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An approach to essay grading based on signal detection theory (SDT) is presented.
SDT offers a basis for understanding rater behavior with respect to the scoring of
construct responses, in that it provides a theory of psychological processes under-
lying the raters’ behavior. The approach also provides measures of the precision of
the raters and the accuracy of classifications. An application of latent class SDT to
essay grading is detailed, and similarities to and differences from item response the-
ory (IRT) are noted. The validity and utility of classifications obtained from the SDT
model and scores obtained from IRT models are compared. Validity coefficients were
found to be about equal in magnitude across SDT and IRT models. Results from a
simulation study of a 5-class SDT model with eight raters are also presented.

Essays are widely used in performance assessments, such as entrance examina-
tions, placement examinations, and in college courses. The use of essays in assess-
ment necessitates the use of raters to score the essays, which in turn raises issues of
rater training, rater reliability, scoring, and so on. These issues have been discussed
in the various research areas that have been concerned with essay grading, such as
the measurement literature, the writing assessment literature, the language testing
literature, and the medical literature. Unfortunately, there has often not been a con-
sensus with regard to various issues. For example, there have been arguments both
for and against emphasizing agreement in rater training (see Weigle, 1998, and the
references therein). Reliability has also been approached in different ways, such as
through classical test theory, generalizability theory, or via the Rasch model (e.g., see
MacMillan, 2000). Issues with respect to scoring have also been recurrent (Clauser,
2000). In addition, different models have been used to analyze and score essays,
such as the Rasch model (e.g., Congdon & McQueen, 2000; Engelhard, 1994, 1996;
Linacre, 1989; Weigle, 1998), the generalized partial credit model, the graded re-
sponse model, multilevel or Bayesian extensions of these models (e.g., Donoghue
& Hombo, 2000; Johnson, 1996; Johnson & Albert, 1999; Patz, Junker, Johnson, &
Mariano, 2002; Verhelst & Verstralen, 2001), or models based on generalizability
theory (e.g., Longford, 1994, 1995).

With respect to addressing issues related to the use of raters in performance assess-
ment, it would be of great help if we had an understanding of what raters actually do
when rating essays. Currently used approaches, such as item response theory (IRT) or
generalizability theory, are essentially silent on this point. For example, Hambleton,
Swaminathan, and Rogers (1991) noted that “Much of the IRT research to date has
emphasized the use of mathematical models that provide little in the way of psycho-
logical interpretations of examinee item and test performance” (p. 154). Similarly,
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Goldstein and Wood (1989) noted, with respect to IRT, “But what sort of theory
is it? As the title of Lord and Novick’s (1968) book made clear, the theory is sta-
tistical, not psychological” (p. 139). Nevertheless, the importance of understanding
psychological processes involved in performance assessment has been widely recog-
nized. For example, in the psychometrics literature, van der Linden and Hambleton
(1997) noted that there is an increased interest among IRT researchers in models
of cognitive processes and, with respect to measurement models, “If, in addition,
such models also have a spin off to psychological theory, so much the better. They
may help to better integrate measurement and substantive research—areas that to
date have lived too apart from each other” (p. 22). In the language testing literature,
Cumming (1990) noted that “Direct validation of the judgement processes used in
these assessment methods has not been possible because there is insufficient knowl-
edge about the decision making or criteria which raters or teachers actually use to
perform such evaluations” (p. 32). In the writing assessment literature, Barritt, Stock,
and Clark (1986) simply asked “What do we, as teachers who read to evaluate, do
when we judge student essays holistically?” (p. 316).

The purpose of this article is to show that signal detection theory (SDT), which has
been widely and successfully used in psychology and medicine (e.g., see Gescheider,
1997; Green & Swets, 1988; Macmillan & Creelman, 1991; Swets, 1996), provides
a psychological theory about what raters do when they score essays. In particular,
a latent class extension of the standard SDT model is applied to essay grading; the
model and examples of applications to psychological studies and medical diagnosis
have been given in DeCarlo (2002a), where the relevance of the approach to essay
grading was also noted, as were implications for rater training. Here it is shown
that, in addition to providing a model of psychological processes involved in essay
grading, SDT also provides answers or at least guidance with respect to some of the
issues noted above. The approach is illustrated with a set of real-world data: essays
obtained as part of a final exam in a college course. The latent class SDT model is
compared and contrasted to IRT models that are commonly used to score essays.
Different approaches to classifying and scoring are compared, and evidence as to the
validity of the resulting classifications and scores is obtained.

It should be noted that the present approach differs somewhat from those currently
in use with respect to the conceptualization of the construct being assessed. In par-
ticular, the view here is that many of the constructs considered in psychology and
education can usefully be thought of as consisting of ordered categories, in that they
are not formulated precisely enough or richly enough to be considered as quantita-
tive. Although constructs are usually treated in psychometrics as being continuous
and quantitative, this is nevertheless an assumption. In applications of IRT models or
structural equation models, for example, it is not shown that the construct is quantita-
tive, it is assumed. Michell (1997) has criticized psychometrics (and psychology) for
just this, that is, for assuming that constructs are continuous and quantitative without
presenting evidence for this assumption. In addition, it has long been recognized that
there can be difficulties in distinguishing between latent class and latent trait models.
For example, Bartholomew and Knott (1999) noted that, for a widely analyzed set of
data that consisted of items from the Law School Admissions Test, the fits (and pa-
rameter estimates) for a latent trait model with a normally distributed latent trait and
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a latent class model with two classes were similar; they also gave an example where
the covariance structure for a structural equation model was identical to that for a
model where all the latent variables were categorical. Similarly, Molenaar and von
Eye (1994) showed that it is not possible to distinguish (in terms of the covariance
structure) between a latent profile model (with t classes), which treats the latent vari-
able as categorical, and a factor analysis model (with t − 1 factors), which treats the
latent variable as continuous, and so whether one considers the latent variable to be
categorical or continuous is arbitrary. Further comparisons of latent class and latent
trait models can be found in Hagenaars and McCutcheon (2002), Heinen (1996),
Langeheine and Rost (1988), Lindsay, Clogg, and Grego (1991), Marcoulides and
Moustaki (2002), Rost and Langeheine (1997), and von Eye and Clogg (1994).

The view here is that whether a construct should be considered as being cate-
gorical or continuous is an open question, on theoretical, statistical, and empirical
grounds. It is also more informative, in my view, to compare different models and
conceptualizations, rather than to simply take one model or view as “correct.” The
present study compares a model that treats the construct as categorical to models that
treat the construct as continuous.

