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Signal detection theory (SDT) has been widely used in
psychology and other fields (Gescheider, 1997; Macmillan
& Creelman, 1991; Swets, 1996). A signal detection model
is basically a model of processes involved when observers
make a decision as to whether or not an event occurred or
which of two or more events occurred, to name just a few
possibilities. An attractive aspect of the theory, from a psy-
chological perspective, is that it separates arbitrary deci-
sion factors (namely, the placement of response criteria on
an underlying dimension) from perceptual or memorial
factors, for example (namely, the ability of an observer to
detect or remember). It has long been recognized that ob-
servers differ in arbitrary ways with respect to their use of
such response categories as very sure versus sure, for ex-
ample, and so the separation in SDT of response criteria
from detection is important.

The equal variance signal detection model can easily be
fit using standard statistical software; sample SPSS and
SAS programs are given in DeCarlo (1998). Up to this point,
however, extensions of the basic SDT model have been
more difficult to fit. For example, the unequal variance ex-
tension of the SDT model is often fit using specialized
software (e.g., ROCKIT; Metz, 1998). The normal SDT
model with unequal variances is equivalent to a model
more generally known in statistics as a probit model with
heteroscedastic error, and so the model can also be fit
using statistical software such as STATA (StataCorp, 2001)
or econometric software such as LIMDEP (Greene, 1998;
for an application in SDT, see DeCarlo, 2002). Researchers
in psychology and education, however, are generally not
familiar with these specialized and somewhat more ad-
vanced software packages. The unequal variance SDT

model can also be fit using software for nonlinear models,
as was noted by DeCarlo (1998), and Sheu and Heathcote
(2001) have recently provided code to fit the unequal vari-
ance normal SDT model using PROC NONLIN of SAS.
This still puts the model beyond the reach, however, of many
researchers who are not familiar with the SAS language.

The recent addition of a procedure in SPSS for the
analysis of ordinal regression models—namely, the PLUM
(polytomous universal model) procedure—enables re-
searchers to fit a variety of signal detection models, includ-
ing the unequal variance model, by simply pointing and
clicking. This is important because applied researchers in
psychology and education, who could greatly benefit from
a signal detection approach, can now perform the analysis
by using software they are already familiar with. Of course,
one still has to understand how the models are parameter-
ized in SPSS. The present article shows how to implement
the analysis and how to interpret the SPSS output. The
basic equal variance normal SDT model is presented first,
followed by the unequal variance extension. The steps
needed to fit the model in SPSS are given, and an appli-
cation to a classic dataset is shown. One can also fit gen-
eralized signal detection models (DeCarlo, 1998) with the
PLUM procedure by using different link functions, as will
be shown below and illustrated with an example. Finally, a
more complex example that involves several covariates
and interaction terms is presented.

SIGNAL DETECTION THEORY
AND ORDINAL REGRESSION MODELS

The Unequal Variance Normal SDT Model
The equal variance normal theory SDT model for rating

or binary responses can be written as

(1)

for k 5 1 to K21, where K is the number of response cat-
egories, Y is a response variable (e.g., a confidence rating)
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that takes on values k 5 1 to K, X is a dummy coded vari-
able (e.g., noise 5 0, signal 5 1), p(Y # k |X ) is the cu-
mulative probability of a response of k or less given X, F
is the cumulative normal distribution function, ck are re-
sponse criteria (distances from the noise distribution) with
the property c1 , c2 , . . ., cK21, d is the distance of the
signal distribution from the noise distribution (for normal
distributions, this is simply d9, but the more general nota-
tion used in DeCarlo, 1998, is used here), and s is the
standard deviation of the underlying distributions, which
can be set to unity without loss of generality.

