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A Parental Values scale, in which students ranked the top 5 of 10 items in terms of how
important they perceived the items as being to their parents, was analyzed using a latent
class ranking model. A model with three latent classes was considered adequate, based
on the Bayesian information criterion and the interpretability of the results. The three
classes were interpreted as consisting of students who perceive their parents as valuing
personal happiness, those who perceive their parents as valuing concern for others, and
those who perceive their parents as valuing academics and attending a good college.
Some evidence as to the validity of the latent classes was obtained by comparing scores
on a Parental Expectations scale; the scores were higher for the academic latent class as
compared to the other two classes. The analysis suggests which items might be useful ina
revised version of the scale.

Adjustment difficulties increasingly documented among relatively afflu-
ent suburban youth have been viewed as stemming partly from high pressures
to achieve. To examine the degree to which youngsters perceive such pres-
sures, a 10-item instrument was developed as part of an ongoing research pro-
gram involving adaptation among suburban youth (Luthar & Becker, 1999;
Luthar & D’ Avanzo, 1999). The instrument was designed to ascertain the de-
gree to which the adolescents viewed their parents as valuing their accom-
plishments (5 items), such as academic achievement, versus personal and so-
cial adaptation (5 items), such as being honest and kind to others.
Adolescents were asked to select and rank the top-5 items that they thought
were most important to their parents. Thus, the data consist of incomplete
rankings in that only 5 of the 10 items were ranked.

The approach via rankings overcomes some difficulties that arise with rat-
ings (e.g., Likert-type scales). For example, in an earlier pilot study (of a scale
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with more items), adolescents were asked to rate each item from 1 to 5, indi-
cating the degree to which they perceived their parents as valuing each item
(with 1 =not, 2 =little, 3 = somewhat, 4 = very, and 5 = extremely). Many indi-
viduals tended to rate all the items highly (e.g., using only 4 or 5), which in
hindsight is not surprising, considering that the values being rated were all
desirable. In this case, requiring the adolescents to rank the items might be
more informative, with the patterns of rankings providing a more detailed
picture of their perceptions. Other advantages of rankings over ratings, such
as allowing one to avoid arbitrary decisions as to the number and labels of
response categories, have been noted by Bockenholt (1996) and Linacre
(1989).

To analyze the Parental Values scale, we use a choice model for ranking
data. The parameters of the model can be interpreted as indicating how the
adolescents perceive their parents as valuing the items. The simple ranking
model is somewhat limited, however, in that it treats the participants as
being a homogeneous group in the sense that the adolescents are all seen as
perceiving their parents’ values in the same way. It seems more likely that
there will be heterogeneity among the participants; indeed, a basic reason for
developing the scale was to detect different latent groups (achievement ver-
sus personal) and, subsequently, to determine if group membership is related
to aspects of students’ psychosocial adjustment. A latent class version of
the ranking model recognizes heterogeneity in that it allows for two or more
subgroups, with adolescents in the same subgroup perceiving their parents
as having the same value structure and adolescents in different subgroups
perceiving their parents as having a different value structure. To obtain evi-
dence as to the validity of the latent classes, we compare, across the classes,
scores on a Parental Expectations scale that was also completed by the
adolescents.

Ranking Models

Descriptive and model-based approaches to ranking data are reviewed by
Marden (1995); Critchlow, Fligner, and Verducci (1991) review many rank-
ing models discussed in psychology; chapters in Fligner and Verducci (1993)
discuss extensions and applications; and Critchlow (1985) discusses partial
rankings. The model used here is referred to as the Plackett-Luce model by
Marden (1995), and the latent class version is discussed by Croon and Luijkx
(1993; also see Croon, 1989). The model accounts for the probability of any
ordering with parameters that can be interpreted as indicating the value ado-
lescents perceive their parents would associate with each item. The model is
based on a simple, psychologically plausible view of the ranking process and
has the advantages of being easy to apply to partial rankings and being readily
extended to include latent classes.
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For the Parental Values scale, participants rank the top 5 of 10 items, so the
data consist of incomplete rankings (i.e., only rankings for the top-5 items are
obtained). The ranks for the remaining items can be viewed as being censored
in that it is only known that they are ranked less than 5. Another way to view
the data is in terms of orderings, in which the ordering indicates which item
was ranked first, which item was ranked second, and so on. If the items are
arbitrarily labeled from 1 to n, and if m out of n of the items are ranked, with m
< n—1 (the rankings are complete if m = n — 1 and incomplete if m <n — 1),
then an ordering of the items can be written as (i, , k, . . . [), where i gives the
number of the item ranked as 1, j the number of the item ranked as 2, with i #,
and so on. For example, if the top 5 out of 10 items are ranked, then (3,9, 1, 6,
4) would indicate that Item 3 is ranked 1, Item 9 is ranked 2, and so on. Note
that the variables are rankings, and the levels of the variables are the item
numbers.

