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Sequential Effects in Magnitude Scaling: Models and Theory 

L a w r e n c e  T .  D e C a r l o  a n d  D a v i d  V.  C r o s s  
State University of New York at Stony Brook 

Research on sequential effects in magnitude scaling is reviewed, and its implications about the 
adequacy of current time series regression models is discussed. A regression model that unifies 
what at first appear to be contradictory results is proposed. Theoretical models of judgment and 
perception are introduced, and their relation to alternative regression models is clarified. A 
theoretical model of relative judgment that clarifies the role of judgmental error and frames of 
reference in magnitude scaling is examined in detail. Four experiments that test the model are 
presented. The results, along with recent results presented by Ward (1987), provide support for 
the model. The importance of being explicit about the relation of theoretical models to regression 
models and about the role of error in these models is discussed. 

In the 1950s, Stevens (e.g., 1956, 1957) popularized a new 
class of procedures where subjects "directly" indicated sensa- 
tion magnitude by responding to presented magnitudes of 
physical stimuli with numbers (or stimuli). Stevens observed 
that, when plotted on log-log coordinates, the (geometric) 
means of responses given to each stimulus intensity showed a 
linear increase. This led him to conclude that response mag- 
nitude, R, is a power function of stimulus magnitude, S: 

R = o~S ~ (1)  

where a and 3 are parameters. Stevens also assumed that 
subjects' responses in magnitude scaling experiments are pro- 
portional to sensation magnitude, xI,: 

R = a T  (2)  

Stevens used the above assumption, along with the observed 
relation between responses and stimulus intensity (Equation 
1), to argue that the psychophysical function, which relates 
unidimensional sensation magnitude to stimulus intensity, is 
a power function: 

xI, = S ~ (3) 

where 3, in Stevens's view (e.g., 1975), is a parameter that 
characterizes the particular sensory continuum under inves- 
tigation. Although the empirical relation of Equation 1 is of 
interest in and of  itself, it has received considerable attention 
in psychophysics largely because of its assumed relation to 
Equation 3. In particular, if Equation 2 is correct, then 
Equation 1 provides information about the form of the psy- 
chophysical function and an estimate of  its exponent. 

Research has shown, however, that Equation 1 is an incom- 
plete empirical model, because there are systematic variations 
in the data that it fails to account for. This is particularly 
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evident in research on sequential effects in magnitude scaling 
(e.g., Cross, 1973; Luce & Green, 1974a; Ward, 1973, 1979), 
which has shown that subjects' responses show dependencies 
over time that are not accounted for by Equation 1. In 
response, several researchers have proposed regression models 
that are generalizations of Equation 1. The present article 
focuses on these models and on the theories underlying them. 
The first section of  the article presents a selective review of 
empirical findings that have direct implications about the 
adequacy of alternative regression models. Current regression 
models are reviewed, and difficulties associated with the inter- 
pretation of their parameters are discussed. A regression 
model that provides a unified account of  what at first appear 
to be contradictory results is introduced. Next, theoretical 
models of judgment and perception are introduced, and their 
relation to alternative regression models is clarified. Lastly, 
experiments suggested by one of the judgmental  theories are 
presented. 

Sequen t i a l  Effects 

One of the reasons it is difficult to arrive at general conclu- 
sions about sequential effects is because, as Staddon, King, 
and Lockhead (1980) have noted, there is no agreed-upon 
method of  analysis. Nevertheless, this section shows that 
research in the area has established several basic results that 
have direct implications about the adequacy of  the regression 
models discussed below. 

The standard approach for fitting Equation 1 is to first 
linearize it using logarithms and to then perform least squares 
regression. The model fit to the data, therefore, is: 

log  Ri = tip + /~1 log  Si -1- e~ (4) 

where 30 = log a. The error term, ei, is a random variable that 
represents the net effect of all variables not included in the 
model, which nevertheless influence responses. This omission 
occurs because, for example, it may not be known what all 
the relevant variables are or because relevant variables are not 
measurable. 

Equation 4 is a static model, in that the response on each 
trial depends solely on the stimulus intensity and "noise" of 
that trial. Research on magnitude scaling, however, has shown 
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that the model should include a dynamic element, because 
there appear to be effects that extend over trials. Interest in 
these sequential effects follows from earlier demonstrations of  
their presence in identification and categorization experi- 
ments (e.g., Garner, 1953; Holland & Lockhead, 1968; Ward, 
1972; Ward & Lockhead, 1970, 1971). For example, Garner 
(1953) showed, in an identification experiment, that the re- 
sponse, R~, to stimulus intensity, S~, tended to be larger when 
the immediately preceding stimulus intensity was greater than 
St and smaller when the preceding stimulus intensity was less 
than S~. This was demonstrated by plotting, separately for 
each stimulus intensity, the mean response to St given the 
stimulus intensity presented on the immediately preceding 
trial, Sj.t-~. These plots showed a positive trend. The result is 
usually referred to as an "assimilation" of  the current response 
towards the preceding stimulus intensity. Garner noted that 
it is not possible to determine whether the effect is due to the 
previous stimulus or to the previous response, because of  the 
high correlation between these variables. 

A similar result has been found in magnitude estimation 
and cross-modality matching experiments (e.g., Cross, 1973; 
Luce & Green, 1974a, 1974b; Ward, 1973, 1975). These 
studies have shown, using the plots discussed above, that the 
conditional expectation of  log responses, given the current 
and previous log stimulus intensities, increases with the log 
stimulus intensity of  the previous trial. That is, E(log R~llog 
St, log Sj.t-l) increases with log Sj.~_~. l 

Sequential effects have also been studied using correlations. 
For example, several studies (e.g., Baird, Green, & Luce, 1980; 
Green, Luce, & Duncan, 1977; Green, Luce, & Smith, 1980; 
Ward, 1975) have shown that successive log responses are 
positively correlated. The magnitude of  the correlation also 
appears to depend on the similarity of  successive stimuli. In 
particular, the correlations tend to be large when the difference 
between successive log stimuli is small and close to zero when 
the difference is large (see Jesteadt, Luce ,& Green, 1977). 
This leads to an "inverted-V" pattern of  correlations that is 
discussed below. 

A result related but not identical to the finding of  correlated 
log responses has been presented by Jesteadt et al., (1977), 
and by Ward (1979). These authors examined the coefficient 
/3 obtained for the following regression: 

log(Rt/xSt') = /3  1og(Rt_l/xst_l ~) + 6 + ~t 

where K and 3" were first estimated by fitting Equation 4 to 
each subject's data. It follows (with 13o = log K and/3~ = 30 
that the terms in parentheses are the residuals, ~,, for Equation 
4. The above equation, therefore, represents a regression of  et 
on 6~-~, and the coefficient 13 measures the residual autocor- 
relation. The finding of  autocorrelated residuals has different 
implications than the finding of autocorrelated log responses, 
as shown in the next section. 

