       .17  < .01      .18  < .01 
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Results 

Table 4 shows results for a fit of the HRM-SDT model. A notable difference, compared 

to the results found above, is that the estimates of the discrimination parameters d are quite large, 

in the range of 8-13 across the three problems. This indicates excellent discrimination; it 

suggests that the mathematics problems can be classified into the scoring categories more 

accurately than the writing samples examined above (and for other writing tests, where rater 

parameter estimates in the range of 2 to 5 have been found). This has not been noted before; 

comparisons of discrimination across other tests might be informative in future research. 

The middle section of Table 4 shows that the CR item discrimination parameter estimates 

(a) are all around unity. The bottom section of Table 4 shows estimates of the latent class sizes. 

In this case the class sizes are skewed to the left. For example, for the first problem, Class 3 is 

the largest (.44), followed by Class 4 (.37). For the second and third problems Classes 3 and 2, 

respectively, have the largest class sizes. Thus, most examinees receive scores of 3 or 4 for the 

first task, and scores of 2 or 3 for the second and third tasks. The skew might arise because the 

exam was a test of minimal competency; this merits closer attention in future research. It is 

interesting to note that the results in Table 4 suggest that the first problem was more often 

“passed” than the second or third problems, which could reflect a systematic difference in the 

type of problem-solving exercises that were used for the second and third problems, or an order 

effect; again, this merits closer attention in future research. 

It is also interesting to note that the standard errors of the rater parameters are larger in 

Table 4 than in Table 3, which likely reflects that there were only two raters per essay in Table 4, 

whereas there were three raters per essay in Table 3. Similarly, the standard errors of the CR 

item parameters are larger in Table 3 than in Table 4, which reflects that there were only two CR 

items in Table 3, but three CR items in Table 4. Thus if one’s interest is in obtaining accurate 

estimates of either the rater parameters or the CR item parameters, then the results suggest that a 

minimum of three raters or three items should be used (another option is to include multiple 

choice items in Level 2; DeCarlo & Kim, 2009; Kim, 2009). 
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Table 4 

Results for HRM-SDT, Three Problem-Solving Exercises, Mathematics Test 

 
Rater parameters 
       First problem 
          First score      Second score 
Parameter Estimate   SE  Estimate   SE 
      d     8.42  0.71    11.27  1.55 
      c1     3.28  0.48      4.88  1.06 
      c2   15.05  1.42    20.90  3.10 
      c3   24.26  2.13    32.92  4.65 
 
    Second problem 
      d    12.46  1.74    10.74  1.06 
      c1      5.11  1.20      3.93  0.69 
      c2    13.77  1.74    12.21  1.06 
      c3    26.54  3.49    23.19  2.13 
 
     Third problem 
      d    10.28  0.72    12.64  1.50 
      c1      4.53  0.53      4.88  0.82 
      c2    11.64  0.72    14.12  1.51 
      c3    22.07  1.44    27.08  3.01 
 
 
CR item parameters 
       First problem    Second problem      Third problem 
Parameter Estimate   SE  Estimate   SE  Estimate   SE 
      a     1.16  0.09     0.99  0.07      1.12  0.08 
      b1   −3.01  0.18   −3.33  0.13               −2.51  0.11 
      b2   −1.63  0.08   −0.47  0.05    −0.15  0.04 
      b3     0.47  0.06     1.63  0.08      2.22  0.11 
 
Latent class sizes 
        First problem    Second problem       Third problem 
Parameter Estimate   SE  Estimate   SE  Estimate   SE 
      p1      .03  < .01      .03  < .01      .08  < .01 
      p2      .15  < .01      .35  < .01      .44  < .01 
      p3      .44  < .01      .47  < .01      .38  < .01 
      p4      .37  < .01      .16  < .01      .10  < .01 
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In sum, the HRM-SDT model provides information about the performance of the raters, 

about characteristics of the tasks, and about the constructs. For example, the scoring of the 

mathematics test appears to differ from other tests, such as the language test analyzed above, in 

that rater discrimination is quite high, which to my knowledge has not been noted before. The 

high discrimination likely reflects the different nature of the tasks used in the mathematics test, 

in that the CR items were problem-solving tasks, rather than essays from the writing section of a 

test such as the GRE or SAT (or the language test examined here). Note that the finding of high 

values of d for the mathematics test also has implications with respect to classification accuracy, 

in that it should be higher for higher values of d. For example, the estimates of the proportion 

correctly classified, PC, for the mathematics test are .96, .97, and .97, for the first through third 

problems, respectively (with estimates of λ of .93, .95, and .95; see DeCarlo, 2008a, or Dayton, 

1998, for a discussion of lambda). In contrast, for the language test PC is .83 and .83 (with λ of 

.76 and .73) for the two essays, which is still good but is lower than that found for the 

mathematics test (in part because of the lower rater discrimination). Thus, given the high values 

of discrimination, classification accuracy for the mathematics test is quite high, around 97%; 

note that one could use this result to argue for simply using the average rater scores for the 

mathematics test, because classification accuracy will likely still be quite high, given the high 

discrimination.  

Conclusions 

The latent class SDT model offers a useful approach to the analysis of constructed 

response data. The model can easily be incorporated into a more elaborate framework, such as in 

models with higher-order structures, like the HRM-SDT model. The approach provides 

information not only about the performance of the raters and the accuracy of the classifications, 

but also about characteristics of the CR items and aspects of the underlying constructs. Both the 

basic SDT and higher-order model, and variations, can also easily be fit using widely available 

software for latent class analysis or structural equation modeling, which should help to 

encourage applied researchers to use the models. 
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Appendix A 

Balanced and Unbalanced Designs Used in the Simulations 

Table A1 

Balanced Design, 45 Rater Pairs, 24 per Pair    

   Rater 
      1     2     3     4     5     6     7     8     9   10 Total 
 
    24   24          
    24    24         
    24     24        
    24      24       
    24       24      
    24        24     
    24         24    
    24          24   
    24           24  
     24   24         
     24    24        
     24     24       
     24      24      
     24       24     
     24        24    
     24         24   
     24          24  
      24   24        
      24    24       
      24     24      
      24      24     
      24       24    
      24        24   
      24         24  
       24   24       
       24    24      
       24     24     
       24      24    
       24       24   
       24        24  
        24   24      
        24    24     
        24     24    
        24      24   
        24       24  
         24   24     
         24    24    
         24     24   
         24      24  
          24   24    
          24    24   
          24     24  
           24   24   
           24    24  
            24   24  
            1080 
 
Total/Rater 216 216 216 216 216 216 216 216 216 216 
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Table A2 