The basic SDT model shown in Equation 1 is more gen-
erally known as a probit model; the relation of the model
to ordinal regression models used in statistics has previ-
ously been discussed by DeCarlo (1998). The present ar-
ticle focuses on other extensions of the basic model. For
example, the most widely used extension allows the vari-
ances of the underlying distributions to differ across sig-
nal and noise (Green & Swets, 1966), which gives the un-
equal variance normal SDT model,

(2)

where dn is the detection parameter scaled with respect to
the standard deviation of the noise distribution (sn, which
is set to unity), and ss is the standard deviation of the sig-
nal distribution. Equation 2 generalizes the equal variance
normal SDT model with the addition of the parameter 
ss . 0; note that 1/ss gives the ratio of the standard de-
viations of the noise and signal distributions, which cor-
responds to the slope of the receiver operating character-
istic (ROC) curve on inverse normal coordinates. Given
that ss . 0, it is convenient to rewrite the denominator of
the above using the exponential function,

(3)

where exp is the exponential function and a 5 ln ss
(where ln is the natural logarithm). Applying the inverse
normal transform F21 (i.e., a probit transform) to both
sides of the above gives

(4)

which expresses the model in the form used in the PLUM
procedure of SPSS, which is a part of the advanced mod-
els module. The model is more generally known in statis-
tics and econometrics as an ordered probit model with
(multiplicative) heteroscedastic error (see, e.g., Greene,
2000); McCullagh and Nelder (1989) discussed a general
version of Equation 4 based on the logistic distribution
(i.e., a logit model with heteroscedastic error); Tosteson
and Begg (1988) discussed a general version of Equation
4 based on generalized linear models (see below). Note
that Equation 4 can easily be extended to situations in-
volving more than one signal, say M signals, by replacing

dn X by Si dni Xi for i 5 1 to M and exp(aX ) by
exp(Siai Xi ); see Example 3 below. Also, covariates in-
cluded in the denominator do not have to be the same as
those included in the numerator (as in Equation 4); that is,
for the unequal variance SDT model, the same dummy
coded signal indicators are included in the numerator and
the denominator to allow the locations and variances of
the underlying distributions to differ; however different
covariates can also be included in either the numerator or
the denominator, as will be shown below.

With respect to the SPSS output, dn is referred to as a
location parameter and a as a scale parameter; the above
shows that, for the normal model, exponentiating the esti-
mated scale parameter and taking the inverse gives an es-
timate of sn /ss, which is the slope of the inverse normal
ROC curve.

Example 1: Unequal Variance Normal SDT
To illustrate use of the PLUM procedure, the data for

Observer 1 from a light detection study of Swets, Tanner,
and Birdsall (1961) are analyzed; the data have been
widely analyzed and previously used to illustrate the ap-
plication of generalized SDT models (DeCarlo, 1998).
The data, as given by Green and Swets (1966, p. 102), con-
sist of a 2 3 6 table, with the two rows corresponding to
signal or noise presentations and the six columns to the
1–6 rating response. Table 1 shows the data and how they
are set up in the SPSS file. There are three columns of
variables: a dummy coded variable X that indicates
whether noise (0) or signal (1) was presented, a response
variable Y that takes on values from 1 to 6 for the six con-
fidence rating categories, and a variable that indicates the
frequency of each response to each stimulus. Because the
data are in tabular form, a weighted analysis must be per-
formed (to recognize the response frequencies). This can
be done in SPSS by choosing data followed by weight
cases and indicating that the frequency variable is a
weight. In most cases, however, researchers will have data
in the form of individual records, in which case one can
proceed directly to the analysis without weighting cases.

Next, choose analyze, regression, and ordinal. Choose
Y as the dependent variable and enter the signal indicator
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Table 1
Data as Organized for SPSS: Observer 1
From Swets, Tanner, and Birdsall (1961)

X Y Frequency

0 1 174
0 2 172
0 3 104
0 4 92
0 5 41
0 6 8
1 1 46
1 2 57
1 3 66
1 4 101
1 5 154
1 6 173
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X as a covariate. Note that if X is entered as a factor, effect
coding (21 and 1) will be used, in which case the location
parameter is one half of the detection parameter and the
criteria are redefined as the distances from the intersection
point of the two underlying normal distributions (see De-
Carlo, 1998; note that the denominator of Equation 4 is
also affected); the recommendation here is to simply code
the signal indicator as zero/one and enter it as a covariate.
Under options, choose the probit link in order to fit an
SDT model with normal distributions (the other links will
be discussed below). Under output, it is useful to change the
print log-likelihood option to excluding multinomial
constant, because the printed log-likelihood is then the
same as that reported in other articles (e.g., DeCarlo,
1998, 2002). Up to this point, the model being fit is an
equal variance normal SDT model. As a first step, the
reader should fit this model and compare the results with
those given in the first row of Table 2 (discussed below).