Probability models for the orderings follow from models of the ranking
process. One approach views the ranking process as being sequential. The
basic idea is that the item ranked as 1 is first chosen from the set of n items,
followed by the object ranked as 2, which is chosen from the remaining n — 1
items, followed by the item ranked as 3, which is chosen from the remaining
— 2 items, and so on. This is a simple view of the ranking process that, in our
view, is plausible for early adolescents, whereas some other approaches to
rankings, although potentially useful, seem too cognitively demanding to
expect of early adolescents. For example, another model considered in the
latent class context, the Pendergrass-Bradley (PB) model (see Croon &
Luijkx, 1993), arises from the view that the ranking process consists of all
possible paired comparisons of the items, which would involve 45 paired
comparisons for the 10 items used here (the all-pairwise-comparisons view
of the ranking process is more generally known as the Babington-Smith
model, of which PB is a special case for ranking three out of n [see Marden,
1995]); Croon and Luijkx (1993) noted that, for their example, the PB model
gave results similar to the Bradley-Terry-Luce model (BTL) (Bradley &
Terry, 1952; Luce, 1959).

Given a sequential view of the ranking process and assuming that succes-
sive choices are made independently, the probability of any ordering can be
written as the product of conditional probabilities. For example, if the
top-three choices are ranked, then the probability of the ordering (i, j, k) can
be written as

p(i, j, k) = p(i) pGili) p(klip),

where p(i) is the probability of ranking item i first, with the choice being
made from the set of 7 items; p(jli) is the probability of ranking item j second
given that object i was ranked first, with i # j and the choice being made from
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the remaining n — 1 items; and p(k|i, j) is the probability of ranking item k
third, given i and j (note that p(k|i, j) = p(k|j, i)).

The above probabilities can in turn be written in terms of a choice model,
such as the BTL model noted above. The BTL model assigns a positive num-
ber to each item so that the probability of choosing the ith item out of a set of n
items can be written as

NS exp(a;)
O ela)

where exp is the exponential function and exp(«;) are positive values assigned
to each item, namely, their utilities, and so the model is sometimes referred to
as a strict utility model. For identification purposes, a constraint on the a,,
such as Xa; =0, is necessary. Using the BTL model for the conditional proba-
bilities shown above, and assuming that the parameters are the same across
the stages, the probability of any ordering can then be written in terms of the
model parameters. For example, if the top three out of n items are ranked,
then the probability of any ordering is

exp(ai) exp(aj) exp(ak)

2 Sexp(as) x ZReXP(ar) - ZQCXP(%) ,

where S is the original set of n objects, R is the subset of n — 1 objects remain-
ing after the first choice, and Q is the subset of n — 2 objects remaining after
the first and second choices. As an example, if the top three of five items are
ranked, then the probability of the ordering (3, 5, 1) can be written as

pli.j.k) =

exp(a;)
exp(a, )+ exp(a, ) + exp(as) + exp(ay ) + exp(as)

p(35.1) =

o exp(as)
exp(a,) + exp(a, ) + exp(a, ) + exp(as)

exp(a,) .
exp(a,) + exp(a, ) + exp(ay)