Given the assumption of a latent categorical variable, the application of SDT to
essay grading is straightforward: SDT views each rater as attempting to discriminate
between latent classes of essays. Figure 1 illustrates the basic ideas of SDT for three
latent classes and a 1–4 response. A rater’s decision is viewed as being based in part
on his or her perception of the overall quality of an essay (for holistic scoring). The
perception of an essay’s quality can be viewed as being a realization from a probabil-
ity distribution on an underlying continuum, with a different probability distribution
associated with each latent class. The distances d between the distributions, shown
in Figure 1, are of primary interest, in that they reflect a rater’s ability to discriminate
between the latent classes. It is assumed that, when rating an essay, a rater compares
their perception of the essay’s quality to response criteria, shown as vertical lines in
the figure, and gives a response of “1”, for example, if the realization is below the
lowest criterion, “2” if it is between the first and second criteria, and so on. Thus, an
observed response reflects both perceptual and decisional aspects, namely the rater’s
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FIGURE 1. An illustration of signal
detection theory with three latent classes
and a 1–4 rating response.
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perception of an essay’s quality and the rater’s use of response criteria; an important
aspect of SDT is that it separates these two aspects. For further discussion of the basic
SDT model, its interpretation, and applications, see Gescheider (1997), Macmillan
and Creelman (1991), or Wickens (2002).

It should be noted that, although the latent class SDT model considered here has
not been used for essay grading, to my knowledge, approaches to essay grading via
models that in essence include a signal detection component have been considered in
the measurement and statistics literature. For example, Patz et al. (2002) presented a
hierarchical rater model (HRM) where one level of the model was a latent class sig-
nal detection model, although the model was parameterized differently than the usual
SDT model. Patz et al. (2002) basically viewed raters as detecting “ideal ratings,”
where the ideal ratings were latent classes defined by the scoring rubric. In this way,
both the latent class SDT model considered here and the hierarchical rater model
view raters as attempting to discriminate between latent classes of essays. Note that
rater effects are treated as random in the HRM of Patz et al. (2002), whereas rater
effects are treated as fixed in the latent class SDT model; Donoghue and Hombo
(2000) considered a version of the HRM with fixed rater effects. Johnson and Albert
(1999) considered a multirater model for essay grading that in essence used a sig-
nal detection conceptualization; their approach differs somewhat from that presented
here in that the latent variable was treated as continuous and normally distributed.

The next section introduces the models. The Rasch and IRT models are well
known and will only be briefly summarized. The latent class SDT model is presented
in more detail.

The Models

Signal Detection Theory with Latent Classes

The latent class signal detection model generalizes the traditional signal detection
model (Green & Swets, 1988) to latent classes of events. Specifically, consider the
situation where J raters examine N cases (essays, slides, etc.) and assign a discrete
score kj to each case, where 1 ≤ kj ≤ Kj and Kj is the number of response categories
for rater j. For the simple case with two latent classes, the latent class signal detection
model can be written as

p(Y j ≤ k j | X∗ = x∗
t ) = F

(
c jk − d j x∗

t

τ j

)
, (1)

for 1 ≤ kj ≤ Kj −1, where Yj is the response variable for rater j, X∗ is a latent categor-
ical variable that takes on values of x∗

t = 0 or 1 for t = 1 or 2, p(Y j ≤ k j | X∗ = x∗
t )

is the cumulative probability of a response of kj or less from rater j given x∗
t , c jk

are Kj − 1 response criteria for the jth rater with cj0 = −∞, cjK = ∞, and cj1 <

cj2 < · · · < cj,K −1, dj is a discrimination parameter for the jth rater (i.e., the dis-
tance between the underlying perceptual distributions), F is a cumulative distribution
function (CDF), and τ j is a scale parameter, which can be set to unity without loss
of generality. The logistic distribution is used here for F (via a logit link function,
see below); normal and other distributions have also been considered in SDT (see
DeCarlo, 1998).
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As noted above, the task is conceptualized in SDT as consisting of two basic com-
ponents: a perceptual component, which is the rater’s perception of the quality of
an essay, and a decision component, which involves the placement of response cri-
teria. The focus in research in psychology has primarily been on the discrimination
parameter dj, which can be viewed as a measure of the rater’s ability to discriminate
between the latent classes. The response criteria cjk are often viewed as depending
on arbitrary and uncontrolled factors. As discussed below, the finding of rater drift
across sessions or failures of rater training to improve agreement (e.g., see Congdon
& McQueen, 2000) are not surprising from the perspective of SDT, in that these are
analogous to arbitrary differences in raters’ use of response criteria.

The SDT model can be extended to more than two latent classes in several ways.
One approach simply allows for more than two classes, without any further restric-
tions. In that case, the latent classes are unordered categories of events (the latent
variable is treated as nominal) and the SDT model provides estimates of the distances
between the perceptual distributions for each latent class; note that the same ap-
proach has been used in SDT with (multiple) observed signals (see DeCarlo, 1998).
The model is closely related to latent class cluster models discussed by Vermunt and
Magidson (2000), with the difference that the SDT model uses a cumulative link
function for the response probabilities, whereas this is not the case for latent class
cluster models. The use of a cumulative link in SDT follows from the conceptualiza-
tion of the situation in terms of a latent underlying variable, in that the cumulative
link function is the inverse of a cumulative distribution function for the latent variable
(see DeCarlo, 1998), whereas the cluster models (and factor models) are motivated
directly in terms of response probabilities.

Another way to extend the model to more than two latent classes places restric-
tions on the parameters. For example, in an extension referred to as an equal-distance
SDT model (DeCarlo, 2002a), it is assumed that the raters perceive the latent classes
as being equally spaced. In this approach, for a model with T latent classes, values
of 0, 1, . . . , T −1 are used for x∗

t . In terms of SDT, this places a constraint on the
discrimination parameters so that the underlying perceptual distributions are equally
spaced; for example, d 2 = 2d 1 in Figure 1. Note that the latent classes are only
assumed to be ordered, they are not assumed to be equally spaced; the equal spac-
ing is in the raters’ perceptions, not the latent classes. This extension represents a
new type of SDT model. From a statistical perspective, it can be viewed as a latent
class extension of a uniform association model for cumulative odds ratios noted by
Agresti (1990); it is also related to latent class factor models discussed by Vermunt
and Magidson (2000; with the difference that the SDT model uses a cumulative link
function). For the data considered here (also see DeCarlo, 2002a), the equal-distance
SDT model was consistently favored (in terms of information criteria) over the un-
restricted SDT extension noted above, and so only the equal-distance SDT model is
considered.