Unbalanced Design, 45 Rater Pairs 
   Rater 

      1     2     3     4     5     6     7     8     9   10 Total 
 
      5     5          
    15    15         
    20     20        
      5        5       
    20       20      
      5          5     
  100       100    
    15          15   
  185         185  
       5     5         
       5      5        
       5       5       
       5        5      
       5         5     
     10        10    
       5           5   
       5            5  
      20   20        
        5      5       
      20     20      
      25      25     
      40       40    
      40        40   
      30         30  
         5     5       
       10    10      
       30     30     
       15      15    
       20       20   
       15        15  
          5     5      
          5      5     
        20     20    
          5        5   
          5         5  
         10   10     
         30    30    
         10     10   
         10      10  
        105 105    
          90    90   
            5       5  
           35   35   
           45    45  
            10   10  
            1080 
Total/Rater 370   50 200 140   60 120 280 400 230 310 
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Table A3 

Balanced Design, 10 Rater Pairs, 108 per Pair 
 
          Rater 
      2     5     6     4     3     9   10     1     8     7 Total 
 
  108 108 
   108 108 
    108 108 
     108 108 
      108 108 
       108 108 
        108 108 
         108 108 
          108 108 
  108         108 
            1080 
Total/Rater 216 216 216 216 216 216 216 216 216 216 

Table A4 

Unbalanced Design, 10 Rater Pairs 
 
          Rater 
      2     5     6     4     3     9     10     1     8     7 Total 
 
    20   20 
     40   40 
      80   80 
       60   60 
      140 140 
         90   90 
        220 220 
         150 150 
          250 250 
    30           30 
            1080 
Total/Rater   50   60 120 140 200 230 310 370 400 280 
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Table A5 

Balanced Design, 20 Rater Pairs, 54 per Pair 
          Rater 
      1     2     3     4     5     6     7     8     9   10 Total 
 
    54   54           
     54   54          
      54   54         
       54   54        
        54   54       
         54   54      
          54   54     
           54   54    
            54   54   
    54           54   
    54    54          
     54    54         
      54    54        
       54    54       
        54    54      
         54    54     
          54    54    
           54    54   
    54          54    
     54          54   
            1080  
Total/Rater 216 216 216 216 216 216 216 216 216 216 
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Table A6 

Unbalanced Design, 20 Rater Pairs 
          Rater 
      1     2     3     4     5     6     7     8     9   10 Total 
    35   35           
       5     5          
      50   50         
       15   15        
          5     5       
         40   40      
        185 185     
           35   35    
            35   35   
    95           95   
  120  120          
       5      5         
      25    25        
       70    70       
        15    15      
           5      5     
            40      40    
         175  175   
  120        120    
       5            5   
            1080  
Total/Rater 370   50 200 140   60 120 280 400 230 310 
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Appendix B 

Parameter Estimates, Bias, Percent Bias, and MSE 

Table B1 

BIB Design, Normal d, N = 1,080, 45 Rater Pairs, 24 per Pair 

Size Parameter Value Estimate Bias %Bias MSE 

Rater parameters 
       

216 d1   1.0   0.954 −0.0462   −4.620   0.023 

216 d2   2.0   1.928 −0.0719   −3.595   0.061 

216 d3   2.0   1.928 −0.0722   −3.610   0.081 

216 d4   3.0   2.971 −0.0290   −0.967   0.252 

216 d5   3.0   2.908 −0.0916   −3.053   0.222 

216 d6   3.0   2.941 −0.0591   −1.970   0.194 

216 d7   3.0   2.969 −0.0310   −1.030   0.167 

216 d8   4.0   3.844 −0.1560   −3.900   0.370 

216 d9   4.0   3.828 −0.1719   −4.298   0.402 

216  d10   5.0   4.553 −0.4475   −8.950   0.575 

  c11   0.5   0.362 −0.1384 −27.680   0.143 

  c12   1.5   1.372 −0.1277   −8.513   0.166 

  c13   2.5   2.391 −0.1094   −4.376   0.193 

  c14   3.5   3.398 −0.1024   −2.926   0.239 

  c15   4.5   4.399 −0.1010   −2.244   0.326 

  c21   1.0   0.728 −0.2723 −27.230   0.217 

  c22   3.0   2.788 −0.2124   −7.080   0.332 

  c23   5.0   4.785 −0.2149   −4.298   0.429 

  c24   7.0   6.808 −0.1917   −2.739   0.671 

  c25   9.0   8.918 −0.0825   −0.917   0.982 

  c31   1.0   0.763 −0.2370 −23.700   0.268 

  c32   3.0   2.817 −0.1827   −6.090   0.373 

  c33   5.0   4.822 −0.1778   −3.556   0.591 

  c34   7.0   6.850 −0.1502   −2.146   0.854 
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Size Parameter Value Estimate Bias %Bias MSE 

  c35   9.0   8.894 −0.1065   −1.183   1.326 

  c41   1.5   1.149 −0.3506 −23.373   0.562 

  c42   4.5   4.284 −0.2160   −4.800   0.992 

  c43   7.5   7.426 −0.0742   −0.989   1.809 

  c44 10.5 10.505   0.0046     0.044   3.185 

  c45 13.5 13.777   0.2768     2.050   5.423 

  c51   1.5   1.033 −0.4671 −31.140   0.521 

  c52   4.5   4.143 −0.3569   −7.931   0.846 

  c53   7.5   7.255 −0.2449   −3.265   1.519 

  c54 10.5 10.293 −0.2073   −1.974   2.429 

  c55  13.5 13.420 −0.0797   −0.590   4.213 

  c61   1.5   1.103 −0.3970 −26.467   0.499 

  c62   4.5   4.304 −0.1962   −4.360   0.641 

  c63   7.5   7.330 −0.1703   −2.271   1.238 

  c64   10.5 10.417 −0.0831   −0.791   2.187 

  c65  13.5 13.539   0.0390     0.289   3.686 

  c71   1.5   1.112 −0.3878 −25.853   0.450 

  c72   4.5   4.308 −0.1923   −4.273   0.672 

  c73   7.5   7.446 −0.0538   −0.717   1.475 

  c74  10.5 10.526   0.0261     0.249   2.128 

  c75   13.5 13.695   0.1954     1.447   3.155 

  c81   2.0   1.285 −0.7152 −35.760   0.993 

  c82   6.0   5.469 −0.5309   −8.848   1.629 

  c83 10.0   9.658 −0.3423   −3.423   2.888 

  c84 14.0 13.643 −0.3568   −2.549   4.633 

  c85 18.0 17.778 −0.2225   −1.236   6.724 

  c91   2.0   1.307 −0.6927 −34.635   0.976 

  c92   6.0   5.486 −0.5143   −8.572   1.529 

  c93 10.0   9.556 −0.4442   −4.442   2.959 
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Size Parameter Value Estimate Bias %Bias MSE 

  c94  14.0 13.591 −0.4089   −2.921   4.748 

  c95   18.0 17.748 −0.2518   −1.399   7.103 

   c101   2.5   1.493 −1.0072 −40.288   1.747 

   c102   7.5   6.438 −1.0620 −14.160   2.583 

   c103  12.5 11.493 −1.0069   −8.055   4.414 

   c104   17.5 16.226 −1.2741   −7.281   6.645 

   c105 22.5 21.266 −1.2341   −5.485   9.175 
             

  