The three terms are for the three independent successive choices, with the
BTL model giving the probability of choosing an item from the current sub-
set, as reflected by the changes in the denominator. The model can be fit using
software for log-linear models that allows one to specify structural zeros,
which are cells of the multiway table that are necessarily empty (see Agresti,
1990); structural zeros arise in ranking models because orderings in which
the same object appears more than once, such as (3, 3, 1), cannot occur.
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Latent class models. The latent class version of the model allows the
parameters (the @;) to differ across the latent classes; Croon and Luijkx (1993)
present, for ranking models, details for the general case; general aspects of
latent class analysis are discussed by McCutcheon (1987) and Dayton
(1998). For the case of ranking three out of n items, the latent class version of
the model can be written as

exp(aic) exp(ajf) exp(akr) (l)

z Sexp(a“) X ZRexp(arf) X zQexp(aqL,) '

where p (i, j, k) is the probability of the ordering (i, j, k) for latent class c,
exp(a,.) is the utility of the ith item ranked first for the cth latent class, exp(a;.)
is the utility of the jth item ranked second for the cth latent class, exp(a,,) is
the utility of the kth item ranked third for the cth latent class, and the usual
sum to zero constraints apply. In the present application, the latent classes
represent homogeneous subgroups of adolescents who perceive their par-
ents’ values in the same way.

With the assumption that the nonempty latent classes are mutually exclu-
sive and exhaustive, the probability of the ordering (i, j, k) is simply the sum
across the C latent classes of p(i, j, k) times the class size,

p.(i.j.k) =

C 2
pl.j k)=, pOpi.j. k), @

c=1

where p(c) is the size of latent class ¢ with Z_p(c) = 1. Using Equation 1 for
p.(i,j, k) in Equation 2 completes the model. The model can be fit using soft-
ware that allows one to specify latent class log-linear models with structural
zeros, such as LEM (Vermunt, 1997). The latent class ranking model is used
here to explore the structure of the adolescents’ responses to the items of the
Parental Values scale.

Method

Participants

Two hundred ninety-five sixth- and seventh-grade students in a suburban
town in the Northeast completed the Parental Values scale. One participant
did not give his or her top-five rankings and was dropped, giving a sample
size of 294.

Participants in this study were of upper socioeconomic status. Median
family income in the town served by this school was $98,459, and 79.7% of
households had at least one parent with a bachelor’s degree (Beuhring,
Saewyc, Stern, & Resnick, 1996). The mean age of the students who partici-
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Table 1
Parameter Estimates for Three-Class Model

Item Class1  Class2  Class 3
1. That you are respectful to others 1.393 1.951 0.277
3. That you are honest 1.756 2.064 0.650
4. That you always try to help others in need 0.037 0.396 -1.362
9. That you are kind to others 0.815 1.080  -0.331

10. That you are generally happy with yourself and your life ~ 5.248 0.671 0.848
2. That you attend a good college -0.663 -0.327 1.130
5. That you make a lot of money in the future -3.720  -1.981 -0.973
6. That you excel academically -0.331 0.018 1.605
7. That you are a leader in school -2.095 -1.187  -1.224
8. That you shine in extracurricular activities —2.441 -2.684  -0.620

Class sizes 436 241 323

Note. Class 1 = happiness; Class 2 = concern for others; Class 3 = academic.

pated (except for 2 students who did not report their age) was 12.23 years
(8D =0.80); 54% were boys and 46% were girls.

The Parental Values scale was administered as part of a larger survey
examining risk and resilience in suburban early adolescents (Luthar &
Becker, 1999). This measure and several other questionnaires assessing
aspects of psychosocial development were administered to students in a
group format over the course of two class periods.

Materials

The Parental Values scale consists of the 10 items shown in Table 1. The
items were developed with the goal of distinguishing between achievement
values and personal values, with achievement values seen as connoting high
emphasis on performance and accomplishments and, thus, a potential risk
factor for the development of emotional difficulties. Five of the items (1, 3, 4,
9, 10) were considered as reflecting personal values, and the other five (2, 5,
6,7, 8) were seen as reflecting performance values.

Statistical Analysis

The software LEM, which is freely available at http://cwis.kub.nl/~fsw_1/
mto/, was used to fit the model. LEM is a general program for categorical data
analysis that can be used to fit many types of models, such as log-linear mod-
els, generalized linear models, latent class models, and LISREL-like models
for categorical dependent variables; for examples of fitting the ranking model
considered here and its latent class extension, see the files Cro89_3a.inp and
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Table 2
Log Likelihood and Information Criteria for the Latent Class Ranking Model

Number of Number of Log

Classes Parameters Likelihood BIC AIC AIC,
1 9 —2459.666 4970.48 4937.33 4937.97
2 19 -2334.718 47717.42 4707.44 4710.21
3 29 -2279.764 4724.35 4617.53 4624.12
4 39 —-2253.263 4728.18 4584.53 4596.81
5 49 —-2241.512 4761.52 4581.02 4601.11

Note. BIC = Bayesian information criterion; AIC = Akaike’s information criterion; AIC, = Akaike’s informa-
tion criterion with small sample correction.