Equation 1 specifies the model for each rater. The model can be incorporated into
a restricted latent class model (e.g., Clogg, 1995; Dayton, 1998) as follows. For J
raters, the observed data are response patterns that consist of J elements. A latent
class model assumes that there are t = 1 to T mutually exclusive and exhaustive
latent classes X∗ so that the probabilities of the response patterns can be obtained by
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summing over the latent classes,

p(Y1 = k1, Y2 = k2, . . . , YJ = kJ )

=
T∑

t=1

p(Y1 = k1, . . . , YJ = kJ , X∗ = x∗
t )

=
T∑

t=1

p(X∗ = x∗
t )p(Y1 = k1, . . . , YJ = kJ | X∗ = x∗

t ), (2)

where p(Y 1 = k1, Y 2 = k2, . . . , YJ = kJ) is the probability of response
pattern (k1, k2, . . . , kJ ), p(Y1 = k1, Y2 = k2, . . . , YJ = kJ | X∗ = x∗

t ) is the con-
ditional probability of the response pattern given X∗ = x∗

t , and p(X∗ = x∗
t ) is

the size (mixing proportion) of latent class t with p(X∗) > 0 for all t and∑
t p(X∗ = x∗

t ) = 1. Furthermore, conditional on the latent class, responses are as-
sumed to be independent, so that

p(Y1 = k1, . . . , YJ = kJ | X∗ = x∗
t ) =

J∏
j=1

p(Y j = k j | X∗ = x∗
t ), (3)

where p(Y j = k j | X∗ = x∗
t ) is the conditional probability of response kj for rater j

given X∗ = x∗
t and

∑
k p(Y j = k j | X∗) = 1. Equation 3 reflects a basic assumption

of latent class analysis, which is that the J response variables are independent given
the latent class.

Finally, to incorporate the SDT model into the latent class model, differences of
the cumulative probabilities of Equation 1 are used for the conditional probabilities
of Equation 3,

p(Y j = k j | X∗ = x∗
t ) = F(c jk − d j x∗

t ) k j = 1

p(Y j = k j | X∗ = x∗
t ) = F(c jk − d j x∗

t ) − F(c jk−1 − d j x∗
t ) 1 < k j < K j

p(Y j = k j | X∗ = x∗
t ) = 1 − F(c jk−1 − d j x∗

t ) k j = K j

.

(4)

Thus, the full model consists of an SDT model for each rater incorporated into a
restricted latent class model.

Rater precision. From the perspective of SDT, it is of basic interest to assess how
well a rater can discriminate between the latent classes, and estimates of dj provide
information on exactly that. In particular, one can view dj (or its inverse) as providing
a measure of the precision of a rater, with larger values indicating greater precision.
Using terminology suggested by Clogg and Manning (1996), the discrimination pa-
rameter (or a correlation-type transform of it, such as Yule’s Q; see DeCarlo, 2002a)
provides a measure of rater-level reliability.

Classification accuracy. Another aspect of reliability concerns the accuracy of
the classifications. The statistic lambda is useful in this regard, in that Clogg and
Manning (1996) noted that lambda can be viewed as a nonparametric measure of
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the reliability of the classifications obtained from the set of raters (items). Lambda
is computed using an estimate of the proportion correctly predicted, PC, which in
turn is computed using posterior probabilities (see Dayton, 1998; DeCarlo, 2002a).
The proportion correctly predicted provides a measure of classification accuracy,
whereas lambda indicates the relative increase in the proportion correctly predicted
as compared to the largest latent class size. Note that there is an upward bias in
the estimate of PC (and therefore lambda); the simulation presented below provides
some information about the magnitude of the bias for the data considered here. The
size of lambda depends on several factors, with the magnitude of the discrimination
parameters and the number of raters per essay having a large influence.

Latent Trait Models

The latent trait models considered here are the partial credit (PC) model (Masters,
1982), the generalized partial credit (GPC) model (Muraki, 1992), and the graded
response (GR) model (Samejima, 1969). The GR model is closely related to Equa-
tion 1. A general version of the model can be written as

p(Y j ≤ k j | θ ) = F[a j (b
′
jk − θ )] = F(b jk − a jθ ), (5)

where F is the logistic CDF, θ is a continuous latent variable, aj is a discrimination
parameter, and bjk differs from the usual difficulty parameter b′

jk in that it equals
a j b′

jk ; the parameterization used in Equation 5 (cf. McDonald, 1999) is useful for
showing how the model is related to the SDT model (i.e., bjk is analogous to the
response criteria cjk and aj is analogous to dj). A comparison of Equations 1 and 5
shows that a basic difference is that the latent variable θ is continuous in latent trait
models whereas the latent variable X∗ is discrete in the latent class SDT model. From
the perspective of IRT, the latent class SDT model can be viewed as a semiparamet-
ric version of the graded response model (see Heinen, 1996). Note that Equation 5
can also be written as a generalized linear model (McCullagh & Nelder, 1989) by
applying the inverse of F, say g = F−1, to both sides, which gives

g[p(Y j ≤ k j | θ )] = b jk − a jθ, (6)

where g is a link function. Using the logit link, g = log[p/(1−p)] gives the GR
model; other link functions can also be used (Mellenbergh, 1994). The logit link is
also used for the latent class logistic SDT model considered here.

The GPC model, with a parameterization similar to that of Equation 6 (cf. Heinen,
1996), can be written as

log

(
p(Y j = k j + 1 | θ )

p(Y j = k j | θ )

)
= b jk − a jθ. (7)

A comparison of Equations 6 and 7 shows that the basic difference is that the GPC
model uses adjacent-category logits (see Agresti, 1990; Heinen, 1996) in lieu of a
logit link; note that the GPC model can also be rewritten as a log-linear model with
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scores (see Clogg & Shihadeh, 1994). The PC model restricts the discrimination
parameter aj in the GPC model of Equation 7 to be equal across the raters.

Data Analysis

The models discussed above are examined here with a set of real-world data. The
data consisted of 125 essays obtained in a college class, where the goal was to assign
grades. An example of an application of latent class SDT to essay grading with a
larger data set (and more raters), along with evidence as to criterion validity, can be
found in DeCarlo (2002b).

Method

The essays were from 125 students in a graduate introductory measurement course
who, as part of a final exam, wrote a one-page essay on how they would evaluate
a new questionnaire. The students were given 1 hour to write the essay in class.
Eight raters (professor and seven graduate students) graded each essay on a 1–4
scale, with 1 = definitely below average, 2 = average to slightly below average, 3 =
average to slightly above average, and 4 = definitely above average. The raters were
instructed to grade on content, and to try to ignore other aspects of the essay, such as
handwriting quality, spelling, or length of the essay (which was restricted to be no
more than one page). The average score on three in-class multiple-choice exams was
used as a criterion to assess the validity of the essay scores.