To fit the unequal variance normal SDT model, choose
scale and enter the dummy coded signal indicator X as a
main effect. This gives the denominator shown in Equa-
tion 4 above. The resulting syntax is

PLUM
y WITH x
/CRITERIA 5 CIN(95) DELTA(0) LCONVERGE(0)
MXITER(100) MXSTEP(5)
PCONVERGE(1.0E-6) SINGULAR(1.0E-8)
/LINK 5 PROBIT
/PRINT 5 FIT KERNEL PARAMETER SUMMARY
/SCALE 5x 

Note that omitting the last line from the above gives the
equal variance normal SDT model.

Table2 shows likelihood ratio (LR) and Pearson goodness-
of-fit tests reported in the SPSS output in a table labeled
“Goodness-of-Fit” (note that the LR test is referred to as
the deviance in the SPSS output), along with the degrees
of freedom and probability values. Both fit statistics are
asymptotically distributed as a chi-square, but they can
differ in some situations, such as when there are small
counts in many cells of the table (i.e., the table is sparse),

in which case they might not follow the chi-square distri-
bution and should not be trusted (see McCullagh &
Nelder, 1989). The goodness-of-fit statistics test the null
hypothesis that the model fits the data. The first row of
the table shows that, in terms of fit, the equal variance nor-
mal SDT model is rejected by both tests. The second row
of the table shows that the unequal variance normal SDT
model, on the other hand, is not rejected. The third row of
the table and the information criteria (AIC and BIC) will
be discussed in the next section. Overall, Table 2 shows
that the unequal variance normal SDT model adequately
describes the data.

Table 3 shows estimates of the parameters and standard
errors (SEs)for a fit of the unequal variance normal SDT
model. The estimates of ck represent the distances of the
response criteria from the mean of the noise distribution
(which serves as the zero point). Table 3 shows that the
estimate of the detection parameter dn is 1.519 with a stan-
dard error of 0.096; note that Dorfman and Alf (1969) re-
ported an estimate of Dm (which is the same as dn) for this
observer of 1.51. The SPSS output also provides 95% con-
fidence intervals for the parameters, which are computed
by multiplying the estimates of the SEs by 1.96 and adding
and subtracting the result to the point estimates. The con-
fidence intervals are useful for comparing detection
across different groups or conditions.

The estimate of the scale parameter a (ln ss) and its SE
are also shown in Table 3. As was noted above, the esti-
mate of the ratio of the noise to signal standard deviations
is obtained by exponentiating the scale parameter a and
taking the inverse (or simply exponentiating 2a), which
for Observer 1 gives an estimate of exp(20.348) 5 0.71,
which is identical to the value reported by Dorfman and
Alf (1969; the ratio is given by their parameter b). Note
that the output gives an estimate of the SE of the scale pa-
rameter a 5 ln ss, and not an estimate of the SE of 1/ss
(i.e., the SE for the slope of the ROC curve). A Taylor se-
ries expansion can be used to obtain an approximate esti-
mate of the SE of 1/ss; however, it is not really needed, in
that the SE and confidence intervals for a, which are given

Table 2
Goodness-of-Fit Statistics and Information Criteria for

Observer 1 From Swets, Tanner, and Birdsall (1961), N = 1,188

Model LR df p X 2 df p BIC AIC

Equal variance normal 32.972 4 ,.01 33.728 4 ,.01 3,915.94 3,885.46
Unequal variance normal 1.482 3 .69 1.497 3 .68 3,891.53 3,855.97
Equal variance extreme value 5.125 4 .28 5.574 4 .23 3,888.09 3,857.61

Notes—LR, likelihood ratio goodness-of-fit statistic; X 2, Pearson goodness-of-fit statistic; AIC,
Akaike’s information criterion; BIC, Bayesian information criterion.

Table 3
Parameter Estimates (With Standard Errors) for the Unequal Variance Normal SDT Model (Equation 3)

for Observer 1 From Swets, Tanner, and Birdsall (1961)

dn ln ss c1 c2 c3 c4 c5

Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE

1.519 0.096 .348 0.063 20.533 0.054 0.204 0.050 0.710 0.053 1.366 0.067 2.294 0.113
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in the SPSS output, essentially provide the same informa-
tion (with respect to comparing the variances across
groups or conditions, for example).