Latent class sizes 
            

 Class 1       0.080   0.101   0.0210   26.250  

 Class 2       0.170   0.160 −0.0100   −5.882  

 Class 3       0.250   0.239 −0.0110   −4.400  

 Class 4       0.250   0.244 −0.0060   −2.400  

 Class 5       0.170   0.157 −0.0130   −7.647  

 Class 6       0.080   0.099   0.0190   23.750  
  

Note. Size is the number of essays scored by each rater. 
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Table B2 

Unbalanced Design, Normal d, N = 1,080, 45 Rater Pairs 

Size Parameter Value Estimate Bias %Bias MSE 

Rater parameters 

370 d1   1.0   0.970 −0.0302   −3.020   0.013 

  50 d2   2.0   1.771 −0.2292 −11.460   0.194 

200 d3   2.0   1.967 −0.0334   −1.670   0.081 

140 d4   3.0   2.903 −0.0974   −3.247   0.266 

  60 d5   3.0   2.542 −0.4576 −15.253   0.449 

120 d6   3.0   2.847 −0.1534   −5.113   0.363 

280 d7   3.0   2.914 −0.0865   −2.883   0.134 

400 d8   4.0   4.208   0.2084     5.210   0.371 

230 d9   4.0   3.828 −0.1719   −4.298   0.391 

310  d10   5.0   4.137 −0.8635 −17.270   1.103 

  c11   0.5   0.385 −0.1153 −23.060   0.064 

  c12   1.5   1.407 −0.0928   −6.187   0.080 

  c13   2.5   2.424 −0.0760   −3.040   0.091 

  c14   3.5   3.448 −0.0525   −1.500   0.107 

  c15   4.5   4.484 −0.0157   −0.349   0.141 

  c21   1.0   0.510 −0.4904 −49.040   0.792 

  c22   3.0   2.564 −0.4358 −14.527   0.787 

  c23   5.0   4.469 −0.5313 −10.626   1.342 

  c24   7.0   6.431 −0.5690   −8.129   1.827 

  c25   9.0   8.467 −0.5328   −5.920   2.885 

  c31   1.0   0.748 −0.2516 −25.160   0.241 

  c32   3.0   2.844 −0.1557   −5.190   0.352 

  c33   5.0   4.933 −0.0667   −1.334   0.597 

  c34   7.0   6.985 −0.0150   −0.214   0.912 

  c35   9.0   9.105   0.1045     1.161   1.410 

  c41   1.5   1.084 −0.4162 −27.747   0.573 
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  c42   4.5   4.187 −0.3126   −6.947   0.849 

  c43   7.5   7.277 −0.2234   −2.979   1.918 

  c44 10.5 10.360 −0.1396   −1.330   3.110 

  c45 13.5 13.341 −0.1587   −1.176   4.412 

  c51   1.5   0.809 −0.6908 −46.053   1.133 

  c52   4.5   3.587 −0.9129 −20.287   1.785 

  c53   7.5   6.464 −1.0357 −13.809   2.839 

  c54 10.5   9.250 −1.2501 −11.906   4.443 

  c55  13.5 11.863 −1.6367 −12.124   7.426 

  c61   1.5   0.945 −0.5554 −37.027   0.776 

  c62   4.5   4.097 −0.4034   −8.964   1.380 

  c63   7.5   7.162 −0.3383   −4.511   2.433 

  c64   10.5 10.131 −0.3693   −3.517   4.131 

  c65  13.5 13.304 −0.1959   −1.451   6.671 

  Parameter Value Estimate Bias %Bias MSE 

  c71   1.5   1.027 −0.4730 −31.533   0.469 

  c72   4.5   4.184 −0.3164   −7.031   0.647 

  c73   7.5   7.293 −0.2072   −2.763   0.878 

  c74  10.5 10.402 −0.0981   −0.934   1.491 

  c75   13.5 13.461 −0.0386   −0.286   2.237 

  c81   2.0   1.407 −0.5927 −29.635   0.766 

  c82   6.0   5.995 −0.0051   −0.085   0.970 

  c83 10.0 10.572   0.5717     5.717   2.702 

  c84 14.0 15.047   1.0466     7.476   5.501 

  c85 18.0 19.582   1.5821     8.789   9.741 

  c91   2.0   1.342 −0.6577 −32.885   0.888 

  c92   6.0   5.515 −0.4850   −8.083   1.362 

  c93 10.0   9.620 −0.3805   −3.805   2.637 

  c94  14.0 13.782 −0.2181   −1.558   4.827 

  c95   18.0 17.828 −0.1723   −0.957   7.126 

   c101   2.5   1.240 −1.2604 −50.416   2.021 
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   c102   7.5   5.803 −1.6968 −22.624   3.913 

   c103  12.5 10.344 −2.1562 −17.250   6.891 

   c104   17.5 14.833 −2.6666 −15.238 11.576 

   c105 22.5 19.315 −3.1847 −14.154 18.167 

Latent class sizes 

 Class 1       0.080   0.102   0.0220   27.500  

 Class 2       0.170   0.162 −0.0080   −4.706  

 Class 3       0.250   0.235 −0.0150   −6.000  

 Class 4       0.250   0.234 −0.0160   −6.400  

 Class 5       0.170   0.165 −0.0050   −2.941  

 Class 6       0.080   0.101   0.0210   26.250  
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Table B3 

Balanced Design, Normal d, N = 1,080, 10 Rater Pairs, 108 per Pair 
            

            

Size Parameter Value Estimate Bias %Bias MSE 
       

       