The Design

The design is fully crossed, in that all of the raters graded all of the essays (for an
example with an incomplete design, see DeCarlo, 2002b). This design was used be-
cause the focus here is on the application of SDT as a model of rater behavior; eight
raters were used because some small simulations (with a 2-class model) suggested
that more than five raters would be needed in order to obtain acceptable estimation
precision of the raters’ parameters for a sample size of around 100; this is reinforced
by the simulation presented below (note that increasing the number of raters com-
pensates to some extent for a small sample size, see DeCarlo 2002a). Designs with
one essay and many raters are often used in research studies, such as studies of rater
training (e.g., Weigle, 1998), rater reliability (e.g., Blok, 1995; Shohamy, Gordon, &
Kraemer, 1992), computer-based scoring (e.g., see Johnson, 1996), and in situations
where new models of rater behavior are introduced, such as the multirater model of
Johnson and Albert (1999). The SDT approach can also be extended to more than
one essay and/or more than one response per rater, but the focus here is limited to the
simple multiple rater, one-essay situation; an extension to more than one response
per rater is given in DeCarlo (2003).

Fitting the models. The latent class and latent trait models discussed above were fit
using LEM (Vermunt, 1997), which is a general package for categorical data analysis
that provides maximum likelihood estimates of the parameters of latent class models
by means of the EM algorithm. The programs were run several times with different
starting values, because of a well-known problem in latent class analysis with local
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maxima (e.g., Aitkin, Anderson, & Hinde, 1981; McLachlan & Peel, 2000). The
latent trait models were fit using marginal maximum likelihood (MML); 41 nodes
and quadrature weights from −4.5 to 4.5 were used.

Classification and scoring. For the latent class SDT model, the posterior probabili-
ties of each latent class, given the response pattern, were used to assign each essay to
the latent classes, that is, each essay was assigned to the latent class with maximum
posterior probability. For the latent trait models, Multilog (Thissen, 1991) was used
to assign maximum a posteriori (MAP) scores. The SDT classifications and item
response scores are compared below.

Validation. Correlations of the classifications and scores with a criterion variable
were examined; the average score on three in-class multiple-choice exams was used
as the criterion. In addition to the usual Pearson correlation, a nonparametric mea-
sure of association, Kendall’s τ (Kendall, 1945), was examined. τ b is useful for as-
sessing the degree to which the relationship between the classifications (or scores)
and the criterion is monotonic; the square of τ b also has an interpretation, like the
square of Pearson’s correlation, in terms of a proportional reduction in error (Wilson,
1969).1

Results

Model Selection

Because of the sparseness of the data (i.e., there are 48 possible patterns of ratings
and only 125 observations), likelihood ratio and chi-square goodness-of-fit statistics
are not useful for assessing the absolute fit of the models (one cannot assume that
the statistics follow their asymptotic distributions for sparse data). Information crite-
ria, on the other hand, can be used to compare the different models (Lin & Dayton,
1997; Sclove, 1987). Although this does not assess the fit of the models to the data,
it allows a comparison of the fit of the latent class SDT model to models that are
currently used for essay grading, such as the Rasch model and IRT models (i.e.,
it assesses the relative fit of the models). It should also be noted that model se-
lection is a complex topic and other approaches have been proposed or are under
development.

Table 1 shows, for latent class logistic SDT models with from one to six latent
classes and for the IRT models, information criteria, which can be used to compare
nonnested (and nested) models, with smaller values indicating a preferred model
(see Agresti, 1990; Burnham & Anderson, 2002; Dayton, 1998). The table shows
values of a version of Akaike’s information criterion with a small sample bias cor-
rection (AICc) and the Bayesian information criterion (BIC). Burnham and Ander-
son (2002) recommended the use of AICc over AIC when the ratio of the sample
size to the number of parameters is small (say <40), as is the case here. Specifically,
AICc = −2log L + 2p[N/(N −p −1)], where L is the likelihood, p is the num-
ber of parameters, and N is the sample size, whereas BIC = −2log L + plog N .
Guidelines with respect to interpreting the magnitude of differences of AICc from
the smallest value in a set of models are given by Burnham and Anderson (2002);
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TABLE 1
Information Criteria for the Various Models (N = 125)

Model No. of Parameters AICc BIC

Logistic SDT, 2 classes 32 2160.24 2227.78
Logistic SDT, 3 equal distance 33 2080.94 2149.61
Logistic SDT, 4 equal distance 34 2072.47 2142.19
Logistic SDT, 5 equal distance 35 2057.74 2128.42
Logistic SDT, 6 equal distance 36 2059.93 2131.48
Graded response (41 nodes) 31 2042.88 2109.22
Generalized partial credit (41 nodes) 31 2051.26 2117.61
Partial credit (41 nodes) 24 2102.63 2158.51

AICc = small sample bias corrected Akaike’s information criteria; BIC = Bayesian information criterion.

Kass and Raftery (1995) suggested similar guidelines for differences in twice the log
Bayes factors (BIC can be viewed as an approximation to the Bayes factor).

Among the latent class SDT models, Table 1 shows that both AICc and BIC are
smallest for the model with five classes. Among the total set of models, both infor-
mation criteria suggest the GR model as best. The parameter estimates given below
show that the estimated latent class sizes for the 5-class SDT model are close in value
to the weights used in Gaussian quadrature (as was noted by a reviewer), which is
why the GR model, which assumes a normal distribution for the latent trait (and so
has fewer parameters than the SDT model), is likely favored over the latent class
SDT model in this case (as noted above, the two models only differ with respect to
the treatment of the latent variable). Of course, this need not generally be the case
(the latent class SDT model in essence allows for arbitrary distributional shapes). It
is also interesting to note that the partial credit model, which is probably the most
widely used model for essay grading in practice, fares poorly as compared to the
other models; this occurs in part because there are clearly differences in discrimina-
tion across the raters, as shown next.

As noted above, a decision as to whether a latent variable is continuous or discrete
involves more than just statistical considerations, in that theory and practical utility
also play a role. The next section examines parameter estimates and the utility of
scores and classifications obtained from the models.

Parameter Estimates

The left panel of Figure 2 shows, for the 5-class SDT model, a plot of the esti-
mates of the discrimination parameters and their standard errors. The figure shows
that the point estimate of dj is largest for rater B and smallest for raters E and H.
The standard error of dj is rather large for rater B; the simulation presented below
shows that the standard errors tend to be large for large values of dj (which reflects
a well-known problem). A likelihood ratio test of a restricted model with equal dis-
crimination parameters across the raters, which is nested within a model with un-
restricted parameters, rejects the restricted model (LR = 77.04, d f = 7, p < 0.01).
Thus, the raters differed with respect to their ability to discriminate between the latent
classes.
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FIGURE 2. The top left and right panels show, respectively, a plot of the estimated
discrimination parameters and response criteria for the raters in the present study, for
a 5-class SDT model.