The SPSS output also provides a table labeled “Model
Fitting Information.” The chi-square statistic shown in this
table provides a test of an intercept-only model (i.e., a
model with response criteria and no other predictors)
against a final model (i.e., the model of interest). For exam-
ple, for a fit of an equal variance SDT model, the chi-square
statistic provides a test of the null hypothesis that the de-
tection parameter is equal to zero. On the other hand, for a
fit of an unequal variance SDT model, the null hypothesis
being tested is that both the detection parameter and the
scale parameter are zero (i.e., zero detection and unit vari-
ance). The most useful aspect of the table is that it shows
estimates of the minus two log likelihood (22LL) for the
final and intercept-only models; the 22LL can be used to
compute information criteria and in tests of nested mod-
els, as will be shown below.

The output also provides a table labeled “Pseudo R-
Square” and reports three measures, labeled as Cox and
Snell (1989), Nagelkerke (1991), and McFadden (1974).
The measures have not been used in SDT research; Agresti
(1990) noted that none of the measures appears to be as
useful as R2 in ordinary regression. For a discussion of
pseudo-R2 measures in the context of categorical data
analysis, see Agresti, Greene (2000), Maddala (1983), or
Menard (2000); note that the different measures arise be-
cause there are different ways to define the variance for
categorical data.

Generalized SDT Models
The above section has shown that the unequal variance

normal SDT model can easily be fit using SPSS. Here, it
is noted that more general SDT models with nonnormal
underlying distributions can also be fit; these have been
referred to as generalized signal detection models, in that
the generalization is accomplished through the use of gen-
eralized linear models (see DeCarlo, 1998, for details and
sample SAS programs). In particular, note that the equal
variance normal model given by Equation 1 can be gener-
alized by using, on the right side, other cumulative distri-
bution functions (CDF) in place of the normal,

where F is a CDF and t is a scale parameter (i.e., the de-
tection and criteria parameters are scaled differently for
different distributions; see DeCarlo, 1998). Applying the
inverse of F to both sides of the above gives the model
written as a generalized linear model,

(5)

where g 5 F21 is known as a link function (McCullagh &
Nelder, 1989). In short, in the context of SDT, using a dif-
ferent link function gives an SDT model based on differ-
ent underlying distributions, in that the inverse of the link
function corresponds to a CDF.

With respect to the PLUM procedure, five different link
functions are offered: probit, logit, complementary log-
log, negative log-log, and cauchit links. Let gk be the cu-
mulative response probability p(Y # k |X). The probit
link, F21(gk), was used above for the normal SDT model.
The logit link, ln[gk /(12gk)], gives an SDT model based
on logistic underlying distributions. The complementary
log-log link, ln[2ln(1 2 gk)], gives a model based on ex-
treme value distributions (the distribution of smallest ex-
tremes, which is skewed to the left); for examples of ap-
plications of this model, see DeCarlo (1998). The negative
log-log link, 2ln[2ln(gk)], also gives a model based on
extreme value distributions; however, it is a distribution
of largest extremes, which is skewed to the right. The cau-
chit link, tan[p(gk 2 0.5)], gives a model based on the
Cauchy distribution, which has heavy tails (and a kurtosis
of infinity; see DeCarlo, 1997). Thus, signal detection
models based on a variety of underlying distributions can
easily be examined.

A somewhat overlooked but useful aspect of the ap-
proach via generalized SDT models is that, through the
use of different link functions, one can examine the ro-
bustness of results (e.g., the estimates of d across differ-
ent conditions) with respect to the form of the underlying
distribution; one can also obtain information about how
the underlying distributions might deviate from normality.
For example, the logit and cauchit links give SDT models
based on distributions with heavier tails than the normal
(with the Cauchy having heavier tails than the logistic),
whereas the complementary log-log and minus log-log
links give SDT models based on distributions that are
negatively and positively skewed, respectively. Thus, one can
easily consider skewed and heavy-tailed underlying dis-
tributions in lieu of the normal distribution via the differ-
ent link functions. The absolute and relative fits of the
models can be assessed by using goodness-of-fit statistics
and information criteria, as will be discussed next.