Rater parameters 
       

216 d1   1.0   0.993 −0.0072   −0.720   0.019 

216 d2   2.0   1.932 −0.0685   −3.425   0.077 

216 d3   2.0   1.882 −0.1177   −5.885   0.058 

216 d4   3.0   2.786 −0.2140   −7.133   0.220 

216 d5   3.0   2.758 −0.2422   −8.073   0.215 

216 d6   3.0   2.991 −0.0090   −0.300   0.167 

216 d7   3.0   3.095   0.0954     3.180   0.193 

216 d8   4.0   3.195 −0.8052 −20.130   0.851 

216 d9   4.0   4.203   0.2034     5.085   0.249 

216  d10   5.0   4.210 −0.7904 −15.808   0.890 

  c11   0.5   0.405 −0.0952 −19.040   0.089 

  c12   1.5   1.453 −0.0466   −3.107   0.101 

  c13   2.5   2.460 −0.0405   −1.620   0.139 

  c14   3.5   3.488 −0.0125   −0.357   0.217 

  c15   4.5   4.528   0.0280     0.622   0.231 

  c21   1.0   0.783 −0.2170 −21.700   0.219 

  c22   3.0   2.845 −0.1554   −5.180   0.385 

  c23   5.0   4.858 −0.1419   −2.838   0.595 

  c24   7.0   6.937 −0.0633   −0.904   0.873 

  c25   9.0   8.960 −0.0405   −0.450   1.227 

  c31   1.0   0.692 −0.3085 −30.850   0.217 

  c32   3.0   2.723 −0.2774   −9.247   0.274 

  c33   5.0   4.750 −0.2504   −5.008   0.385 

  c34   7.0   6.749 −0.2508   −3.583   0.546 
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Size Parameter Value Estimate Bias %Bias MSE 
       

       

  c35   9.0   8.775 −0.2251   −2.501   0.808 

  c41   1.5   0.978 −0.5223 −34.820   0.656 

  c42   4.5   3.970 −0.5300 −11.778   0.934 

  c43   7.5   6.969 −0.5310   −7.080   1.639 

  c44 10.5   9.962 −0.5378   −5.122   2.377 

  c45 13.5 12.947 −0.5526   −4.093   3.487 

  c51   1.5   1.001 −0.4992 −33.280   0.602 

  c52   4.5   3.904 −0.5965 −13.256   1.048 

  c53   7.5   6.970 −0.5303   −7.071   1.405 

  c54 10.5   9.926 −0.5736   −5.463   2.239 

  c55  13.5 12.917 −0.5833   −4.321   3.421 

  c61   1.5   1.145 −0.3548 −23.653   0.522 

  c62   4.5   4.328 −0.1720   −3.822   0.670 

  c63   7.5   7.529   0.0289     0.385   1.184 

  c64   10.5 10.637   0.1365     1.300   2.009 

  c65  13.5 13.920   0.4197     3.109   3.626 

  c71   1.5   1.190 −0.3106 −20.707   0.484 

  c72   4.5   4.530   0.0302     0.671   0.752 

  c73   7.5   7.808   0.3075     4.100   1.419 

  c74  10.5 11.053   0.5528     5.265   2.566 

  c75   13.5 14.366   0.8656     6.412   4.403 

  c81   2.0   0.874 −1.1260 −56.300   1.627 

  c82   6.0   4.497 −1.5035 −25.058   3.112 

  c83 10.0   8.018 −1.9816 −19.816   5.520 

  c84 14.0 11.539 −2.4606 −17.576   8.459 

  c85 18.0 15.059 −2.9406 −16.337 12.715 

  c91   2.0   1.513 −0.4867 −24.335   0.790 

  c92   6.0   6.099   0.0987     1.645   0.788 
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Size Parameter Value Estimate Bias %Bias MSE 
       

       

  c93 10.0 10.515   0.5153     5.153   1.628 

  c94  14.0 14.915   0.9151     6.536   3.232 

  c95   18.0 19.590   1.5904     8.836   6.603 

   c101   2.5   1.451 −1.0486 −41.944   1.537 

   c102   7.5   5.992 −1.5076 −20.101   3.252 

   c103  12.5 10.590 −1.9099 −15.279   5.647 

   c104   17.5 15.019 −2.4808 −14.176   9.425 

   c105 22.5 19.753 −2.7471 −12.209 13.152 
             

  

Latent class sizes 
            

 Class 1       0.080   0.103   0.0230   28.750  

 Class 2       0.170   0.159 −0.0110   −6.471  

 Class 3       0.250   0.234 −0.0160   −6.400  

 Class 4       0.250   0.241 −0.0090   −3.600  

 Class 5       0.170   0.159 −0.0110   −6.471  

 Class 6       0.080   0.105   0.0250   31.250  
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Table B4 

Unbalanced Design, Normal d, N = 1,080, 10 Rater Pairs 

  Parameter Value Estimate Bias %Bias MSE 

Rater parameters 
       

370 d1   1.0   0.986 −0.0139   −1.390   0.009 

  50 d2   2.0   1.883 −0.1175   −8.780   0.194 

200 d3   2.0   1.960 −0.0404   −2.515   0.070 

140 d4   3.0   2.696 −0.3042 −13.607   0.275 

  60 d5   3.0   2.435 −0.5646 −17.430   0.484 

120 d6   3.0   2.996 −0.0043 −13.790   0.201 

280 d7   3.0   3.410   0.4100     2.167   0.350 

400 d8   4.0   3.249 −0.7510 −19.070   0.693 

230 d9   4.0   4.259   0.2592   11.953   0.291 

310  d10   5.0   4.115 −0.8850 −33.388   1.034 

  c11   0.5   0.447 −0.0533 −14.660   0.060 

  c12   1.5   1.460 −0.0398   −1.313   0.056 

  c13   2.5   2.501   0.0010     1.552   0.069 

  c14   3.5   3.517   0.0167     2.417   0.094 

  c15   4.5   4.533   0.0331     2.660   0.113 

  c21   1.0   0.700 −0.3005 −41.090   0.674 

  c22   3.0   2.721 −0.2791 −14.237   0.866 

  c23   5.0   4.724 −0.2757   −8.862   1.393 

  c24   7.0   6.788 −0.2121   −6.306   2.238 

  c25   9.0   8.904 −0.0959   −4.751   3.150 

  c31   1.0   0.792 −0.2082 −23.450   0.327 

  c32   3.0   2.830 −0.1696   −1.973   0.383 

  c33   5.0   4.917 −0.0833   −2.956   0.573 

  c34   7.0   6.993 −0.0075   −4.414   0.922 

  c35   9.0   9.064   0.0639     5.504   1.326 

  c41   1.5   0.902 −0.5982 −51.147   0.800 
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  Parameter Value Estimate Bias %Bias MSE 