The response criteria are defined in Equation 1 with respect to their distance from
the lowest latent class (see DeCarlo, 1998, for comments on an alternative parame-
terization). Note that when discrimination varies across the raters, as here, it is not
very informative to simply compare the (absolute) criteria locations. A more useful
approach is to set the distance between the highest and lowest underlying distribu-
tions to be equal across raters, so that the relative locations of the response criteria
(i.e., relative to the highest and lowest underlying distributions) can be compared.
This was done by dividing the estimates of the response criteria by the estimated dis-
tance between the highest and lowest distributions for each rater (which is simply the
estimate of dj times T −1). I refer to these as the relative response criteria locations.

The right panel of Figure 2 shows a plot of the relative criteria locations for the
eight raters, again for the 5-class SDT model. The horizontal reference lines show
the location of the lowest distribution (at zero) and the highest distribution (at 1). The
figure shows that the relative locations of the response criteria were similar across the
raters, with the exception that rater E’s criteria for responses of 3 and 4 were higher
than those for the other raters. Thus, rater E was stricter than the other raters with
respect to giving higher scores. Also note that there are only two criteria for rater H,
because the rater used only three response categories.

In summary, the raters’ precision ranged from low (<1.0) to high (≥3.0) and the
relative locations of the response criteria were similar across most of the raters, but
also differed in some cases. Note that, in terms of agreement, computing weighted
kappa (Cohen, 1968) for each pair of raters gave values that ranged from .03 to .46,
and so agreement ranged from very poor to moderate, using guidelines suggested
by Landis and Koch (1977). More importantly, the results for weighted kappa were
predictable from the SDT parameter estimates shown in Figure 2. For example, rater
E, who had low detection and response criteria that differed from the other raters,
gave the lowest values of weighted kappa (when paired with other raters), whereas
weighted kappa was largest for the two raters with the largest estimates of dj (raters
B and F, who also had similar response criteria, as can be seen in Figure 2). Thus, the
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SDT parameters account for why agreement ranged from poor to moderate, in that
the level of agreement depends on the rater parameters dj and cjk.

With respect to the latent class sizes, the estimates for the 5-class SDT model
(with standard errors in parentheses) are .071 (.035), .218 (.047), .362 (.053), .293
(.047), and .056 (.025) for the lowest to highest latent classes, respectively. With
respect to classification accuracy, the estimate of the proportion correctly predicted
for the 5-class model is .90. The value of lambda is .85, which means that there is
an 85% increase in correct classification by using the posterior probabilities as com-
pared to classifying all of the essays into the largest latent class, which would give
only 36% correct classification in this case. The simulation presented below shows,
however, that there is likely a considerable upwards bias in lambda for a sample size
of 125.

Classification and scoring. Further insight into the different models can be ob-
tained by comparing the scores or classifications obtained from the models to the
scores obtained by simply averaging the raters’ ratings. Figure 3 presents plots of (a)
the five classifications obtained from the SDT model, (b) the scores obtained from the
PC model, (c) the scores obtained from the GPC model, and (d) the scores obtained
from the GR model, all plotted against the average of the eight rater’s scores.

The upper right panel of Figure 3 shows that the scores obtained from the PC
model are an order-preserving nonlinear transform of the average score. This is a
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FIGURE 3. Plots of the classifications from a 5-class SDT model, PC scores,
GPC scores, and GR scores against the average scores.
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basic characteristic of the PC model that follows from the use of adjacent category
logits and the restriction of equal discrimination parameters across the raters. In con-
trast, the two lower panels of Figure 3 show that scores from the GPC model and
the GR model do not preserve the order of the average scores. For example, for an
average score of 2.25, the GPC scores varied from −0.55 to 0.47. Thus, two essays
with the same average score can receive higher or lower scores, depending on the
response pattern (of course, the standard errors should also be taken into account). In
addition, an essay with a lower average score can receive a higher GPC or GR score
than an essay with a higher average score.

The top left panel of Figure 3 shows that the classifications obtained from the 5-
class SDT model also do not preserve the order of the average scores. Points that
can be connected by a vertical line represent cases where two essays with the same
average score are in different latent classes. The figure shows that one cannot find
a vertical line that cuts across more than two latent classes, and so in this case two
essays with the same average score never differ by more than one latent class. Also
note that an essay with a higher average score can end up in a lower latent class than
an essay with a lower average score. The figure shows that this happened primarily
with scores in the middle of the range; for example, there is no overlap for the fourth
and fifth latent classes, and very little for the first and second latent classes, whereas
the greatest region of overlap is for the third and fourth classes, for cases with average
scores of from 2.25 to 2.6.

From the perspective of SDT, the reason why the classifications do not neces-
sarily preserve the order of the average scores is straightforward. If one essay re-
ceived a higher average score than a second essay, for example, but the first essay
received high ratings from raters with poor discrimination whereas the second es-
say received (say fewer) high ratings from raters with good discrimination, then the
first essay might end up in a lower latent class, because the classifications take into
account (via the posterior probabilities) differences in the raters’ discrimination and
response criteria. In contrast, scores from the PC model preserve the order of the
average scores, and so with respect to the example just given, the first essay would
always receive a higher score. Thus, one can argue that the PC model is limited in
the way that it adjusts scores to account for rater differences, in that it can only ad-
just the spacing between scores and not the order of the scores (for a fully crossed
design).

It is also informative to compare the SDT classifications and the IRT scores. Fig-
ure 4 shows the classifications obtained from the 5-class SDT model plotted against
the scores obtained from the GPC and GR models. The left panel shows that the
latent class SDT model partitions the GR scores into clusters that do not overlap,
whereas the right panel shows that the latent class model does not partition the GPC
scores, which reflects the effect of the use of a different link function. Note, however,
that there is vertical overlap for only one case for the GPC scores (at x = −0.5 and
y = 2) and so the results are similar to those obtained with the GR model in this
case. If it is assumed that the latent variable is quantitative, then the challenge is to
show that the variation of IRT scores within the latent classes offers additional useful
information.

65



Graded Response Score

-2 -1 0 1 2

C
la

ss
if

ic
at

io
n

0

1

2

3

4

5

6

Generalized Partial Credit Score

-2 -1 0 1 2

C
la

ss
if

ic
at

io
n

0

1

2

3

4

5

6

FIGURE 4. Plots of the classifications from a 5-class SDT model against the
GPC and GR scores.

Criterion validity. Evidence of criterion validity has often not been a part of studies
that have compared latent class and latent trait models. Table 2 shows measures of
association (Pearson correlations and Kendall’s τ b) between the classifications (from
the SDT model) and scores (from the IRT models) and a criterion, which was the
average score on three exams. The Pearson correlation is 0.55 for the 5-class SDT
model and is similar in magnitude to the values obtained for the average score and
IRT models. τ b is largest for the 3- and 5-class SDT models and is slightly smaller
for the average score, PC model, GPC model, and GR model. Overall, with respect to
criterion validity, Table 2 suggests that there is little or no difference between using
continuous IRT scores or average scores versus simply classifying the essays into
three to five ordered latent classes.