Example 2: An Extreme Value SDT Model
It has previously been shown (DeCarlo, 1998) that a

model based on the extreme value distribution (of small-
est extremes) also describes the data of Swets et al. (1961)
analyzed above. The analysis is the same as the above, ex-
cept that a complementary log-log link is used in lieu of a
probit link, and an equal variance model is fit (i.e., the
dummy signal variable is removed from the scale option).
Note that the parameter estimates, standard errors, fit sta-
tistics, and minus two log likelihood given in the SPSS
output in this case are the same as those given in Table 1
of DeCarlo (1998; where SAS was used). The third row of
Table 2 shows the results with respect to fit. The goodness-
of-fit statistics show that the equal variance extreme value
SDT model is not rejected.

Table 2 also shows two information criteria, a Bayesian
information criterion (BIC) and Akaike’s information cri-
terion (AIC; see Agresti, 1990; Burnham & Anderson,
1998); the information criteria are useful for comparing
nonnested models. In the context of SDT, models based on
different underlying distributions are not nested, in that
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one model cannot be obtained by restricting parameters of
the other model, and so a likelihood ratio test cannot be
used to compare the models. Information criteria, how-
ever, can be used to compare the models, with smaller val-
ues indicating a better model. (For some examples of
using information criteria to compare the unequal vari-
ance SDT model with mixture SDT models, see DeCarlo,
2002.) Here, it is noted that the information criteria are
easily computed from the SPSS output. Specifically, the
criteria can be computed as follows, using the estimates of
the 22LL given in the SPSS output,

(6)

(7)

where N is the sample size, ln is the natural logarithm, and
# par is the number of parameters.

With respect to the data of Swets et al. (1961), the BIC
in Table 2 is smallest for the equal variance extreme value
SDT model, whereas the AIC is smallest for the unequal
variance normal SDT model. Note that the equal variance
extreme value model has one less parameter than the un-
equal variance normal model, and so, as compared with
the AIC, the BIC in this case favors a model with fewer
parameters (although the differences are small). Dayton
(1998) noted that, because for N $ 8 the “penalty” term
for the number of parameters is larger for BIC than for
AIC (i.e., ln(N) 3 # par for BIC and 2 3 # par for AIC ),
the BIC tends to select models with fewer parameters than
does the AIC, and the present example appears to be a
case in point.

Together, the goodness-of-fit statistics and information
criteria in Table 2 suggest that, for this example, one can-
not really choose between the models solely on the basis
of statistical criteria, in that both models describe the data
and there is no clear-cut evidence for one model over the
other. What is needed are other types of evidence (such as
experimental evidence) for or against the validity of the
model; for an example of this approach in the context of
comparing the unequal variance normal SDT model with
a normal mixture extension of SDT, see DeCarlo (2002).

It is also useful to look at ROC plots of the data along
with fitted ROC curves (for examples, see DeCarlo, 1998,
2002). In SPSS, an ROC plot on probability coordinates
and a nonparametric measure of detection can be obtained
by using the graphs option. In my view, it is more infor-
mative to examine plots on transformed (i.e., linearizing)
coordinates, since it is easier to eye a straight line than a
curve. For the normal SDT model, the plots can be con-
structed by using a probit function to transform the ob-
tained proportions; the function is available in the SPSS
base language. The transforms for logistic or extreme value
SDT models (or Cauchy models), which are shown in De-
Carlo (1998), can also easily be computed.

One can also consider more general SDT models by
using different link functions and allowing the scale fac-
tor in Equation 5 to differ across signal and noise; this
gives a general class of unequal variance SDT models dis-
cussed by Tosteson and Begg (1988). With respect to the

data of Swets et al. (1961), if a scale factor is included in
the extreme value model, then the estimate of a does not
differ significantly from zero, which indicates that the
variance of the underlying extreme value distribution is
the same across signal and noise. General SDT models
with different link functions and unequal variances have
generally not been used in psychology and so remain to be
investigated. It should also be noted that unequal variance
extensions of signal detection models raise some issues,
and other generalizations of equal variance SDT models
have been proposed (DeCarlo, 2000, 2002).