In summary, three results found in research on sequential 
effects are: (a) the mean response to log stimulus intensity, i, 
given the log stimulus intensity presented on the previous 
trial, log Sj.,-l, increases with log Sj.t_l; (b) successive log 
responses are positively correlated; and (c) successive residuals 
from Equation 4 are positively correlated. In the next section, 
we review regression models of  sequential effects and consider 
the implications of  the above three results for these models. 

T ime  Series Regression Models  

Although it is apparent from the above that the method of  
analysis has varied, most researchers have considered sequen- 
tial effects as arising because of  the influence of  previous 
stimuli and/or responses. As a result, Equation 4 has been 
generalized by including previous stimuli and/or responses as 
regressors. For example, Cross (1973) observed assimilation 
to the previous stimulus (using the plots discussed above), 
and introduced the following regression model to account for 
this effect: 

Rt = aSt/31 (St-i/St)/32 ct 

The subscript i of  Equation 4 has been replaced by t because 
it is important to recognize the temporal order of  responses 
to obtain information about underlying processes. Thus, all 
the models considered in this article are time series regression 
models. 

Rearranging terms and taking logarithms gives: 

log R, =/30 + (/31 - /32) log St +/32 log St-~ + e, (5) 

where/3o = log a and e~ = log ~. Equation 5 shows that, if/32 
is positive, then the exponent of  Stevens' power law under- 
estimates the "true" exponent,/31, by/32. That is, a least squares 
fit of  Equation 4, which omits log St_~, provides an unbiased 
estimate of/31 -/32, and not simply of/3~.2 Cross suggested that 
this underestimation of  the exponent may account for the 
"regression effect" frequently found in psychophysical re- 
search (see Cross, 1973; Stevens & Greenbaum, 1966). Equa- 
tion 5 is also related to an explanation of  sequential effects 
(for identification experiments) offered by Garner (1953): "the 
response to a stimulus is actually a response to the weighted 
mean of  the present stimulus and that heard previously" (p. 
379). That is: 

log Rt =/30 + (1 - )Q/3, log St + 9~/3, log St_~ + et 

where ~, represents the weighting factor. The above is equiv- 
alent to Equation 5, with ;~ =/3Jflfl~. 

Cross (1973) fit Equation 5 to data from a magnitude 
estimation experiment where the loudness of noise was 
judged; he found assimilation to the previous log stimulus 
(i.e., the estimate of/32, 0.055) was positive. Cross also ob- 
tained a positive ~2 (0.177) for a fit of  Ward's 1973 data. 
Jesteadt et al. (1977) fit Equation 5 to their data and obtained 
a positive ~2 (0.100 for sound pressure; the reported value of  
0.050 was for sound power). 

Taking conditional expectations of Equation 5 gives: 

E(log Ri[log St, log Sj , t - l )  ~--- /30 @ /31 log S~ + /32 log Sj , t - i  

[it follows from the assumptions about the error term that 
E(e~llog Si, log S,.,-0 = 0]. The above equation shows that 
Equation 5, with positive/32, is consistent with the assimilation 

Luce and Green (1974a) examined plots of the above conditional 
expectation divided by E(log Rillog St) (see their Equation 9). 

2 The least squares estimate of (/3~ - /~2) is unbiased because the 
omitted variable, log St-~ is, by design, orthogonal to St (see Rap, 
1971). 
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observed in the plots discussed above (Result 1); the model 
was in fact proposed to account for this result. Equation 5 is 
also consistent with the finding of autocorrelated log responses 
(Result 2); writing out the equation for log R, and log R,_, 
shows that the current and previous log response are both 
determined in part by log St-,. However, Equation 5 is not 
consistent with the finding that Equation 4's residuals are 
autocorrelated (Result 3). To see why, suppose for the mo- 
ment that Equation 5 is correct. Then, if Equation 4 is fit 
instead, e, = /32 log St_, + u,, where ut represents random 
error. It follows that e, and et-i are not correlated, because log 
St_t and log St-2 are, by design, uncorrelated. Equation 5, 
therefore, is not complete; although it accounts for Results l 
and 2, it is not consistent with Result 3. This is one situation 
where the autocorrelation of residuals provides different in- 
formation than the autocorrelation of log responses. 

Jesteadt et al. (1977) further generalized Equation 5 by 
including log RH as a regressor: 

log R, =/30 +/3, log St +/32 log St-, +/33 log R,-, + et (6) 

(where /3, - /32 has been replaced by /3, to simplify the 
notation). Empirical evidence for this generalization comes 
from research showing slight increases in R 2 when log R,-s is 
included in the model along with log St_, (Green, Luce, & 
Duncan, 1977; Ward, 1979, 1987). Jesteadt et al. (1977) 
examined increments in R 2 obtained when either previous 
stimuli or previous responses were included in the model, but 
not both. 

Equation 6 was also motivated by the response ratio hy- 
pothesis of Luce and Green (1974a, 1974b), which consists of 
two ideas. The first is that response ratios are proportional to 
ratios of internal representations. Luce and Green (1974a) 
noted that this idea is consistent with the instructions usually 
given in magnitude estimation experiments and with evi- 
dence provided by plots of response ratios against stimulus 
ratios. The second idea is that each stimulus presentation 
gives rise to (at least) two independent representations, xI,, and 
g't*, where ~t* is the representation used for comparative 
judgment on trial t + l, and ~I't* # ~,. Combining these two 
ideas gives: 

Rt '{tt 
= c ~ -  ( 7 )  

R,., ~t',.,* 

When a # 1, Equation 7 predicts that log responses will show 
a linear trend over trials (as shown in the next paragraph). 

Luce and Green (1974a, 1974b) proposed the response ratio 
hypothesis to account for Result 1, and for a possible (linear) 
drift of responses over time. The assumption of two inde- 
pendent representations was considered necessary because 

R, ~t 

reduces to: 

Rt - o?-'I,(R,/#,) 

and the above equation does not account for sequential effects 
(the term a~-' shows why the above, in log form, predicts that 

log responses will show a linear trend over trims). It should 
be noted, however, that if an error term is included in the 
model, then 

R, ,I,, 
Rt-i oL ~t.l~t 

where e, represents judgmental error, reduces to 

R, = ott ' t , i , t (Ri/~I/ l)II[=2ei  

and the above equation predicts a correlation between succes- 
sive responses, because R, and RH are both determined in 
part by ,,_,, *,-2, and so on (this can be seen by writing out 
the equation for Rt and R,_ 0. Thus, the hypothesis predicts 
sequential effects (the autocorrelation of responses and resid- 
uals, Results 2 and 3) when an error term is introduced, as 
was done by Madey (1976) in his revision of the response 
ratio hypothesis (see his Equation 2). Luce and Green (1974a) 
considered another approach--the assumption of independ- 
ent representations--and showed that it accounts for Result 
1 (see their Equation 9 and Figure 1). 