It should be noted that a limitation of simply using the essays’ class membership
in measures of association, as in Table 2, is that it ignores uncertainty in the class
membership, as noted by Aitkin et al. (1981) and Clogg (1995), for example. Pos-
sible ways to address this are by using the posterior probabilities rather than just
class membership (as suggested by Aitkin et al., 1981), by using multiple imputation

TABLE 2
Pearson Correlation and Kendall’s τ b for the Classifications or Scores with a Criterion
(Exam Average)

Model r τ b

Logistic SDT, 2 classes 0.39 0.30
Logistic SDT, 3 equal distance 0.53 0.41
Logistic SDT, 4 equal distance 0.51 0.37
Logistic SDT, 5 equal distance 0.55 0.41
Logistic SDT, 6 equal distance 0.54 0.41
Graded response 0.55 0.36
Generalized partial credit 0.54 0.36
Partial credit 0.58 0.38
Average Score 0.56 0.38
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(using the posterior probabilities from the latent class model), or by incorporating
the criterion variable directly into the model (e.g., DeCarlo, 2002b).2 This requires
further study.

Discussion

The scoring rubric for the present study consisted of four categories, and so one
could argue that the rubric defined four latent classes. The information criteria in
Table 1, however, suggest that a 5-class SDT model was best among the latent class
models. Note that the 4-category scoring rubric used middle categories with labels of
2 = “average to slightly below average” and 3 = “average to slightly above average.”
The results suggest that these two categories might be divided into three categories,
such as slightly below average (2), average (3), and slightly above average (4), giving
a total of five latent classes. Thus, one can interpret the latent classes as consisting
of an “average” class surrounded by higher and lower classes (which are smaller in
size). Of course, it should be kept in mind that the interpretation of the latent classes
goes beyond the model and involves other information and considerations.

The estimates of the detection parameters showed that rater precision varied con-
siderably across the raters. The response criteria were generally similar across raters,
but at least two of the raters differed from the others. Because of these differences,
pairwise agreement ranged from poor to moderate. Nevertheless, classification, as
assessed by the estimate of PC and lambda, appeared to be adequate (even when bias
is considered; see the simulation below), thanks in part to the large number of raters.
Correlations of the latent classes with average exam scores provided evidence as to
the validity of the classifications, with the results suggesting little difference between
treating the latent variable as categorical or continuous. Thus, the current study joins
earlier studies, noted above, which have shown more similarities than differences
between latent class and latent trait models. The results suggest that classifications
from the latent class SDT model might have as much utility as scores from latent
trait models or average scores. Some issues and limitations of the current approach
were also noted.

SDT models with ordinal latent classes have not previously been used, to my
knowledge. The next section presents a simulation that was conducted in order to
obtain information about the performance of the estimators and the accuracy of clas-
sification for a 5-class SDT model, as used above. The simulation provides additional
information about the results just presented.

A Simulation

Method

Simulation design. The simulation design followed from the results found above.
The number of raters was eight, with the raters using a 1–4 ordinal response scale.
The population model was a logistic SDT model with five ordered latent classes with
the population values for dj and cjk being the same (with rounding) as those ob-
tained above (the population values are given in the tables below). The latent class
sizes used were, in order from lowest to highest class, 0.07, 0.22, 0.36, 0.29, and
0.06, which are the same as those found above (rounded to two decimal places).
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The number of replications (i.e., samples generated) was 100. Two sample sizes
(i.e., number of essays) were examined, one of 125, as in the present study, and
one of 300; the sample size of 300 was included to obtain an idea about how
much estimation and classification might improve with a modest increase in sample
size.

The data were simulated with SAS (Release 8.2) using a macro written by the
author. The simulation involved three steps. First, for the 5-class SDT model, values
for the latent variable X∗ (i.e., x∗

t = 0−4) were generated according to a multino-
mial distribution, with the estimates of the latent class sizes given above used for
p(X∗ = x∗

t ). Second, the values of x∗
t together with the population values of the

SDT parameters cjk and dj were used in Equation 1 with a logistic distribution for
F to generate probabilities for each response category and rater. Third, these values
were compared to values obtained from a uniform random variable generated on an
interval of 0 to 1. If the uniform value was less than or equal to the probability for the
lowest response category, then a response of 1 was assigned; if it was greater than the
probability for the lowest category, but less than or equal to the value for the second
category, then a response of 2 was assigned, and so on.

Each of the 100 replications was analyzed using LEM (Vermunt, 1997). A SAS
macro written by the author was used to generate (100) input files for LEM and also a
DOS batch file that was used to call LEM repeatedly. Other SAS macros stripped out
information from the LEM output for each replication, and the results were combined
in a file that was then used for the remaining analyses.

Some Considerations

Local maxima and convergence. The default value for convergence in LEM is a
minimum increase in the log-likelihood of 0.000001. The convergence value was in-
cluded in the summary output so that it could be determined if there were any cases
where nonconvergence occurred. For the present simulation, the default number of
iterations in LEM was increased from 1,000 to 20,000, and convergence occurred in
all cases except one (for N = 125), which converged after repeated runs. A poten-
tial problem is that the converged solution could represent a local maxima, as noted
above. This can be checked by re-running the program with different starting val-
ues, and checking for a change in the maximized log-likelihood (obtaining a larger
value indicates a local maxima). For the present simulation, the program was re-run
with different starting values several times for each of the 100 replications (for each
condition) and the log-likelihoods were checked for any change. Local maxima were
encountered in several of the replications for the sample size of 125, and in only a
few cases for the sample size of 300.

Empirical identifiability. The models examined here are identified; however, prob-
lems can still arise with what can be termed empirical identifiability. This can
be detected by examining the eigenvalues of the estimated information matrix;
Goodman (1974) noted that nonzero values are sufficient for identification. For each
replication of the simulation, the smallest eigenvalues were printed, so that the num-
ber of times the smallest eigenvalue had values at or below zero could be kept track
of. This occurred in 36 of the 100 replications for the sample size of 125 (which led
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to estimation problems mostly for the largest discrimination parameter, see below)
and in 1 of the 100 replications for the sample size of 300.