The next section will present a more complex example
that further illustrates how to use the PLUM procedure to
perform signal detection analysis. It is shown, for exam-
ple, that hypotheses about differences across groups of
participants can be tested by including interaction terms in
the location or scale parts of the model. Of course, one has
to pay attention to exactly how the covariates are introduced.
The conceptualization via SDT is useful in this regard in
that each effect has a specific interpretation in terms of
the underlying theory.

Example 3: Inclusion of Additional Covariates
The data are from a pilot study concerned with racial at-

titudes, memory, and perception of symptom severity
(Gushue, 2002). Eighteen participants, who were white
graduate students in a counseling and clinical psychology
program, read a one-page clinical description of a client
named Rob; 10 of the participants were told that the client
was black, and 8 participants were told that the client was
white. After reading the description, the participants were
presented with 24 items and were asked to rate on a 1–6
scale how sure they were that the item had been a part of the
description of the client; the category labels (as coded here)
were 1 5 I am fairly positive that it was not in the para-
graph I read, 2 5 I am fairly sure that it was not ..., 3 5 I
am undecided but I think that it was not ..., 4 5 I am un-
decided but I think that it was ..., 5 5 I am fairly sure that
it was ..., and 6 5 I am fairly positive that it was .... For the
present analysis, categories 1 and 2 and categories 5 and
6 were combined, giving a 1–4 scale. Twelve of the items
were old (i.e., a part of the description of the client), and
12 were new. Of the 12 old items, 4 were considered to be
neutral traits (e.g., “Rob describes himself as energetic”),
and 8 were considered to be black stereotypes (e.g., “Rob
has a brother who is a gang member”). Similarly, for the 12
new items, 4 were neutral, and 8 were black stereotypes.

A basic question of interest in the research was whether
telling the participants that the client was white or black
would affect their memory (i.e., detection) for old stereo-
typed items or would bias their responses in some way.
Because of the small sample size per participant (N 5 24),
pooled data are analyzed here; of course, the analysis can
also be performed on individual data, given a large enough
sample size. The data, as set up in the SPSS file, are
shown in Table 4; note that N 5 431, instead of 18 3 24 5
432, because 1 participant skipped the 24th trial.

A first step is to fit unequal variance SDT models sep-
arately to the data from the two groups of participants (i.e.,

BIC LL n # par,= - + ´2 1 ( )N

AIC LL # par= - + ´2 2
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told that Rob was white or black) and to compare the pa-
rameter estimates across the groups. This can be done by
using split file under the data options and choosing the
dummy coded race variable (X1) as a grouping variable.
For the model considered here, however, the spacing of
the response criteria was restricted to be equal across the
groups, because there was no theoretical reason to sup-
pose that the criteria spacing would be affected by the stated
race of the client (results from a separate group analysis
were also consistent with this). Although the spacing of
the response criteria were restricted to be equal across the
groups, the location of the criteria was allowed to differ
(by a constant) across the groups, which reflects a type of
response bias. This model was compared with a model
with additional restrictions, as will be described below.

To start, note that from the perspective of SDT, there
are four underlying distributions that correspond to the
four classes of items: new–neutral items, new–stereotyped
items, old–neutral items, and old–stereotyped items,
which will be referred to as NN, NS, ON, and OS items,
respectively. Three dummy coded variables—say, X2, X3,
and X4—are used to indicate the NS, ON, and OS items,
respectively, with NN items serving as the reference (and
so the NN distribution has a mean of zero and a variance
of unity, for the probit link). The variables X2, X3, and X4
are included as main effects in both the location and the
scale parts of the model; including them in the location
part allows the NS, ON, and OS distributions to have a dif-
ferent location than does the NN distribution, whereas in-
cluding them in the scale part allows the variances of the
distributions to differ from unity. Let X1 be a variable with
a value of 0 for participants who were told that the client
was white and of 1 for participants who were told that the
client was black. To allow the locations and variances of
the NS, ON, and OS distributions to differ across the groups,
interaction terms with X1 are created—specifically,
X1*X2, X1*X3, and X1*X4—and are included in the loca-
tion and scale parts of the model. Finally, including X1 as
a main effect in the location part of the model allows for
response bias, in that it allows the location of the response
criteria to differ by a constant across the groups, while
maintaining the same spacing.