  c42   4.5   3.828 −0.6719 −18.473   1.271 

  c43   7.5   6.749 −0.7513 −14.465   1.885 

  c44 10.5   9.646 −0.8541 −10.626   2.978 

  c45 13.5 12.571 −0.9291   −8.887   4.293 

  c51   1.5   0.788 −0.7119 −60.727   1.198 

  c52   4.5   3.466 −1.0336 −24.851   2.022 

  c53   7.5   6.089 −1.4109 −17.681   3.307 

  c54 10.5   8.849 −1.6511 −15.172   4.928 

  c55  13.5 11.557 −1.9428 −13.393   7.349 

  c61   1.5   1.125 −0.3752 −50.807   0.608 

  c62   4.5   4.256 −0.2439 −19.693   0.993 

  c63   7.5   7.514   0.0135   15.033   1.683 

  c64   10.5 10.716   0.2161   11.291   2.471 

  c65  13.5 13.955   0.4548     9.986   4.016 

  c71   1.5   1.468 −0.0318 −36.427   0.426 

  c72   4.5   5.006   0.5064     3.853   1.039 

  c73   7.5   8.464   0.9640     1.711   2.085 

  c74  10.5 12.052   1.5516     4.038   4.337 

  c75   13.5 15.723   2.2230     6.173   8.508 

  c81   2.0   1.110 −0.8902 −58.085   1.063 

  c82   6.0   4.664 −1.3365 −26.143   2.298 

  c83 10.0   8.134 −1.8665 −18.622   4.402 

  c84 14.0 11.621 −2.3786 −16.774   7.406 

  c85 18.0 15.160 −2.8398 −15.198 10.747 

  c91   2.0   1.606 −0.3945 −50.550   0.771 

  c92   6.0   6.219   0.2185   18.187   1.068 

  c93 10.0 10.683   0.6832   11.929   2.007 

  c94  14.0 15.098   1.0981     9.118   3.965 

  c95   18.0 19.658   1.6576     7.248   6.944 
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  Parameter Value Estimate Bias %Bias MSE 

   c101   2.5   1.387 −1.1130 −65.588   1.681 

   c102   7.5   5.943 −1.5566 −38.940   3.385 

   c103  12.5 10.387 −2.1126 −33.582   6.402 

   c104   17.5 14.805 −2.6952 −30.991 10.584 

   c105 22.5 19.262 −3.2382 −29.630 15.763 
             

  

Latent class sizes 
            

 Class 1       0.080   0.100   0.0200   25.000  

 Class 2       0.170   0.161 −0.0090   −5.294  

 Class 3       0.250   0.238 −0.0120   −4.800  

 Class 4       0.250   0.239 −0.0110   −4.400  

 Class 5       0.170   0.159 −0.0110   −6.471  

 Class 6       0.080   0.102   0.0220   27.500  
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Table B5 

Balanced Design, Normal d, N = 1,080, 20 Rater Pairs, 54 per Pair 
            

            

Size Parameter Value Estimate Bias %Bias MSE 
       

       

Rater parameters 
       

216 d1   1.0   0.969 −0.0312   −3.120   0.019 

216 d2   2.0   1.995 −0.0054   −0.270   0.093 

216 d3   2.0   1.943 −0.0572   −2.860   0.100 

216 d4   3.0   2.728 −0.2720   −9.067   0.254 

216 d5   3.0   2.823 −0.1768   −5.893   0.289 

216 d6   3.0   2.954 −0.0459   −1.530   0.211 

216 d7   3.0   2.914 −0.0858   −2.860   0.160 

216 d8   4.0   4.043   0.0427     1.068   0.313 

216 d9   4.0   3.996 −0.0044   −0.110   0.352 

216  d10   5.0   4.511 −0.4889   −9.778   0.625 

  c11   0.5   0.383 −0.1168 −23.360   0.119 

  c12   1.5   1.427 −0.0728   −4.853   0.101 

  c13   2.5   2.459 −0.0411   −1.644   0.121 

  c14   3.5   3.466 −0.0345   −0.986   0.163 

  c15   4.5   4.463 −0.0375   −0.833   0.215 

  c21   1.0   0.776 −0.2245 −22.450   0.278 

  c22   3.0   2.870 −0.1299   −4.330   0.432 

  c23   5.0   4.966 −0.0344   −0.688   0.589 

  c24   7.0   7.062   0.0624     0.891   1.011 

  c25   9.0   9.211   0.2110     2.344   1.621 

  c31   1.0   0.762 −0.2378 −23.780   0.267 

  c32   3.0   2.794 −0.2060   −6.867   0.452 

  c33   5.0   4.849 −0.1506   −3.012   0.649 

  c34   7.0   6.912 −0.0880   −1.257   1.100 



52 

 

            

            

Size Parameter Value Estimate Bias %Bias MSE 
       

       

  c35   9.0   8.910 −0.0896   −0.996   1.673 

  c41   1.5   0.939 −0.5607 −37.380   0.645 

  c42   4.5   3.895 −0.6048 −13.440   0.975 

  c43   7.5   6.818 −0.6816   −9.088   1.695 

  c44 10.5   9.720 −0.7801   −7.430   2.697 

  c45 13.5 12.652 −0.8477   −6.279   4.485 

  c51   1.5   1.035 −0.4647 −30.980   0.567 

  c52   4.5   4.057 −0.4434   −9.853   0.965 

  c53   7.5   7.048 −0.4517   −6.023   1.964 

  c54 10.5 10.030 −0.4704   −4.480   3.356 

  c55  13.5 13.045 −0.4554   −3.373   4.957 

  c61   1.5   1.124 −0.3759 −25.060   0.400 

  c62   4.5   4.208 −0.2920   −6.489   0.687 

  c63   7.5   7.373 −0.1266   −1.688   1.599 

  c64   10.5 10.433 −0.0671   −0.639   2.621 

  c65  13.5 13.615   0.1148     0.850   4.137 

  c71   1.5   1.085 −0.4153 −27.687   0.506 

  c72   4.5   4.155 −0.3451   −7.669   0.630 

  c73   7.5   7.303 −0.1966   −2.621   1.072 

  c74  10.5 10.350 −0.1497   −1.426   1.731 

  c75   13.5 13.537   0.0370     0.274   2.739 

  c81   2.0   1.418 −0.5818 −29.090   0.683 

  c82   6.0   5.728 −0.2718   −4.530   0.984 

  c83 10.0 10.103   0.1030     1.030   1.916 

  c84 14.0 14.423   0.4230     3.021   4.064 

  c85 18.0 18.816   0.8163     4.535   7.243 

  c91   2.0   1.370 −0.6303 −31.513   1.030 

  c92   6.0   5.707 −0.2928   −4.880   1.579 
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Size Parameter Value Estimate Bias %Bias MSE 
       

       

  c93 10.0 10.050   0.0499     0.499   2.716 

  c94  14.0 14.180   0.1798     1.284   4.435 

  c95   18.0 18.556   0.5560     3.089   6.848 

   c101   2.5   1.395 −1.1047 −44.188   1.957 

   c102   7.5   6.401 −1.0988 −14.650   2.676 

   c103  12.5 11.337 −1.1629   −9.303   4.070 

   c104   17.5 16.158 −1.3417   −7.667   6.416 

   c105 22.5 20.990 −1.5104   −6.713   9.830 
             

  