The response ratio hypothesis is a theoretical model that 
involves unobservable sensation magnitudes, ,I,. To determine 
its relation to the empirical model of Equation 6, assumptions 
about the relation between sensation magnitude and stimulus 
magnitude must be made. For exam#e, if it is assumed that 
~I't = Sta, and Xllt--,* = St-,/~2 (in Cross's 1973 approach, B~ is 
replaced by/3t - / 3 2 ) ,  then substituting in Equation 7, taking 
logarithms, and rearranging gives: 

log R t =/30 +/31 log St -/32 log St-, + log Rt_, 

where /3o = log a. The above model can be fit using least 
squares by regressing log response ratios, log (Rt/Rt-~), on log 
St and log St-t (i.e., log Rt-, can be brought to the left side of 
the equation). Jesteadt et al.'s (1977) approach, however, was 
to fit the more general model of Equation 6 (it has one 
additional parameter, /33). In this case, the estimates of the 
coefficient of log R,_, (/33) were considerably less than unity 
(0.50 or less). Because the response ratio hypothesis does not 
predict this result, Jesteadt et al. (1977) concluded that the 
hypothesis, as it stands, is not correct. Luce, Baird, Green, 
and Smith (1980) have discussed alternatives. 

Although Jesteadt et al. (1977) rejected the (unmodified) 
response ratio hypothesis, researchers have continued to use 
Equation 6 to study sequential effects (e.g., Jesteadt et al., 
1977; Ward, 1979, 1987). The model is clearly consistent with 
Results 2 and 3 discussed above--the inclusion of log Rt-~ in 
the model accounts for the autocorrelation. The usual inter- 
pretation of Result I, however, poses something of a problem. 
Result 1 has often been interpreted as showing that the 
previous stimulus exerts an assimilative influence on the 
current response. This interpretation is also consistent with 
the positive estimates of the coefficient of log St_, obtained 
for Equation 5. On the other hand, the results for Equation 6 
are the opposite--the estimates of the coefficient of log St-t 
are consistently negative, which suggests contrast, not assim- 
ilation, to the previous stimulus, For example, previous re- 
search has shown that fits of Equation 5 to data from Cross 
(1973), Jesteadt et al. (1977), and Ward (1973) gave estimates 
of the coefficient of log St-, equal to 0.055, 0.177, and 0.100 
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(for sound pressure), respectively, whereas fits of  Equation 6 
to the same data gave estimates of -0.026, -0.111, and 
-0.104. Although these results appear to be contradictory, 
they have received little attention. 

Fortunately, a different view of  Equation 6 arises when its 
relation to another empirical model is considered. In partic- 
ular, another way of  generalizing Equation 4 is by including 
afirst-order autoregressive [AR(1)] error process: 

e, = oe,_, + u, (8) 

where p is referred to as the autocorrelation parameter, and 
u, is a random variable with zero mean, constant variance, 
no correlation with its previous values, and no correlation 
with eH (or log St in Equation 9 below). The restriction [o[ 
< l ensures that the error process is stationary;, that is, it has 
a finite mean and variance, and a covariance structure that 
does not depend on time (e.g., see Johnston, 1984). 

Combining Equation 8 with Equation 4 gives: 

log R, = 30 +/31 log S t + pe,_ 1 + u,, (9) 

which is simply Stevens's power law, in log-linear form, with 
an AR(1) error process. The usual interpretation of  autocor- 
related errors is that a variable (or variables) that has effects 
extending over more than one time period has been omitted 
from the model (e.g., see Johnston, 1984; Kmenta, 1986). It 
is easy to think of  a number of  omitted factors that might 
influence subjects' responses in magnitude scaling experi- 
ments: the subject's level of  attention or motivation, memory, 
the strategy or strategies the subject uses to arrive at a re- 
sponse, and so on. Changes in these Factors over the course 
of the experiment can lead to autocorrelated errors. Of course, 
if the relevant omitted variable (or variables) is known and is 
also measurable, it should be included in the model. However, 
in situations where the omitted variable(s) cannot be meas- 
ured and/or experimentally controlled, Equation 9 may be 
appropriate. 

The relation of Equation 9 to Equation 6 can be shown as 
follows. According to Equations 8 and 9, 

e t = p e t _  1 + u t = l o g  Rt - 30 - 3]  l o g  S t. 

Because this relation also holds on trial t - 1, it follows that 
e H =  log Rt-~ - 30 - 3~ log St-~. Substituting this expression 
for e,-~ in Equation 8 gives: 

Pet-i + Ut = 0 log  Rt_ j - P/3o - P3j log St-~ + Ur 

Substituting this expression for pc,-, + u¢ in Equation 9 gives 

log Rt = (1 - 0)30 + 3~ log S t - P3~ log St_ . 

+ p l o g R t _ ~  + u,. (10) 

The above shows that Equation 9 is equivalent to Equation 
6, with p = 33 and/32 = -0/3~. Thus, Equation 10 shows that, 
if the error process is stationary (i.e., 101 < 1), then the estimate 
of/33 obtained for Equation 6 will be less than unity, which is 
exactly what Jesteadt et al. (1977) found. In addition, the 
coefficients of  log Rt-~ (/33 = p) and log S,-1 (-03~) will have 
opposite signs, provided that/31 is positive, which is usually 
the case. This means that the "contrast" found for Equation 
6 might appear simply because the errors of  Equation 4 are 

autocorrelated. Clearly, in the absence of an explicit theory, 
Equation 6's coefficients must be interpreted with caution 
(see the Theory section below). 

Equations 9 and l0 are also relevant to Ward's (1979) claim 
that the findings 0 < /33 < 1 and ]BE] < El for Equation 6 
support his fuzzy judgment model over the response ratio 
hypothesis. In light of  Equation 10, 133[ < 1 indicates that 
the error process is stationary (Equation l0 shows that 33 -- 
0). In addition, 1331< 1 together with the parameter restriction 
implied by Equation 9, /32 = -3J/33, yield Ward's second 
result ,  1/321 -- 131331 </3,.  The two results noted by Ward 
(1979), therefore, will be found if the errors of Equation 4 are 
autocorrelated (autocorrelation is more the rule than excep- 
tion for time series data). For this reason, they do not provide 
particularly compelling support for the fuzzy judgment 
model. 