Cro89_3b.inp provided with the LEM examples (for examples discussed by
Croon, 1989). LEM offers several algorithms to obtain maximum likelihood
estimates, one of which is a version of the EM algorithm (see Vermunt, 1997)
that was used here. The model can be specified in terms of the conditional
probabilities shown above, with a multinomial logit model for the condi-
tional probabilities, as in Equation 1.

For the analyses reported herein, the eigenvalues of the information
matrix were all greater than zero for models with from one to four classes,
but, for the five-class model, one or more eigenvalues were close to zero,
which suggests an identification problem. Multiple runs with different start-
ing values were performed; local solutions were sometimes encountered,
particularly for the five-class model. Convergence for models with three or
more latent classes was, in general, quite slow (e.g., up to several hours on a
personal computer running at 450 MHz).

Results

The usual likelihood ratio and chi-square goodness-of-fit statistics are not
useful in this situation because of the sparseness of the data; that is, there are
10x9 x 8 x7x6=30,240 possible orderings, so with 294 observations, there
are many empty and low-frequency cells. Information criteria, however, are
useful for selecting among models with sparse data (Lin & Dayton, 1997;
Sclove, 1987). Table 2 shows, for models with one to five latent classes, the
log likelihoods, the number of parameters, and goodness-of-fit criteria, spe-
cifically, the Bayesian information criteria (BIC) and Akaike’s information
criteria (AIC), both of which are discussed in categorical textbooks, such as
Agresti (1990), as well as a version of the AIC with a small sample bias cor-
rection (AIC,) recommended by Burnham and Anderson (1998; although the
correction was derived for a normal linear model, Burnham and Anderson
provide a reference in which it was useful for a product multinomial model).
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BIC, AIC, and AIC,_ all include a penalty for the number of parameters; they
provide information similar to that given by cross-validation with a single
sample (see Browne & Cudeck, 1989; Burnham & Anderson, 1998; Cudeck &
Browne, 1983; Dayton, 1998). The values reported herein are based on the —2
log likelihoods, with smaller values indicating better fit (BIC=-2log L +p
x log N, where L is the likelihood, p is the number of parameters, and N is the
number of observations; AIC =-2log L + 2p, and for AIC_, 2p is multiplied
by the correction factor N/(N — p — 1)).

Table 2 shows that BIC is smallest for the three-class model, AIC
decreases up to five latent classes, and the sample size corrected AIC, is
smallest for the four-class model. Dayton (1998) noted that BIC tends to
favor less complex models (i.e., fewer parameters) than AIC, and that appears
to be the case here as well (Cudeck & Browne, 1983, made a similar observa-
tion with respect to the performance of AIC and BIC as compared to cross-
validation for the multivariate normal situation). Overall, the information cri-
teria suggest a three- or four-class model. We present parameter estimates for
both the three- and four-class models and focus on the three-class model,
which has a simple interpretation in terms of an academic latent class versus
two similar (personal) latent classes.

Table 1 shows, for the three-class model, the maximum likelihood esti-
mates of the class sizes and the 30 estimated a,, (10 for each of the three latent
classes, with a sum to zero constraint within each latent class). The table
shows that the estimates of the class sizes are .436 for Class 1, .241 for Class 2,
and .323 for Class 3. Figure 1 is a plot of the estimates of the 10 a,, for each
item, separately for each latent class; the abscissa is ordered by the values
obtained for Class 1. The table and figure together show that, for latent
classes 1 and 2, the five personal items were valued highest, followed by the
achievement items. Thus, the two classes behave in a way consistent with the
initially hypothesized personal values class in that students in both classes
tended to rank personal items above performance items. The two latent
classes appear to differ primarily with respect to Item 10, which is concerned
with personal happiness, with students in Class 1 seeing their parents as valu-
ing personal happiness most highly, followed by being honest, respectful of
others, kind to others, helping others, and the five academic items, and stu-
dents in Class 2 considering their parents as valuing being honest first, fol-
lowed by being respectful, kind, happy, helpful, and the five academic items.
The figure also suggests a difference between Classes 1 and 2 with respect to
Item 5, which is concerned with making a lot of money, with those in Class 1
tending to place it as last and those in Class 2 tending to place it as second to
last. Apart from that, Figure 1 shows that the two classes are quite similar.