Latent class sizes 
            

 Class 1       0.080   0.101   0.0210   26.250  

 Class 2       0.170   0.161 −0.0090   −5.294  

 Class 3       0.250   0.237 −0.0130   −5.200  

 Class 4       0.250   0.242 −0.0080   −3.200  

 Class 5       0.170   0.159 −0.0110   −6.471  

 Class 6       0.080   0.100   0.0200   25.000  
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Table B6 

Unbalanced Design, Normal d, N = 1,080, 20 Rater Pairs  
            

            

Size Parameter Value Estimate Bias %Bias MSE 
       

       

Rater parameters 
       

370 d1   1.0   0.973 −0.0273   −2.730   0.011 

  50 d2   2.0   1.582 −0.4178 −20.890   0.369 

200 d3   2.0   1.875 −0.1250   −6.250   0.145 

140 d4   3.0   2.935 −0.0651   −2.170   0.252 

  60 d5   3.0   2.546 −0.4541 −15.137   0.464 

120 d6   3.0   2.816 −0.1844   −6.147   0.282 

280 d7   3.0   2.869 −0.1312   −4.373   0.147 

400 d8   4.0   4.282   0.2822     7.055   0.344 

230 d9   4.0   3.754 −0.2459   −6.148   0.423 

310  d10   5.0   4.640 −0.3596   −7.192   0.446 

  c11   0.5   0.423 −0.0774 −15.480   0.072 

  c12   1.5   1.441 −0.0586   −3.907   0.072 

  c13   2.5   2.446 −0.0545   −2.180   0.086 

  c14   3.5   3.455 −0.0449   −1.283   0.120 

  c15   4.5   4.450 −0.0498   −1.107   0.146 

  c21   1.0   0.345 −0.6551 −65.510   1.133 

  c22   3.0   2.152 −0.8478 −28.260   1.611 

  c23   5.0   3.994 −1.0056 −20.112   2.506 

  c24   7.0   5.777 −1.2232 −17.474   3.937 

  c25   9.0   7.533 −1.4671 −16.301   5.552 

  c31   1.0   0.747 −0.2532 −25.320   0.348 

  c32   3.0   2.705 −0.2948   −9.827   0.583 

  c33   5.0   4.715 −0.2849   −5.698   0.999 

  c34   7.0   6.700 −0.3001   −4.287   1.624 
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Size Parameter Value Estimate Bias %Bias MSE 
       

       

  c35   9.0   8.726 −0.2741   −3.046   2.412 

  c41   1.5   1.036 −0.4639 −30.927   0.675 

  c42   4.5   4.083 −0.4166   −9.258   1.072 

  c43   7.5   7.300 −0.1997   −2.663   1.911 

  c44 10.5 10.501   0.0011     0.010   2.994 

  c45 13.5 13.634   0.1340     0.993   5.074 

  c51   1.5   0.821 −0.6795 −45.300   1.236 

  c52   4.5   3.601 −0.8994 −19.987   1.987 

  c53   7.5   6.419 −1.0809 −14.412   3.037 

  c54 10.5   9.148 −1.3523 −12.879   4.943 

  c55  13.5 12.045 −1.4547 −10.776   7.354 

  c61   1.5   0.985 −0.5154 −34.360   0.762 

  c62   4.5   3.987 −0.5132 −11.404   1.243 

  c63   7.5   7.065 −0.4349   −5.799   1.964 

  c64   10.5 10.138 −0.3618   −3.446   3.316 

  c65  13.5 13.014 −0.4856   −3.597   4.985 

  c71   1.5   1.073 −0.4275 −28.500   0.411 

  c72   4.5   4.126 −0.3741   −8.313   0.581 

  c73   7.5   7.201 −0.2994   −3.992   0.882 

  c74  10.5 10.209 −0.2911   −2.772   1.513 

  c75   13.5 13.254 −0.2457   −1.820   2.390 

  c81   2.0   1.624 −0.3764 −18.820   0.513 

  c82   6.0   6.216   0.2163     3.605   0.960 

  c83 10.0 10.714   0.7136     7.136   2.414 

  c84 14.0 15.253   1.2526     8.947   5.108 

  c85 18.0 19.874   1.8735   10.408   9.231 

  c91   2.0   1.372 −0.6277 −31.384   0.800 

  c92   6.0   5.509 −0.4910   −8.184   1.497 
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Size Parameter Value Estimate Bias %Bias MSE 
       

       

  c93 10.0   9.479 −0.5215   −5.215   2.769 

  c94  14.0 13.461 −0.5391   −3.851   4.650 

  c95   18.0 17.447 −0.5534   −3.074   7.740 

   c101   2.5   1.607 −0.8930 −35.722   1.363 

   c102   7.5   6.727 −0.7730 −10.307   1.834 

   c103  12.5 11.564 −0.9365   −7.492   3.177 

   c104   17.5 16.724 −0.7757   −4.432   5.381 

   c105 22.5 21.717 −0.7833   −3.481   7.844 
             

  

Latent class sizes 
            

 Class 1       0.080   0.098   0.0180   22.500  

 Class 2       0.170   0.160 −0.0100   −5.882  

 Class 3       0.250   0.241 −0.0090   −3.600  

 Class 4       0.250   0.234 −0.0160   −6.400  

 Class 5       0.170   0.167 −0.0030   −1.765  

 Class 6       0.080   0.100   0.0200   25.000  
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Appendix C 

Evaluation of the Estimated Standard Errors for d and the Latent Class Sizes 

Table C1 

BIB Design, Normal d, N = 1,080, 45 Rater Pairs, 24 per Pair 
  
    Size    Parameter         SD        Mean SE           Bias        %Bias 
 

216 d1 0.145 0.136 −0.009   −6.071 
216 d2 0.238 0.258   0.020     8.476 
216 d3 0.276 0.256 −0.020   −7.340 
216 d4 0.504 0.469 −0.035   −6.933 
216 d5 0.464 0.453 −0.011   −2.453 
216 d6 0.439 0.460   0.021     4.748 
216 d7 0.410 0.464   0.053   13.018 
216 d8 0.591 0.684   0.094   15.834 
216 d9 0.613 0.678   0.065   10.580 
216 d10 0.615 0.856   0.241   39.150 

 Class Size 1 0.020 0.020   0.000     1.574 
 Class Size 2 0.026 0.026   0.000     0.990 
 Class Size 3 0.027 0.030   0.003     9.971 
 Class Size 4 0.029 0.030   0.001     2.634 
 Class Size 5 0.024 0.026   0.002     6.952 
 Class Size 6 0.017 0.020   0.003   20.627 
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Table C2 