In sum, Equations 9 and l0 show that (a) the finding that 
33 < 1 for Equation 6 is consistent with a stationary error 
process in Equation 9, (b) the finding of a negative /32 for 
Equation 6 is consistent with positive autocorrelation in Equa- 
tion 9, and (c) the finding that 1321 < 3, for Equation 6 is 
consistent with the parameter restriction implied by Equation 
9. 

As was noted above, the results obtained for Equation 6 
are contradictory to those obtained for Equation 5. The next 
section shows that Equation 5, Equation 6, and Result 1 are 
unified by an alternative empirical model. 

An Alternative Model  

In this section, we consider the possibility that sequential 
effects arise not because of  the influence of  the previous 
stimulus and previous response, as suggested by Equation 6, 
but because of the influence of  the previous stimulus and an 
autocorrelated omitted variable(s) (attention, memory, strat- 
egy, motivation, etc.; a specific interpretation of  autocorrela- 
tion is presented in the Theory section below). That is, log 
R,_, in Equation 6 may be serving as a proxy for some other 
autocorrelated omitted variable(s). An alternative to Equation 
6, therefore, is: 

log R, = 3o +/3~ log St + 32 log St-] + pet-~ + ut (11) 

(DeCarlo, 1989, 1989/1990). The above equation can be 
rewritten following the steps used to derive Equation 10 from 
Equation 9. This gives: 

log R, = 3, log S, + (32 -- P3, )  log S,-, 

+ p l o g R , - , - o 3 2 1 o g S t - 2  + u ,  (12) 

(the intercept has been dropped). It is important to recognize 
that, when log S,-2 is omitted, the above equation is equivalent 
to Equation 6 (with different parameters). Equation 12 shows, 
therefore, that a least squares fit of  Equation 6 will yield 
unbiased estimates of 3, and 32 - o3l; the estimate of 0 will 
be biased because log R,-~ is correlated with an omitted 
variable, namely, log S,-2. However, it is shown below that 
the estimate of  the coefficient of  log R,_j obtained for Equa- 
tion 6 is close to the estimate of o obtained for Equation 11. 

Equations 11 and 12 shed light on the seemingly contradic- 
tory results obtained for Equations 5 and 6, that is, the change 
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in the sign of the coefficient of  log St-~ from positive to 
negative. Assume for the moment  that Equation 11 is correct. 
In this case, fits of  Equation 5 provide an unbiased estimate 
of 32 in Equation 11 (neglecting the autoregressive error 
process and inappropriately using least squares will give un- 
biased estimates of  31 and 32, although they will no longer 
have minimum variance). Thus, the results obtained for Equa- 
tion 5 suggest that 32 in Equation I 1 is small and positive. In 
addition, Equation 12 shows that the coefficient of  log S~_, 
for Equation 6 is equal to 32 - p3~. This means that if  the 
product of  (positive) p and 3~ is greater than 32, then the 
coefficient of  log St-, will be negative for Equation 6, even if 
32 in Equation I1 is positive. Equations 11 and 12 show, 
therefore, that a positive 32 for Equation 5 and a negative 
estimate for Equation 6 are not necessarily contradictory 
results. 

Although Equation 11 has not been fit to published data, 
Equation 12 shows that an estimate of  32 can be obtained by 
multiplying together/~j and/~3 obtained for Equation 6 (they 
provide estimates of  3~ and o in Equation 11, respectively) 
and adding the result to the estimated coefficient of  log S,-1. 
The values obtained in this way for Cross's 1973 data (0.052), 
Ward's 1973 data (0.189), and Jesteadt et al.'s 1977 data 
(0.105) are close to those reported for fits of  Equation 5 
(0.055, 0.177, and 0.100, respectively), which suggests that 
the estimates are reasonably accurate. 

Table 1 presents the average coeffÉcients obtained for all (to 
our knowledge) published magnitude estimation and cross- 
modality matching experiments that have fit Equation 6. 
Table 2 presents the estimates of  Equation 1 l 's  coefficients. 
The estimates of 32 were obtained as described above; the 
estimates of  31 and o (i.e., 33) were taken from Table 1. 

Table 1 shows that fits of  Equation 6 give positive and 
negative estimates for the coefficients of  log R~_~ and log S,_~, 
respectively. This is the usual finding of  "assimilation" to the 
previous response and "contrast" to the previous stimulus. 
Table 2, on the other hand, shows that the estimates of the 
coefficient of  log S,_, for Equation 11 are small but consist- 
ently positive. Table 2 shows, therefore, that the results ob- 

Table 1 
CoeJficients for Equation 6 Obtained in Published Research 

Task Loudness Study S, S,_ a R,_, 

ME Cross (1973)" .584 -.026 .133 
ME Ratio ME Ward (1973) .502 -.111 .598 
ME Ratio ME JLG (1977) b .546 d -.104 a .382 
ME Ratio ME GLD (1977) c .438 d -.174 a .531 
ME Absolute ME Ward (1987) .483 -.101 .391 
ME Ratio ME Ward (1987) .400 -.114 .544 
CMM Ward (1975) .326 -.070 .269 
CMM Ward (1987) .344 -.079 .332 

Distance 

ME High Information Ward (1979) .931 - .  109 .143 
ME Medium Information Ward (1979) .191 .011 .422 
CMM High Information Ward (1979) .539 -.126 .269 
CMM Medium Information Ward (1979) .381 -.078 .175 

aCross's 1973 results are from fits of the actual data. bJesteadt, 
Luce, & Green, 1977. c Green, Luce, & Duncan, 1977. a Values of 
the coefficients for sound pressure (originally reported for sound 
power). 

Table 2 
Estimated Coefficients for Equation 11 for the Studies of 
Table 1 

Task Loudness Study S~ St_ ~ e,-, 

ME Cross(1973) .584 .052 .133 
ME Ratio ME Ward (1973) .502 .189 .598 
ME Ratio ME JLG (1977) .546 .105 .382 
ME Ratio ME GLD (1977) .438 .059 .531 
ME Absolute ME Ward (1987) .483 .088 .391 
ME Ratio ME Ward (1987) .400 .104 .544 
CMM Ward(1975) .326 .018 .269 
CMM Ward (1987) .344 .035 .332 

Distance 

ME High information Ward (1979) .931 .024 . 143 
ME Medium information Ward (1979) .191 .092 .422 
CMM High information Ward (1979) .539 .019 .269 
CMM Medium information Ward (1979) .381 -.011 .175 

tained for Equation 6 are consistent with positive values of 32 
in Equation 11. This result is important because a positive 3z 
in Equation 11 is consistent with the results found for Equa- 
tion 5 and with the positive relation of Result 1. Equation 11, 
in other words, unifies Result 1, Cross's (1973) results, and 
Jesteadt et al.'s (1977) results. 