The pattern for Class 3 differs considerably from that for the other two.
Students in this class see their parents as valuing academic success (Item 6)
and attending a good college (Item 2) most highly and valuing helping others
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Figure 1. Plot of the estimated a;c, separately for each latent class, for the three-class model.
The abscissa is ordered by the values obtained for latent Class 1.

(Item 4) and being kind to others (Item 9) relatively less than the other two
classes (i.e., Items 4 and 9 tend to be ranked lower). Thus, to some extent, this
group corresponds to the academic achievement group initially hypothesized
in that the results suggest a latent class whose parents primarily value aca-
demic success, with concern for others valued less. In sum, Class 3 appears to
be a performance latent class consisting of students who see their parents as
valuing academic achievement highly, and Classes 1 and 2 appear to be per-
sonal latent classes consisting of students whose parents value concern for
others and personal happiness.

The results for the four-class model are also informative. Figure 2 is a plot
of the estimates of the 10 g, for each item and latent class. The plot suggests
two latent classes similar to those found above, namely, an academic class
and a personal class. More specifically, Classes 1 and 2 in Figure 2 suggest a
class of students who see their parents as valuing the five personal items
above the academic items, with the two classes differing with respect to the
happiness item. Classes 3 and 4 in Figure 2 suggest a class of students who
see their parents as valuing academics (Items 2 and 6) over some of the per-
sonal items, with the classes again split with respect to the happiness item.
Thus, as for the three-class model, the scale partly achieves the goal of distin-
guishing between performance and personal latent classes, with the happi-
ness item appearing to be responsible for further splits among these classes.
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Figure 2. Plot of the estimated ajc, separately for each latent class, for the four-class model.

The two- and three-class models were also examined separately for each
gender and grade (i.e., sixth and seventh grade). Some problems were
encountered because of the small sample sizes; for example, the eigenvalues
of the information matrix indicated identification problems for the
three-class model for females (n = 134). Overall, the estimated a; again sug-
gested a pattern of academic versus personal classes across the grades and
genders. Another approach would be to introduce grade and gender as
covariates in the ranking model and compare fits for a heterogeneous model
(different a,. across gender and grade) to partially heterogeneous and com-
pletely homogeneous models, but the sparseness of the present data pre-
cludes these analyses.

Assignment to Latent Classes and Reliability

Given the estimated model parameters, the posterior probabilities of
membership in each of the latent classes can be computed, and each adoles-
cent can be classified into the class with highest probability. A nonparametric
measure of the reliability of the classifications, lambda, can be obtained from
the posterior probabilities. Lambda gives the relative reduction in prediction
error; Clogg (1995) and Clogg and Manning (1996) discuss and illustrate
lambda’s use in latent class analysis; Dayton (1998) notes that there is an
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upward bias for lambda (and the estimated proportion correctly predicted)
because estimation and classification are performed on the same data. For the
latent class ranking model considered here, lambda can be viewed as a mea-
sure of the reliability of the classifications based on the rankings as a set. It is
the following:

P.—maxp(X,)
h=—"———""-5,
1-max p(X,)

where max p(X,) is the largest class size, and P, is the proportion correctly
predicted. Lambda corrects for the fact that one can correctly predict a per-
centage of cases equal to the largest class size simply by assigning all cases to
that class. In the present case, the largest estimated class size is .436. The esti-
mated proportion correctly predicted is .876, computed by multiplying the
observed frequencies for each response pattern by the modal posterior
probabilities (Clogg, 1995, noted that lambda can be computed using either
observed or expected frequencies). The estimate of lambda is (.876 — .436)/
(1 —.436) =.78, so the rankings as a set are 78% reliable.

Validation of the Latent Classes

To obtain evidence as to the validity of the latent classes for the three-class
solution, we examined the scores on a Parental Expectations scale across the
latent classes, with each adolescent classified into a latent class using the
modal posterior probabilities. The Parental Expectations scale consists of
five items from the Multidimensional Perfectionism Scale (Parker & Stumpf,
1995), in particular, (a) My parents set very high standards for me, (b) My
parents want me to be the best at everything, (c) Only outstanding perfor-
mance is good enough in my family, (d) My parents expect excellence from
me, and (e) My parents have higher expectations for my future than I have. It
seems reasonable to expect that adolescents in the academic latent class
should report higher parental expectations as compared to adolescents in the
other two classes.