Redundant solutions. It should be recognized when fitting the model that there are
two redundant solutions that will appear over repeated runs; the maximized log-
likelihoods for the two solutions are identical (because one solution is simply a re-
parameterization of the other). The two solutions arise because it is arbitrary whether
the lowest or highest latent class is labeled as zero. This is not a problem, but must
simply be kept track of. The order of the latent classes can be determined from the
sign of the discrimination parameter. When the lowest class is coded as zero, then
the model is the same as in Equation 1 above, and the estimates of d will be negative.
When the coding is reversed (the lowest class is coded as T −1), the estimates of
d will be the same, but the signs will be positive instead of negative; the criteria
estimates are also not those given in Equation 1, but can be obtained by adding the
estimate of dj to each criteria estimate. For the present simulation, a SAS macro
that stripped out and combined the data for final analysis also checked the signs of
d and, if needed, adjusted the sign of dj, the criteria, and the direction of the latent
classes.

Outcome Measures

The estimators of the SDT parameters were assessed by examining the bias (es-
timated value minus true value) and mean squared error (MSE). Bias was also ex-
amined for the latent class sizes. The standard errors given by LEM were evaluated
by comparing the standard deviation of the estimated parameters across replications
to the mean of the estimated standard errors, with bias defined as the latter value
minus the former value. The estimates of the standard errors of the discrimination
parameters and the latent class sizes were evaluated in this way.

Of particular interest is the performance of PC and lambda, since in real-world
research the basic goal is often to classify cases (e.g., to make a selection, placement,
or grading decision). Evaluation of PC proceeded as follows. For each replication, the
estimate of PC was obtained by summing the estimated posterior probabilities over
all the cases (note that this approach uses the observed frequencies in lieu of expected
frequencies; see Clogg, 1995; DeCarlo, 2002a). Note that the classification for each
case can be compared to the realized value of X∗, which is known in a simulation,
and so the proportion of cases that are classified correctly in each replication can
be determined; I refer to this simply as the obtained PC. The mean of the estimates
of PC (which are obtained from the posterior probabilities, as noted above) over
the 100 replications was compared to the mean of the obtained values of PC over
replications. This was also done for lambda: the mean of the estimates of lambda
over the 100 replications was obtained (using the estimates of PC and the estimates
of the largest class size) and was compared to the mean of the obtained lambdas; the
obtained lambdas were computed for each replication by using the obtained PC and
the obtained maximum latent class size.

Note that, with respect to evaluating the usefulness of the classification, lambda
is somewhat restrictive in that it only considers exact agreement between the classi-
fications and the latent classes. Pearson correlations between the classifications and
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the obtained latent classes, and Kendall’s τ b for the classification and the obtained
latent classes were also examined.

Results and Discussion

Table 3 presents, for simulations with sample sizes of 125 and 300, the population
values of the SDT parameters, the mean estimates across the replications, the bias,
and the MSE. With respect to the discrimination parameters, the left side of the table
shows that, for N = 125, the bias is small (i.e., less than 10%) for the estimates of

TABLE 3
SDT Parameter Estimates, Bias, and MSE for 5-class SDT Simulation

N = 125 N = 300

Parameter Value Estimate Bias MSE Estimate Bias MSE

d1 0.7 0.670 −0.030 0.040 0.670 −0.031 0.018
d2 0.8 0.750 −0.050 0.047 0.772 −0.028 0.018
d3 1.6 1.521 −0.079 0.150 1.578 −0.022 0.046
d4 2.0 1.886 −0.114 0.166 2.030 −0.030 0.068
d5 2.0 1.882 −0.118 0.156 1.990 −0.010 0.072
d6 2.2 2.055 −0.145 0.269 2.208 −0.008 0.085
d7 3.0 2.838 −0.162 0.547 2.970 −0.030 0.126
d8 4.7 5.912 1.212 9.207 4.799 0.099 0.475
c11 −0.6 −0.594 0.006 0.295 −0.632 −0.032 0.111
c12 1.5 1.551 0.051 0.293 1.482 −0.018 0.118
c13 3.2 3.267 0.067 0.359 3.184 −0.016 0.128
c21 1.2 1.231 0.031 0.367 1.156 −0.044 0.117
c22 3.2 3.260 0.060 0.439 3.161 −0.039 0.130
c23 4.8 4.897 0.097 0.573 4.802 0.002 0.177
c31 0.0 −0.105 −0.105 0.718 −0.102 −0.102 0.250
c32 4.0 4.091 0.091 1.193 4.010 0.010 0.338
c33 7.3 7.543 0.243 1.965 7.346 0.046 0.452
c41 1.3 1.236 −0.064 1.359 1.302 0.002 0.333
c42 4.7 4.814 0.114 1.757 4.855 0.155 0.518
c43 7.2 7.338 0.138 2.033 7.402 0.202 0.715
c51 1.0 0.941 −0.059 1.103 0.962 −0.039 0.434
c52 5.0 5.105 0.105 1.392 5.036 0.036 0.575
c53 7.6 7.741 0.141 1.747 7.627 0.027 0.738
c61 2.3 2.272 −0.028 1.488 2.298 −0.001 0.491
c62 5.2 5.169 −0.031 1.585 5.280 0.080 0.664
c63 7.0 7.023 0.023 1.993 7.132 0.132 0.766
c71 4.2 4.246 0.046 4.916 4.182 −0.018 0.917
c72 8.0 8.194 0.194 6.275 8.051 0.051 1.247
c73 10.0 10.280 0.280 7.082 10.077 0.077 1.352
c81 8.0 11.225 3.225 56.239 8.268 0.268 2.610
c82 12.0 16.356 4.356 87.773 12.450 0.450 3.579
c83 16.0 21.535 5.535 126.488 16.631 0.631 4.667

MSE = mean squared error.
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TABLE 4
Latent Class Size Parameter Estimates and Bias for 5-class SDT Simulation

N = 125 N = 300

Parameter Value Estimate Bias Estimate Bias

Class Size 1 0.07 0.105 0.035 0.086 0.016
Class Size 2 0.22 0.157 −0.067 0.202 −0.018
Class Size 3 0.36 0.330 −0.030 0.349 −0.011
Class Size 4 0.29 0.248 −0.042 0.283 −0.007
Class Size 5 0.06 0.160 0.100 0.080 0.020

d1 to d7 (which have values of 3 or less) and the MSE is also small, whereas the
bias and MSE for the estimate of d8 (which is 4.7) for rater 8 are large. The problem
with estimation for d8 reflects a well-known problem in conventional SDT that arises
with large values of the discrimination parameter (because of small cell frequencies;
see Macmillan & Creelman, 1991). Table 3 also shows that the bias and MSE for the
response criteria are generally small for the first seven raters but are large for rater 8.
The right side of the table shows that increasing the sample size to 300 results in a
considerable improvement in estimation, in that the bias and MSE are clearly smaller
in all cases.