In summary, although Equation 6 offers one approach to 
the study of  sequential effects, Equation 11 presents an alter- 
native empirical model that is worthy of  examination. Equa- 
tion 11 differs from Equation 6 in that it allows for the 
possibility that autocorrelation might arise because an un- 
specified variable has been omitted from the model. In addi- 
tion, Equations 11 and 12, along with Tables 1 and 2, show 
that positive autocorrelation can lead to "contrast" in Equa- 
tion 6 (i.e., a negative 32) even if the previous stimulus actually 
exerts an "assimilative" influence (i.e., a positive 32 in Equa- 
tion 11). 

Up to this point, we have focused on empirical models of 
sequential effects. Psychophysicists, however, as well as psy- 
chologists in general, are interested in the observable variables 
of regression models primarily because of  the potential infor- 
mation they offer about unobservable psychological con- 
structs. For  example, as was pointed out in the introduction, 
Equation 1 has received attention in psychophysics largely 
because of  its assumed relation to the psychophysical func- 
tion. It should be apparent from Equation 2, however, that a 
model of  the judgmental process is required to interpret 
Equation l 's  parameters. Although most current theories of  
magnitude scaling consider judgmental  processes, the relation 
of  theoretical parameters to the coefficients of  regression 
models is frequently not discussed. In the next section, we 
introduce models of  judgmental  and perceptual processes in 
magnitude scaling that are generalizations of  Equations 2 and 
3. It is shown that the two regression models discussed (Equa- 
tions 6 and 11) are closely related to two theoretical models 
of judgment.  

T h e o r y  

In this section, we show how the parameters of  theoretical 
models relate to the coefficients of  regression models, with an 
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eye toward using the regression coefficients to assess the 
plausibility of  the underlying theory. Although the focus is on 
judgmental processes in magnitude scaling, the influence of  
perceptual and memory processes is also considered. 

Perceptual and/or Memory Effects 

Sequential effects have often been viewed as arising from a 
perceptual effect of  some sort. In particular, the perception, 
xI,,, of  a stimulus is assumed to be affected by context. What 
the relevant context is taken to be marks a point of  departure 
for different theoretical approaches. A general formulation is: 

,I,, = St~C'~, (13) 

(DeCarlo, 1989/1990), where C is the context that affects the 
representation, and fi, represents error in perception/memory. 
The parameter 3" weights the context: if3" = 0, then perception 
depends solely on the current stimulus intensity; as the mag- 
nitude of 3" increases (either negative or positive), so does the 
influence of context. Equation 13, which we will refer to 
simply as the perceptual/memory model, is consistent with 
the view that perception is relational (Krantz, 1972; Shepard, 
1981). 

Various alternatives follow from Equation 13 depending 
on how the relevant context, C, is defined. In Cross's (1973) 
approach, the context is defined as the ratio (similarity) of  the 
preceding and current stimulus intensities. Substituting (St-t/ 
St) for C in the above equation and rearranging gives: 

~', = S~-'S~_,'6,. 

It is apparent when written in this form that an assimilative 
effect (positive 7) will attenuate the exponent obtained for fits 
of Stevens's power law (the exponent is an estimate of  # - 3" 
and not simply/~). 

A similar approach is to assume that the relevant context 
is simply the immediately preceding stimulus, C = St_~, so 
that Equation 13 becomes: 

xp, = S ~S,_j,~. (13a) 

The only difference between the above model and Cross's 
model is that Cross's model implies that the coefficient of  log 
St obtained for fits of Stevens's power law is attenuated by 
assimilation (positive values of  3"), whereas Equation 13a does 
not. Because the focus of  the present article is on dynamic 
processes, which are indicated by the coefficients of the lagged 
regressors, Equation 13a is used to simplify the notation. It 
should be kept in mind, however, that the only change in the 
models presented below if Cross's (1973) idea is used is that 
B is replaced by B - 3". 

One interpretation of  Equation 13a is that the previous 
stimulus intensity systematically influences the current per- 
ception. That is, 3" can be interpreted as reflecting a proactive 
perceptual effect of  the previous stimulus, where the sign of  
3" indicates the direction of  the effect. For example, a negative 
3' indicates a contrast effect. The interpretation in this case is 
that the current tone, for example, "sounds" softer when 
preceded by a more intense tone and louder when preceded 
by a less intense tone. Contrast effects have been found in 

research concerned with visual illusions and the time error 
(for references, see Hellstr6m, 1985). A positive 3", on the 
other hand, indicates an assimilative effect. An example for 
visual illusions is the well-known "spreading effect" of  von 
Bezold (1886). Hellstr6m (1985) provides examples of  assim- 
ilative effects in research on the time error. 

Another interpretation of  Equation 13a is that it models a 
memory effect of  some sort, rather than a perceptual effect. 
The basic idea in this case is that the current and previous 
perceptions are "confused" or "assimilate" in memory; Hells- 
tr6m (1985) has noted that ideas of  this sort can be traced 
back to Fechner (1865), Boas (1882), and K6hler (1923). 
Models of  memory effects typically differ with respect to 
whether the current or previous representations (or both) are 
considered to be affected. For example, Lockhead and King 
(1983) have recently presented a model where it is assumed 
that the current sensation magnitude assimilates in memory 
toward the previous stimulus magnitude. In this case, both 
the current, xI,,*, and previous, ~I',-1", representations are 
affected, because assimilation of  ~I,, implies assimilation of  
~I,,_1 (this is the approach used in Equation 16 below). Another 
possibility is that only the sensation magnitude of  the previous 
trial is affected. For example, one interpretation of  Lute and 
Green's model (Equation 7) is that the remembered represen- 
tation used for comparative judgment, ,Is,_~*, is systematically 
different from the original representation, ~I't-~. 

We do not attempt at this point to determine what the 
"correct" interpretation is, but we simply note that Equation 
13a is consistent with basic ideas about perceptual and mem- 
ory processes. Assuming that Rt = o/xl/t~t (Equation 2 with 
multiplicative error), where ft represents judgmental error, 
substituting Equation 13a and taking logarithms gives: 

log R t = K +/~ log S t + 31 log S t _  l "t" e t 

where K = log a and et = log ~t + log fit. The above equation 
is the relation connecting the observable variables; it shows 
that multiple regression will provide unbiased estimates of 
and 3'. If Cross's 1973 idea is used, B in the above is replaced 
by/~ - % and the model is equivalent to Equation 5, with B~ 
= fl and 82 = 3". In this case, multiple regression will provide 
unbiased estimates of/~ - 3" and 3"; adding the latter to the 
former will give an unbiased estimate of/~. 