Unbalanced Design, Normal d, N = 1,080, 45 Rater Pairs, 24 per Pair 
 
    Size    Parameter         SD        Mean SE           Bias        %Bias 
 

370 d1 0.110 0.101 −0.009   −8.514 
  50 d2 0.377 0.455   0.078   20.562 
200 d3 0.284 0.258 −0.026   −9.251 
140 d4 0.509 0.544   0.035     6.834 
  60 d5 0.492 0.619   0.127   25.864 
120 d6 0.585 0.558 −0.027   −4.681 
280 d7 0.358 0.379   0.021     5.951 
400 d8 0.575 0.694   0.119   20.699 
230 d9 0.604 0.671   0.067   11.060 
310 d10 0.601 0.816   0.215   35.730 

 Class Size 1 0.019 0.021   0.002   12.903 
 Class Size 2 0.027 0.028   0.001     2.941 
 Class Size 3 0.030 0.032   0.002     8.108 
 Class Size 4 0.030 0.031   0.001     1.974 
 Class Size 5 0.025 0.027   0.002     7.143 
 Class Size 6 0.019 0.020   0.001     5.263 

Table C3 
BIB Design, Normal d, N = 1,080, 10 Rater Pairs, 108 per Pair 
 
    Size    Parameter         SD        Mean SE           Bias        %Bias 
 

216 d1 0.137 0.134 −0.003   −2.047 
216 d2 0.270 0.301   0.031   11.481 
216 d3 0.211 0.250   0.039   18.483 
216 d4 0.420 0.569   0.149   35.573 
216 d5 0.398 0.569   0.171   42.965 
216 d6 0.411 0.631   0.220   53.678 
216 d7 0.431 0.681   0.250   58.035 
216 d8 0.453 0.747   0.294   64.863 
216 d9 0.458 0.855   0.396   86.491 
216 d10 0.518 0.871   0.353   68.213 

 Class Size 1 0.019 0.021   0.002     9.948 
 Class Size 2 0.030 0.027 −0.003 −11.184 
 Class Size 3 0.031 0.031   0.000     0.977 
 Class Size 4 0.033 0.031 −0.002   −6.344 
 Class Size 5 0.028 0.028   0.001     1.818 
 Class Size 6 0.017 0.022   0.005   27.168 



59 

 

Table C4 

Unbalanced Design, Normal d, N = 1,080, 10 Rater Pairs 
 
    Size    Parameter         SD        Mean SE           Bias        %Bias 
 

370 d1 0.097 0.106   0.009     9.731 
50 d2 0.427 0.489   0.062   14.627 

200 d3 0.262 0.268   0.006     2.290 
140 d4 0.429 0.605   0.176   40.894 
60 d5 0.409 0.654   0.245   59.980 

120 d6 0.450 0.731   0.281   62.300 
280 d7 0.429 0.763   0.334   77.951 
400 d8 0.361 0.695   0.334   92.463 
230 d9 0.476 0.902   0.426   89.613 
310 d10 0.504 0.859   0.355   70.484 

 Class Size 1 0.018 0.021   0.003   19.318 
 Class Size 2 0.029 0.028 −0.001   −2.778 
 Class Size 3 0.033 0.031 −0.002   −5.775 
 Class Size 4 0.033 0.031 −0.002   −6.907 
 Class Size 5 0.027 0.028   0.001     2.190 
 Class Size 6 0.017 0.020   0.003   14.943 

 

Table C5 

BIB Design, Normal d, N = 1,080, 20 Rater Pairs, 54 per Pair 
 
    Size    Parameter         SD        Mean SE           Bias        %Bias 
 

216 d1 0.133 0.140   0.007     5.042 
216 d2 0.307 0.311   0.004     1.270 
216 d3 0.313 0.327   0.014     4.473 
216 d4 0.426 0.481   0.055   12.913 
216 d5 0.510 0.486 −0.024   −4.689 
216 d6 0.459 0.462   0.003     0.570 
216 d7 0.392 0.423   0.031     7.779 
216 d8 0.561 0.658   0.097   17.278 
216 d9 0.596 0.700   0.104   17.390 
216 d10 0.624 0.852   0.228   36.447 

 Class Size 1 0.017 0.020   0.003   14.416 
 Class Size 2 0.028 0.026 −0.002   −6.609 
 Class Size 3 0.031 0.030 −0.001   −3.007 
 Class Size 4 0.028 0.030   0.002     7.720 
 Class Size 5 0.024 0.025   0.001     3.263 
 Class Size 6 0.018 0.019   0.001     4.110 
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Table C6 

Unbalanced Design, Normal d, N = 1,080, 20 Rater Pairs 
 

    Size    Parameter         SD        Mean SE           Bias        %Bias 

 

370 d1 0.103 0.111   0.008     7.725 

50 d2 0.444 0.564   0.120   27.122 

200 d3 0.361 0.396   0.035     9.547 

140 d4 0.500 0.694   0.194   38.828 

60 d5 0.510 0.683   0.173   33.843 

120 d6 0.500 0.582   0.082   16.286 

280 d7 0.362 0.369   0.007     2.032 

400 d8 0.516 0.674   0.158   30.576 

230 d9 0.605 0.681   0.076   12.489 

310 d10 0.566 0.818   0.252   44.623 

 Class Size 1 0.017 0.018   0.001     3.926 

 Class Size 2 0.027 0.025 −0.002   −6.472 

 Class Size 3 0.029 0.029   0.000     0.694 

 Class Size 4 0.035 0.029 −0.006 −16.378 

 Class Size 5 0.024 0.025   0.001     2.375 

 Class Size 6 0.017 0.018   0.001     2.975 
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Appendix D 

Evaluation of Parameter Estimates: HRM-SDT Model 

Table D1 

Two CR Items, Three Scores per CR Item, Fully Crossed, N = 3,000 
 

 Parameter Value Estimate Bias %Bias MSE 

 