The model just described can be written as Equation 8
(see bottom of the page), where X is a vector consisting of
the regressors shown on the right side of the equation, b is
the response bias parameter, di are the detection parame-
ters for distributions 2 (NS), 3 (ON), and 4 (OS), Ddi is the
change in the location of distribution i for the participants
who were told that the client was black, ai are scale para-
meters, and Dai is the change in the scale parameter for
distribution i. Note that one could also allow the variance
of NN items to differ across the groups by including X1 in
the denominator, but this was not done because there was

no reason to expect that telling the participants the race of
the client would affect the variance of NN items.

The SPSS syntax for the model is

PLUM
y WITH x1 x2 x3 x4
/CRITERIA 5 CIN(95) DELTA(0) LCONVERGE(0)
MXITER(100) MXSTEP(5)
PCONVERGE(1.0E-6) SINGULAR(1.0E-8)
/LINK 5 PROBIT
/LOCATION 5x1 x2 x3 x4 x1*x2 x1*x3 x1*x4
/PRINT 5 FIT KERNEL PARAMETER SUMMARY
/SCALE 5x2 x3 x4 x1*x2 x1*x3 x1*x4 

The first row of Table 5 shows the results. As a first
step, it is useful to check the df given in the SPSS output.
In this case, the data being analyzed consist of an 8 3 4
frequency table, with the eight rows corresponding to the
four types of items, for each of the two stated races, and
the four columns corresponding to the 1–4 confidence rat-

Table 4
Data as Organized for SPSS: Gushue (2002) Pilot Data

X1 X2 X3 X4 Response Frequency

0 0 0 0 1 16
0 0 0 0 2 10
0 0 0 0 3 5
0 0 0 0 4 5
0 1 0 0 1 43
0 1 0 0 2 12
0 1 0 0 3 8
0 1 0 0 4 9
0 0 1 0 1 4
0 0 1 0 2 6
0 0 1 0 3 7
0 0 1 0 4 19
0 0 0 1 1 3
0 0 0 1 2 7
0 0 0 1 3 5
0 0 0 1 4 56
1 0 0 0 1 24
1 0 0 0 2 6
1 0 0 0 3 3
1 0 0 0 4 3
1 1 0 0 1 50
1 1 0 0 2 10
1 1 0 0 3 2
1 1 0 0 4 10
1 0 1 0 1 9
1 0 1 0 2 5
1 0 1 0 3 4
1 0 1 0 4 18
1 0 0 1 1 7
1 0 0 1 2 5
1 0 0 1 3 1
1 0 0 1 4 59

Notes—X1 = 1 for participants who were told that the client was black
(and 0 for white), X2 = 1 indicates a new–stereotyped item, X3 = 1 indi-
cates an old–neutral item, and X4 = 1 indicates an old–stereotyped item.

F D D D
D D D

- £( )[ ] = - - - - - - -
+ + + + +( )

1 1 2 2 3 3 4 4 2 1 2 3 1 3 4 1 4

2 2 3 3 4 4 2 1 2 3 1 3 4 1 4

p Y k
c bX d X d X d X d X X d X X d X X

a X a X a X a X X a X X a X X
kX

exp
, (8)
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ing response. For each row, only three of the four fre-
quencies are free to vary, because the row totals are fixed
by design (i.e., fixed by the number of presentations of each
type of item for each group), and so the fourth frequency
is not free. Thus, there are 8 3 3 5 24 observations. With
respect to the number of parameters, there are three re-
sponse criteria and 13 additional parameters in the full
model, as is shown by Equation 8, giving a total of 16 pa-
rameters. Thus, the df are 24 2 16 5 8, as is shown in the
first row of Table 5. The LR and chi-square goodness-of-
fit statistics in the first row of Table 5 show that the model
describes the data, in that neither statistic is significant.

The second row of Table 5 shows results for a model
where detection and the variance were restricted to be
equal across the groups for NN, NS, and ON items,
whereas detection and the variance for OS items were al-
lowed to differ across the groups. Thus, the restricted
model sets Dd2 5 Dd3 5 Da2 5 Da3 5 0. This model is
nested within the first model considered above, and the
difference in the 22LL across the models provides a like-
lihood ratio test of the restricted model. The second row
of Table 5 shows that the difference is 3.90, which with
12 2 8 5 4 df gives p 5 .42, and so the restricted model
is not rejected.