Judgmental Processes in Magnitude Scaling 

Equation 13a, combined with Equation 2, provides a the- 
oretical basis for Equation 5. It also seems likely, however, 
that Equation 2 does not correctly or completely represent 
the way subjects make their judgments. In this section, two 
models of  judgmental processes in magnitude scaling are 
introduced. The models provide theoretical bases for Equa- 
tions 6 and 11. 

Response Heuristics 

The first judgmental model follows from ideas about the 
role of response heuristics in magnitude scaling experiments. 
For example, Garner (1953) suggested that (for identification 
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experiments) "there is a tendency on the part of O to repeat 
what he has just said when he is unsure of his judgment" (p. 
379). Similarly, Ward and Lockhead (1971) and Ward (1973, 
1979, 1987) have suggested that, in the face of uncertainty, 
subjects tend to guess in the direction of the previous response. 
One expression of these ideas is: 

Rt = a'-x~I'tt-XRt_,x,, (14) 

(DeCaflo, 1989/1990) where 0 _< X _< 1 and *t represents 
judgmental error (Equation 16 below shows that a = Ro/~l/o). 
According to the above, the current response is a geometrically 
weighted mean of the current sensation magnitude and the 
immediately preceding response. If ), = 0, then the above 
equation reduces to Equation 2 (with multiplicative error), 
and responses are simply proportional to sensation magni- 
tude. If  )~ -- l, then the previous response is repeated, with 
(possibly) some variation due to ~t (as in cross-modality 
matching). Thus, ;~ reflects the tendency to choose a response 
close to the previous response. Of course, Equation 14 repre- 
sents only one of a number of possible heuristics that might 
be used. 

We refer to Equation 14 as the response heuristics model; 
the idea has a long history in psychology and related disci- 
plines. For example, in addition to the magnitude scaling 
references given above, the notion of a response interdepen- 
dency of one sort or another has been considered by research- 
ers concerned with detection, recognition, probability learn- 
ing, gambling (for references, see Senders & Sowards, 1952; 
Treisman & Williams, 1984; Tune, 1964), and the time error 
(see Hellstrrm, 1985). A similar idea has been discussed in 
the econometrics literature as the habit-persistence or partial- 
adjustment model (see Johnston, 1984; Kmenta, 1986), 

Assuming that there are both judgmental and perceptual/ 
memory effects in magnitude scaling, in the sense of Equa- 
tions 14 and 13a, substituting the second equation into the 
first and taking logarithms gives: 

log R t  = ( 1  - X)B log St + (1 - X),y log S,-t 

+ AlogRt_, +e t  (15) 

(the intercept has been dropped), where e~ = log ~t + log 8, is 
assumed to be random. 

Equation 15 provides a theoretical basis for Equation 6 
(compare the two models to see the equivalence). This relation 
is important because it explicitly shows how Equation 6's 
coefficients relate to the theoretical models' parameters (Equa- 
tions 13a and 14). For example, Equation 15 shows that, 
because of the assumption that 0 -< ), ___ 1, a negative/~2 in 
Equation 6 implies that ~, in Equation 15 is negative, since 82 
= ( 1  - )Q~,. From Equation 13a, a negative ,y indicates a 
contrast effect, as discussed above. Thus, Equation 15 shows 
why a negative 32 for Equation 6 can be interpreted as 
indicating a contrast effect. Without an explicit presentation 
of the underlying theory, however, this conclusion is not 
warranted (see the discussion of Equation 16 below). 

Equation 15 also allows one to see whether the coefficients 
of Equation 6 behave in a manner consistent with the under- 
lying theory. For example, it has previously been suggested 
(e.g., Garner, 1953; Ward, 1973, 1979; Ward & Lockhead, 

1971) that decreasing information about sensation magnitude 
should increase the tendency of subjects to guess in the 
direction of the previous response. It follows immediately 
from Equation 15 that decreasing information should increase 
the magnitude of the coefficient of log R,_~ (increase h) and 
decrease the coefficients of  log St and log St-t, provided that 
other factors (e.g., ~ and ~) remain constant. These are, in 
fact, the same predictions Ward (1979) arrived at using com- 
puter simulation of his fuzzy judgment model; the advantage 
of the present approach is that the predictions follow imme- 
diately, without having to resort to computer simulation. 

Ward (1979) tested the above prediction using magnitude 
estimation and cross-modality matching procedures. In both 
experiments, subjects estimated the distance between two 
black dots; "information" was (presumably) reduced by de- 
creasing both the presentation time and illumination of the 
dots. As Ward (1979) noted, and as TaMe 1 shows, the results 
for magnitude estimation were as predicted: the estimate of 
the coefficient of log Rt-t was larger when information was 
decreased, and the absolute magnitude of the estimate of the 
coefficient of log St-~ was smaller. On the other hand, the 
results for cross-modality matching of duration to distance 
were not as expected: as Table 1 shows, the estimated coeffi- 
cients of log Rt-~ and log S,_~ were both smaller when infor- 
mation was decreased. 

The above equations present the theory that several re- 
searchers appear to have in mind when using the terms 
"assimilation" and "contrast" in more than simply a descrip- 
tive manner. Sequential effects arise because the internal 
representation is affected by context, possibly the previous 
stimulus, and because of the use of a response heuristic, such 
as the tendency to choose a response close to the previous 
response. 

The Relativity o f  Judgment 

It has long been recognized that judgment is relative. How- 
ever, the effect of relative judgment on the sequential structure 
of psychophysical data has not been fully appreciated. In this 
section, we present a model of the judgmental process that 
clarifies the role of reference points in magnitude scaling. The 
basic idea is that subjects' responses are affected by both 
immediate context (e.g., the previous sensation and response) 
and long-term context (e.g., a standard and modulus) as 
follows: 

R, = 'fflt(Rt_,/x~t_~)X(Ro/X~o)'-Xl~ t (16) 

(DeCaflo, 1989/1990) where Ro and ~I'o are fixed, or at least 
relatively constant, references, 0 -< h <_ 1, and vt represents 
judgmental error. We refer to Equation 16 as the relative 
judgment model, because it models judgment as being relative 
to short- and long-term context. The model is similar to 
earlier judgmental models of visual illusions (e.g., Massaro & 
Anderson, 1971; Restle, 1971, 1978), in that context is 
weighted, and is also related to theories concerned with per- 
ceptual anchors and response criteria (e.g., Braida, Lira, Bet- 
liner, Duflach, Rabinowitz, & Purks, 1984; Gravetter & Lock- 
head, 1973; Marley & Cook, 1986; Parducci, 1964; Treisman, 
1984). 
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If X = 0, then all judgments are made relative to the fixed 
references Ro and ~o, and Equation 16 reduces to a stochastic 
version of  Equation 2, with a = Ro/~o. Judgment in this case 
is often referred to as being "absolute" (the term raises other 
issues not discussed here). Equation 16 (with ~, = 0) clarifies 
why many researchers (e.g., Laming, 1984; Parducci, 1968; 
Postman & Miller, 1945; Stevens, 1956) have stated that 
"absolute judgment is relat ive"--absolute judgment is relative 
to the stable references Ro and ~o, which represent a fixed 
frame of reference. The frame or context might be a single 
response-sensation pair (referred to as the modulus and stand- 
ard by psychophysicists), or might be more than one pair, 
such as the largest and smallest. The important  feature, in 
terms of  sequential effects, is that the frame remains constant 
over time. 