Table 3 shows the results for an analysis of variance (ANOVA) with the
parental expectation score as the dependent variable and gender, grade, and
latent class assignment (from the posterior probabilities) as factors. Note that
this analysis does not take into account errors in the latent classifications, so
the p values should be interpreted cautiously. The table shows that the mean
parental expectation scores differ across the latent classes and grades (i.e., the
p values are less than .05) but not across gender; the interactions are also not
significant. The effect size measure 1% using guidelines given by Cohen
(1988) (.01 = small effect size, .06 = medium effect size, .14 = large effect
size), indicates a small effect size for grade (n?=.025) and a medium to large
effect size for latent class (n?=.091). The lower portion of Table 3 shows the
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Table 3
Analysis of Variance and Means for Parental Expectations Scores for the Three-Class Model

2

Source df F p Value n
Gender 1 0.22 .637 .001
Grade 1 7.10 .008 .025
Latent class (3) 2 14.09 <.001 .091
Gender x Grade 1 2.06 152 .007
Gender x Latent Class 2 0.06 947 .007
Grade x Latent Class 2 1.06 347 <.001
Grade x Gender X Latent Class 2 1.06 347 .007

Sixth Graders Seventh Graders
M SE M SE
Class 1 12.41 0.40 12.87 0.50
Class 2 13.13 0.62 15.38 1.02
Class 3 15.04 0.62 16.20 0.74

Note. n2 is an effect-size measure; Cohen (1988) suggests .01 = small effect size, .06 = medium effect size, and
.14 = large effect size.

means and standard errors of the parental expectation scores for each latent
class separately for each grade. The means are highest for the academic class
(Class 3) and lowest for the personal happiness class (Class 1), with the other
class in between, and this pattern appears for both sixth and seventh graders.
Within each latent class, the means tend to be higher for the seventh graders
than for the sixth graders. Thus, adolescents in the academic latent class
(Class 3) report the highest parental expectations, whereas adolescents in the
happiness latent class (Class 1) report the lowest, and seventh graders report
higher parental expectations than sixth graders. The results provide evidence
as to the validity of the classifications obtained from the latent class ranking
model, in that parental expectations tend to be reported as being higher by
those in the latent class interpreted as emphasizing academics and
achievement.

Alternative Scoring Procedures

A simple way to use the scale would be to tally the number of personal
items that each student ranked as top five. Table 4 shows a cross-tabulation of
the number of items ranked as top five (with possible values of 0-5) and the
latent classes that adolescents are assigned to based on the modal posterior
probabilities from the latent class analysis. The table shows that those who
chose two or fewer personal items all fall into the academic latent class, those
who chose four or five personal items were largely in one of the two personal
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Table 4
Number of Personal Items Ranked as Top Five Versus Assigned Latent Class for the
Three-Class Model

Number of Personal Items Ranked as Top Five

Class 1 2 3 4 5
1 (happy) 0 0 23 64 54
2 (concern) 0 0 12 35 12
3 (academic) 10 29 53 2 0

classes, and those who chose three items are split among the academic and
personal classes. Thus, a simple tally is to some extent useful for classifying
students. The main limitation of tallying is that it is not clear where to catego-
rize those with a score of three (the latent class model classifies these cases
based on the pattern of rankings).

Discussion

The latent class ranking model used in the present study provides an infor-
mative summary of the rankings and items, suggesting that the scale goes part
way toward identifying a latent class of adolescents whose parents empha-
size achievement and, in particular, academic performance as reflected by
grades and getting into a good college, in contrast to a latent class who view
their parents as valuing concern for others more highly. Adolescents in the
academic latent class also reported higher parental expectations than adoles-
cents in the other classes, and this pattern appeared for both sixth and seventh
graders.

With respect to further development of the scale, the analysis suggests
which items might be useful in a revised version of the instrument. As our pri-
mary interest is in distinguishing the academic latent class from others, the
items concerned with academics and concern for others will be kept, whereas
the happiness and concern for money items, which seemed to be responsible
for further subclasses not of substantive interest, will be dropped.
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