Signal detection parameters 

d1      2   2.003  0.003  0.150       0.004 

d2     3   3.037  0.037  1.233       0.011 

d3      4   4.015  0.015  0.375       0.028 

d4      2   1.998           −0.002           −0.100       0.003 

d5  3   3.002  0.002  0.067       0.010 

d6    4   3.983           −0.017           −0.425       0.023 

c11     1   1.022  0.022  2.200       0.019 

c12    3   3.016  0.016  0.533       0.020 

c13       5   5.013  0.013  0.260       0.030 

c14      7   7.009  0.009  0.129       0.043 

c15    9   9.008  0.008  0.089       0.063 

c21    1.5   1.562  0.062  4.133       0.046 

c22    4.5   4.573  0.073  1.622       0.057 

c23  7.5   7.596  0.096  1.280       0.085 

c24    10.5   10.630 0.127  1.210       0.140 

c25    13.5   13.650 0.154  1.141       0.200 

c31    2   2.016  0.016  0.800       0.076 

c32  6   6.048  0.048  0.800       0.114 

c33   10   10.036 0.036  0.360       0.193 

c34   14   14.052 0.052  0.371       0.364 

c35   18   18.056 0.056  0.311       0.518 

c41   1   0.978           −0.022           −2.200       0.017 
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c42    3   2.975           −0.025           −0.833       0.020 

c43  5   4.984           −0.016           −0.320       0.025 

c44     7   6.990           −0.010           −0.143       0.033 

c45    9   9.004  0.004  0.044       0.040 

c51    1.5   1.477           −0.023           −1.533       0.037 

c52    4.5   4.483           −0.017           −0.378       0.044 

c53    7.5   7.482           −0.018           −0.240       0.067 

c54      10.5   10.52   0.017  0.162       0.109 

c55    13.5   13.53  0.034  0.252       0.162 

c61    2   1.921           −0.079           −3.950       0.101 

c62    6   5.936           −0.064           −1.067       0.107 

c63    10   9.940           −0.060           −0.600       0.161 

c64      14   13.954         −0.046           −0.329       0.227 

c65    18   17.974         −0.026           −0.144       0.370  

 Parameter Value Estimate Bias %Bias MSE 

 

CR Item parameters 

a1    1 1.227  0.227  22.700       0.105 

a2    1.5 1.265           −0.235           −15.667       0.091 

b11              −2        −2.344           −0.344           −17.200       0.290 

b12              −1        −1.177           −0.177           −17.700       0.071 

b13       0        −0.045           −0.045     —       0.011 

b14        0.5 0.604  0.104  20.800       0.029 

b15     1 1.232  0.232  23.200       0.133 

b21                −3        −2.599           −0.401             −13.367       0.283 

b22              −1.5     −1.326           −0.174           −11.600       0.059 

b23       0 0.006  0.006     —       0.007 

b24     1.5 1.315           −0.185           −12.333       0.067 

b25     3 2.616           −0.384           −12.800       0.243 

 

Note.  %Bias is not defined when the population parameter is zero. 
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Table D2 

Three CR Items, Three Scores per CR Item, Fully Crossed, N = 3,000 

 

 Parameter Value Estimate Bias %Bias MSE 

 

Rater parameters 

d1     2   2.008  0.008  0.400       0.007 

d2      3   3.044  0.044  1.467       0.016 

d3      4   4.02  0.020  0.500       0.029 

d4      2   2.001  0.001  0.050       0.004 

d5      3   3.006  0.006  0.200       0.011 

d6      4   3.987           −0.013           −0.325       0.023 

d7      2   2.001  0.001  0.050       0.003 

d8      3   3.012  0.012  0.400       0.006 

d9      4   4.007  0.007  0.175       0.023 

c11     1   1.031  0.031  3.100       0.123 

c12     3   3.024  0.024  0.800       0.142 

c13     5   5.022  0.022  0.440       0.149 

c14     7   7.018  0.018  0.257       0.163 

c15     9   9.016  0.016  0.178       0.175 

c21     1.5   1.575  0.075  5.000       0.269 

c22     4.5   4.584  0.084  1.867         0.299 

c23     7.5   7.607  0.107  1.427       0.333 

c24     10.5 10.639  0.139  1.324       0.375 

c25     13.5 13.662  0.162  1.200       0.427 

c31     2   2.025  0.024  1.199       0.391 

c32     6   6.050  0.050  0.833       0.423 

c33     10 10.037  0.037  0.370       0.444 

c34     14 14.052  0.052  0.371       0.570 

c35     18 18.049  0.049  0.272       0.695 
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c41     1   0.967           −0.033           −3.300       0.034 

c42     3   2.963           −0.037           −1.233       0.041 

c43     5   4.971           −0.029           −0.580       0.048 

c44     7   6.978           −0.022           −0.314       0.057 

c45     9   8.992           −0.008           −0.089       0.061 

c51     1.5   1.459           −0.041           −2.733       0.069 

c52     4.5   4.463           −0.037           −0.822       0.087 

c53     7.5   7.460           −0.040           −0.533       0.111 

c54     10.5 10.493           −0.007           −0.067       0.151 

c55     13.5 13.510  0.010  0.074       0.204 

c61     2   1.896           −0.104           −5.200       0.161 

c62     6   5.912           −0.088           −1.467         0.189 

c63     10   9.912           −0.088           −0.880       0.258 

c64     14 13.922           −0.078           −0.557       0.327 

c65     18 17.941           −0.059           −0.328       0.458 

c71     1   1.009  0.009  0.900       0.015 

 Parameter Value Estimate Bias %Bias MSE 

 

c72     3   2.995           −0.005           −0.167       0.016 

c73     5   5.002  0.002  0.040       0.023 

c74     7   6.997           −0.003           −0.430       0.032 

c75     9   9.020  0.020  0.222       0.045 

c81     1.5   1.503  0.003  0.200       0.026 

c82     4.5   4.527  0.027  0.600       0.035 

c83     7.5   7.527  0.027  0.360       0.052 

c84     10.5 10.550  0.050  0.476       0.082 

c85     13.5 13.580  0.080  0.593       0.127 

c91     2   2.014  0.014  0.700       0.067 

c92     6   6.018  0.018  0.300       0.118 

c93     10 10.014  0.014  0.140       0.191 

c94     14 14.042  0.042  0.300       0.278 
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c95     18 18.047  0.047  0.261       0.454 

 

 Parameter Value Estimate Bias %Bias MSE 

 

CR Item parameters 

a1      1   1.016  0.016  1.600       0.014 

a2      1.5   1.572  0.072  4.800       0.836 

a3      0.5   0.503  0.003  0.600       0.001 

b11              −2         −2.058           −0.058           −2.900       0.291 

b12              −1         −1.022           −0.022           −2.200       0.053 

b13     0         −0.016           −0.016     —       0.022 

b14     0.5   0.510  0.010  2.080       0.022 

b15     1   1.054  0.054  5.400       0.326 

b21              −3         −3.059           −0.059           −1.967       2.080 

b22              −1.5      −1.525           −0.025           −1.667       0.290 

b23     0   0.003  0.003     —       0.075 

b24     1.5   1.550  0.050  3.333       0.340 

b25     3   3.135  0.135  4.500         2.214 

b31              −1 −0.999  0.001  0.100       0.016 

b32              −0.5 −0.504           −0.004           −0.800       0.008 

b33     0   0.001  0.001     —       0.006 

b34     0.5   0.502  0.002  0.400       0.007 

b35     1   0.996           −0.004           −0.400       0.017 

 

Note.  %Bias is not defined when the population parameter is zero. 