If X = l, then all judgments are made relative to the 
immediately preceding context (sensation and response), and 
Equation 16 reduces to the model of  Luce and Green (1974a, 
1974b), without the assumption of  two independent represen- 
tations. Thus, another view of Equation 16 is that it is a 
generalization of the response ratio hypothesis of  Luce and 
Green (1974a, 1974b). 

It is important to recognize that the difference between the 
two extremes, ~, = 0 or X = 1, is apparent only when the 
sequential structure of  the data is considered. Krantz (1972), 
for example, focused on mean responses and noted that (for 
the cross-modality matching paradigm) "If  the subject chooses 
y~ as a match to yj, which pair xi, xj does he use as 'reference 
levels' to form yix~ and yjxj? The first matching pair presented? 
The immediately preceding matching pair? This question 
loses importance provided that the same match is attained, 
regardless of  what reference match is used." (p. 184). Krantz 's  
statement is correct when interest centers on mean responses. 
On the other hand, once interest turns to the sequential 
structure of  the data, the reference levels that are used have 
considerably different implications about the properties of  the 
responses over time. As was shown above, if the reference is 
solely the previous response-sensation pair, then responses 
will be autocorrelated, because of  the accumulation of  judg- 
mental error (the error process of  Equation 4 will be nonsta- 
tionary), whereas this is not the case when fixed references 
are used. The sequential structure of the data, therefore, 
provides important  information about underlying judgmental  
processes. 

According to the present theory, X takes on values between 
zero and one because both short- and long-term context affect 
judgment. That is, the theory recognizes the influence of  two 
frames of reference, a short-term frame (R,-z/~,-0 and a 
long-term frame (Ro/~o), the importance of  which only be- 
come apparent in a time series analysis. Another view of  the 
model is that it generalizes Equation 2 by replacing a with a 
parameter that has a fixed (say ao) and stochastic (say a,_z) 
component,  and more importantly, explicitly defines these 
components in terms of  psychological frames of  reference. 

Equation 16 has a simple but important  relation to Equa- 
tion 2. The relation can be shown as follows. To simplify the 
notation, let a = Ro/XI'o and rearrange Equation 16 to get: 

R, = a~,(R,-,/a~,-~)a#,, (16a) 

or more simply 

R, = a~,~, ( 1 6 b )  

where ~, = (R,_]/a~,_0~#,. It follows from Equation 16b that 
~ = R, /a~, ,  which in turn implies that ~,_j = R,_z/a~,_,, and 
substituting this into Equation 16a gives: 

Rt = ~I t t~ t - lx~ t .  (16C) 

The above equation shows that Equation 16 reduces to 
Equation 2 with an autoregressive error process (the error 
structure is equivalent to Equation 8 when the model is log- 
linearized). Thus, the interpretation of  autocorrelation in 
terms of  the relative judgment model is that autocorrelation 
arises because of  the relativity of  judgment to short- and long- 
term context. There are, of course, other interpretations of  
autocorrelation, which in turn suggest different experiments 
(if any) than those presented below. For example, it could be 
assumed that ~, in Equation 16 is equal to zero (immediate 
context does not affect judgment), and that autocorrelation 
arises because Ro and/or  ~o drift stochastically over time, 
perhaps because of  changes in attention or memory. Luce, 
Baird, Green, and Smith (1980) have presented a random 
modulus (Ro) model. 

Assuming that there are perceptual/memory effects, in the 
sense of Equation 13a, substituting into Equation 16c and 
taking logarithms gives: 

log R, = / i  log S, + 3' log St-z + Xe,-, + u, (17) 

(the intercept has been dropped), where e,_j = log ~,_,, u, = 
log #, + log b,, and u, is assumed to be random. 3 Equation 17 
provides a theoretical basis for Equation 11 (compare the two 
models to see the equivalence); it shows that fits of  Equation 
11 provide direct estimates of the theoretical parameters 3' 
and X, where 3' scales a perceptual /memory effect, and X 
indicates the relativity of judgment.  

The relative judgment model also has implications for 
Equation 6. In particular, substituting Equation 13a into 
Equation 16 (or simply noting the relation between Equations 
11 and 12) shows that Equation 17 can be rewritten as: 

log Rt = / i  log S~ + (3' - k/t) log St-~ 

+ X logRt - ,  - X'r logS,-2 + ut (17a) 

(the intercept has been dropped). To simplify the situation 
somewhat, it is assumed that log 6, is negligible relative to log 
~,, that is, most of  the variability in responses is assumed to 
arise from noise in the judgmental  process rather than is the 
internal representation. Only the noise structure is modified 
if log b, is considered; the results for the systematic part of  the 
model are unchanged. 

Equation 17a is the theoretical counterpart to Equation 6. 
Its implications, however, are distinctly different from those 

3 We should note that there is more than one way to introduce 
perceptual/memory effects into the model--it can be assumed that 
(a) both ~t',_~ and ~I,, are affected, which suggests a perceptual or 
memory effect, or (b) only ~Iq_~ is affected, which suggests a memory 
effect. We made the first assumption because the resulting model is 
simpler. The predictions examined are the same, irrespective of which 
assumption is made. 



SEQUENTIAL EFFECTS 383 

of  Equation 15. For example, according to Equation 17a, ~2 
of  Equation 6 is an estimate of  (3" - ~ ) .  This means that the 
finding of a negative ~2 for Equation 6 implies either that 3' 
is negative, or that it is positive, but less than X~. Thus, 
Equation 17a, in contrast to Equation 15, shows that fits of  
Equation 6 do not necessarily lead to the conclusion that 3" is 
negative (contrast); it could be positive (assimilation), as long 
as 3" < ~,/3. Clearly, it is important to be explicit about the 
underlying theory. 