Table 6 shows the parameter estimates, standard errors,
p values, and 95% confidence intervals for a fit of the re-
stricted model. As was noted above, a basic question of
interest was whether telling the participants that the client
was white or black would affect their memory for OS
items or bias their responses in some way. With respect to
response bias, the first row of Table 6 shows that the esti-
mate of the response bias parameter b is 20.37, which is
significantly different than zero at the .05 level. A nega-
tive value of b indicates that the response criteria for the
participants who were told that the client was black were
to the right (by 0.37) of the criteria for those who were told
that the client was white, with the spacing equal across the
groups (i.e., the distributions are shifted to the left, or
equivalently, the criteria are shifted to the right by a con-
stant). Thus, the results suggest that being told that the
client was black led to response bias, in that the partici-
pants who were told that the client was black were more
conservative with respect to reporting that they had seen
an item earlier, as compared with the participants who
were told that the client was white.

With respect to possible differences in memory for OS
items across the groups, the estimates of Dd4 and Da4 are
relevant. Table 6 shows that the estimate of Dd4 is quite
large (2.05), which indicates better memory for OS items

for the participants who were told that the client was
black, but the SE (and 95% CI) is quite large and the esti-
mate is not significantly different from zero; this is also
the case for Da4. Thus, the pilot study does not provide ev-
idence for an effect of stated race on memory for OS items
(in terms of a change in either d4 or a4), although the large
values of the point estimates of Dd4 and Da4 suggest that,
perhaps with a larger sample size (and smaller standard
errors), an effect might be found.

Table 6 also shows that the estimate of detection of ON
items was 1.29, whereas the estimate was 2.05 for OS
items. This suggests that OS items might be remembered
better than ON items, but the confidence intervals are
large and overlap, and so the difference is not significant.
It is interesting to note, however, that the point estimates
of the detection parameters suggest that the distributions
are ordered from left to right as NS, NN, ON, and OS,
which is consistent with a result, found in other memory
research, referred to as the mirror effect (see Glanzer &
Adams, 1985). Finally, Table 6 shows that the estimates
of a2 5 ln s2, a3 5 ln s3, and a4 5 ln s4 do not differ sig-
nificantly from zero, which suggests that the underlying
normal distributions have standard deviations of unity. I
leave it to the reader to explore some other SDT models
and parameter restrictions with this data.

CONCLUSION

The availability of general ordinal regression models in
the PLUM procedure of SPSS allows researchers to take
full advantage of the conceptualization and analysis of-
fered by signal detection theory. Ideally, the present arti-
cle will lead to a more widespread use of the models.

Table 6
Parameter Estimates for the Restricted Model:

Gushue (2002) Pilot Data

Parameter Estimate SE p 95% CI

b 20.372* 0.180 .039 20.725,20.018
d2 20.432 0.290 .137 21.001, 0.137
d3 1.289* 0.271 ,.001 0.759, 1.820
d4 2.049* 0.500 ,.001 1.069, 3.028
Dd4 2.117 1.395 .129 20.617, 4.851
a2 0.397 0.232 .087 20.058, 0.852
a3 0.209 0.252 .407 20.286, 0.704
a4 0.223 0.317 .481 20.397, 0.844
Da4 0.880 0.472 .062 20.044, 1.805

Notes—all distances are with respect to new-neutral items; d2 = dis-
tance of new–stereotyped items; d3 = distance of old–neutral items; d4 =
distance of old–stereotyped items; ai is an estimate of ln si for distribu-
tion i. *p , .05.

Table 5
Goodness-of-Fit Statistics for Two Models: Gushue (2002) Pilot Data

Model LR df p X 2 df p 22LL Difference

Equation 8 5.64 8 .69 5.36 8 .72 826.549
Restricted model (see text) 9.54 12 .66 9.33 12 .67 830.450 3.901

Notes—LR, likelihood ratio goodness-of-fit statistic; X 2, Pearson goodness-of-fit statistic; 22LL, minus
two times the estimated log likelihood.
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