Table 4 shows that the estimates of the latent class sizes are somewhat off for a
sample size of 125, whereas estimation is considerably improved for a sample size of
300. With respect to the standard errors, Table 5 shows that the estimates of the SEs
of the estimates of dj are negatively biased for both sample sizes. For N = 125, the
magnitude of the bias is small for the smallest values of dj, gets larger as dj increases,

TABLE 5
Evaluation of Standard Error Estimates for SDT Parameters and Latent Class Sizes, 5-class
SDT Simulation

N = 125 N = 300

Parameter SD Mean SE Bias SD Mean SE Bias

d1 0.200 0.176 −0.024 0.133 0.119 −0.014
d2 0.213 0.188 −0.024 0.132 0.128 −0.004
d3 0.381 0.273 −0.108 0.215 0.183 −0.032
d4 0.393 0.308 −0.085 0.261 0.209 −0.052
d5 0.378 0.307 −0.071 0.269 0.207 −0.062
d6 0.501 0.326 −0.175 0.293 0.224 −0.069
d7 0.725 0.463 −0.262 0.356 0.300 −0.056
d8 2.796 1.147 −1.649 0.686 0.667 −0.019
Class Size 1 0.081 0.045 −0.036 0.046 0.029 −0.017
Class Size 2 0.089 0.054 −0.035 0.055 0.034 −0.021
Class Size 3 0.076 0.054 −0.021 0.043 0.034 −0.009
Class Size 4 0.101 0.048 −0.053 0.043 0.031 −0.009
Class Size 5 0.119 0.037 −0.082 0.064 0.019 −0.045

71



TABLE 6
Classification and Correlation Statistics for Classifications, 5-class 8-rater SDT Simulation

Sample Size PC Obtained PC λ Obtained λ tau-b r

100 0.902 0.685 0.847 0.502 0.934 0.916
300 0.895 0.841 0.838 0.751 0.944 0.926

and is large for the largest value, d8 (note that the mean of the standard errors for the
estimate of d8 in Table 5 for N = 125 is based on only 76 of the 100 replications,
since the standard errors were indeterminate in 24 replications). The right side of the
table shows that, for N = 300, the bias is small in all cases. Table 5 shows that the
estimates of the standard errors of the latent class size estimates are also negatively
biased. Negative bias means that the estimated standard errors tend to underestimate
the population standard errors, and so significance tests tend to be too liberal and
confidence intervals too narrow.

Table 6 shows results for the proportion correct and lambda. The tables shows that,
for both sample sizes, the estimates of PC are close to 0.9. Note that, given the esti-
mates of the SDT parameters and latent class sizes, one can determine a population
value (i.e., for an infinite sample size) for PC, which in this case was 0.894, and so
the estimates of PC shown in Table 6 are quite close to the large sample value. This,
however, ignores finite sample bias. The obtained PC and obtained lambda shown in
Table 6 show that, for a sample size of 125, there is overestimation of the propor-
tion correctly predicted, in that the mean (over replications) obtained PC was 0.685
whereas the mean estimate of PC was 0.902. As a result, the estimate of lambda
(0.847) is also larger than the obtained lambda (0.502). In contrast, for the sample
size of 300, the amount of overestimation is much smaller, with a mean value of PC

of 0.895 and an obtained value of 0.841.
As noted above, lambda is rather strict in that it only reflects exact agreement.

Table 6 shows that the estimates of τ b and r are large (>0.90) for both sample sizes,
and so the order of the latent classes was well preserved by the classifications.

In summary, the simulation offers useful information and some practical guide-
lines. For one, it shows that estimation and classification with a 5-class SDT model
with eight raters (and the given population values) were quite good for a sample size
of 300. For a sample size of 125, estimation of the SDT parameters was good for
values of dj less than about 3, whereas the bias and MSE were large for a value of dj

of 4.7, and estimation of the latent class sizes was marginal. One is also more likely
to encounter problems with empirical identification for smaller sample sizes. Thus, if
the goal is to estimate the raters’ discrimination parameters, then larger sample sizes
(or more raters) are needed when large values of d are expected, such as in a study
that involves experienced raters, or in other situations where good discrimination is
expected. A possible remedy for the positive bias found for a large value of d might
be to constrain d to be less than a certain value, but this is not possible in LEM (to
my knowledge; the software Latent Gold allows one to use Bayes constants, but cu-
mulative links are not offered; see Vermunt & Magidson, 2000). On the other hand,
whether or not positive bias in estimates of large values of d is a problem depends
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on the purpose of the study. If the goal is to evaluate the raters, for example, then
overestimating a large value of d (and obtaining a large standard error) is not really a
problem, in that it will still be clear that the rater discriminated well (cf. Rindskopf,
2002). The simulation also shows that estimation of the latent class sizes, particu-
larly for small class sizes, was marginal for N = 125 but was good for N = 300.
Classification also appeared to be marginal for N = 125 but was good for N = 300.
The values of τ b and Pearson’s correlation suggest that, even for the sample size of
N = 125, the classifications were useful with respect to ranking the essays.

Conclusions

The approach via latent class SDT offers a useful supplement to the latent trait
models that are currently in use for essay grading and in other situations that involve
construct responses. The latent class SDT model provides a simple interpretation of
the rater parameters. It also has practical implications. For example, the often-cited
failure of extended training to improve agreement and the ongoing concern about
rater drift are only issues when one expects rater parameters to be like item param-
eters, in that they are viewed as unchanging characteristics of the rater. In contrast,
from the perspective of SDT, problems with agreement and drift simply reflect ef-
fects of the arbitrary use of response criteria by the raters; it has long been recognized
in psychology that it is difficult to control the use of response criteria, and so the dif-
ficulties noted above are expected. Further, with respect to correct classification, the
locations of the response criteria are not very important (see DeCarlo, 2002a). In
short, from the perspective of SDT, the focus in rater training should be on increas-
ing discrimination, rather than on maximizing agreement or eliminating rater drift,
which have not been successful.

As shown here, the approach via latent class SDT provides measures of the pre-
cision of the raters and the reliability of the classifications. The present study also
provides evidence as to the validity of the classifications. An interesting finding is
that the results raise questions as to whether or not one obtains more information
or practical utility by assuming that the latent variable is quantitative. Of course,
this conclusion is limited to the situation examined here. Some limitations were also
noted, such as the fact that simply using the classifications in other analyses ignores
uncertainty in class membership, and that evidence with respect to criterion validity
was based only on measures of association. The utility and validity of classifica-
tions obtained from the latent class SDT model and scores obtained from latent trait
models should be further compared in future studies.

Notes
1A reviewer noted that the way τ b handles ties might bias it in favor of the latent class

model.
2For the present data, using the posterior probabilities (in several ways) appeared to make

little difference with respect to Pearson’s correlation or τ b (the latter was slightly smaller).
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