Predictions and Previous Evidence 

A basic prediction that follows from the relative judgment 
model is that any factor that increases the influence of  im- 
mediate context on judgment will be reflected by an increase 
in ~. It follows from Equation 17 that ~ for Equation 11 
should be larger, or equivalently, the estimated coefficient of  
log Rt_, for Equation 6 should be larger. The relevant data 
have been provided by Ward (1987) and are presented in 
Table 1. Ward examined two types of  instructions in magni- 
tude estimation experiments, known as absolute and ratio 
magnitude estimation instructions. The crucial difference be- 
tween these instructions, in our view, is that absolute instruc- 
tions lead subjects to rely more heavily on long-term context 
(they are in essence told to ignore the previous response- 
sensation pair), whereas ratio magnitude estimation instruc- 
tions explicitly request subjects to use their immediately pre- 
ceding response and sensation to determine their current 
response. Comparing the results obtained across the two 
instructions, it is apparent that the estimate of  the coefficient 
of log Rt-, is larger for ratio magnitude estimation than for 
absolute magnitude estimation (0.544 versus 0.391). Ward's 
1987 experiment, therefore, provides between-subjects evi- 
dence that supports Equation 16. 

A comparison of  Equations 15 and 17a shows that the two 
judgmental models make different predictions about the re- 
lation between the coefficients of log Rt-, and log SH in 
Equation 6. For example, according to the response heuristics 
model, an increase in the coefficient of  log Rt-, will be 
accompanied by a decrease in the absolute magnitude of the 
coefficient of  log St_, in Equation 6 (Equation 15 shows that 
responses are determined to a lesser extent by perception as 
reliance on the response heuristic increases). According to the 
relative judgment model, on the other hand, an increase in 
the coefficient of log Rt-, will be accompanied by an increase 
in the absolute magnitude of  the coefficient of  log St-, (be- 
cause immediate context is weighted more heavily), as long 
as 3" _ hB (see Equation 17a, Table 2 suggests that this is the 
usual case). Table 1 shows that the results of  Ward's 1987 
manipulation of instructions are in agreement with the pre- 
diction of the relative judgment model: an increase in the 
coefficient of  log Rt-, was accompanied by an increase in the 
absolute magnitude of  the coefficient of  log St-, (from 0.101 
to 0.114), whereas the response heuristics model predicts a 
decrease. 

In sum, Ward's 1987 experiment provides between-subjects 
evidence that supports the relative judgment model: (a) The 
coefficient of log R,-t in Equation 6 was larger when the 
instructions emphasized immediate context over fixed context 
(ratio versus absolute magnitude estimation instructions), and 

(b) a positive relation between the coefficients of  log Rt_, and 
log St-t was found. Although these results provide important 
evidence in favor of  Equation 16, an explicit test of  the model 
is needed. In the next section, experiments are presented in 
which we attempted to directly manipulate the relative weights 
of short- and long-term context by varying the instructions in 
a within-subjects design. 

Exper iment  1: Magni tude  Es t imat ion  

The relative judgment model implies that it should be 
possible to manipulate the magnitude of the observed auto- 
correlation by varying the instructions. The purpose of  the 
first experiment was to test this prediction. Eight subjects 
participated in two sessions. In one session, subjects were 
instructed to make all their judgments relative to one re- 
sponse-sensation pair, which they were allowed to choose. 
This is basically the method of "free" magnitude estimation. 
In the other session, they were instructed to make all their 
judgments relative to the immediately preceding response- 
sensation pair, as in ratio magnitude estimation. The two sets 
of instructions represent two extremes of  Equation 16: ~ = 0 
and ~, = I. 

There are two predictions. First, if the relative judgment 
model is at least partially correct, then the autocorrelation 
parameter of Equation 11 should be larger when immediate 
context is emphasized (see Equation 17), assuming of  course 
that subjects attempt to and are able to follow the instructions. 
In terms of Equation 6, the coefficient of  log Rt-i should be 
larger (see Equation 17a). Second, Equation 17a shows that 
an increase in the coefficient of  log Rt-, for Equation 6 should 
be accompanied by an increase in the absolute magnitude of 
the coefficient of  log St-,. This prediction is contrary to the 
one that follows from the response heuristics model: Equation 
15 shows that an increase in the coefficient of log Rt-, should 
be accompanied by a decrease in the coefficient of  log St-,. 
The relation between the coefficients of  the lagged regressors, 
therefore, permits a discrimination between the two judgmen- 
tal models. 

Method 

Subjects 

Eight subjects, undergraduates enrolled in an introductory psy- 
chology course at SUNY at Stony Brook, served as subjects; they 
received course credit for participating in the experiment. Only 
subjects who claimed to have normal hearing participated. 

Apparatus 

A General Radio Company oscillator was used to generate 1000- 
Hz tones. Seventeen tones, ranging from 40 dB to 88 dB (sound 
pressure), in 3 dB steps, were presented binaurally through Grason 
Shadier headphones (TDH-39); each presentation was 1 s in duration. 
The presentation of the stimuli and recording of responses were 
controlled by an IBM PC. The subject was seated in a sound- 
attenuating chamber (Industrial Acoustics Company) containing an 
intercom, a monochrome terminal, and a KAT (Koala Inc.). The 
KAT is a pad with a surface that maps to the computer terminal; 
movements of a stylus across the surface of the KAT move an arrow 
on the terminal. 
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The stimuli were presented according to sequences generated by 
the uniform probability generator of SAS (see SAS Institute Inc., 
1985a). Only sequences with at least six presentations of each stimulus 
intensity were used. The autocorrelation function and partial auto- 
correlation function (see the Appendix) for each sequence were also 
examined; only sequences with no significant spikes for at least the 
first five lags were used. A total of six different sequences were used. 

Procedure 

Each subject participated in two sessions, separated by 1-4 days. 
The order of instructions was determined by coin tosses. After 4 
subjects had received one of the two instructions first, the remaining 
subjects received the other instruction first, to balance the presenta- 
tion orders. Each session consisted of 200 trials and took less than 1 
hr to complete (including practice trials). 

The subjects were first shown how to use the KAT. They were 
then required to enter five responses to get practice using the KAT. 
As soon as the fifth response was entered, the instructions for a first 
practice session appeared on the terminal. The subjects were required 
to make numerical estimates of eight line lengths, approximately 1.5, 
3, 6, 12, 24, 48, 96, and 192 mm in length, presented at least once 
each, for a total of 12 trials. The instructions were the same as those 
used in the experiment (appropriate for the condition), with the 
substitution of the word "length" for "loudness" (see instructions 
below). Subjects were allowed to proceed at their own pace. 

Upon completion of the first practice session, the subjects were 
given a chance to ask questions and then received the instructions for 
a second practice session by pressing a button on the KAT. The 
second practice session consisted of 12 practice trials with 12 of the 
17 stimuli used in the experiment. Subjects were told that the purpose 
was to familiarize them with the range of stimuli used in the experi- 
ment (the least and most intense tones were among the 12). In 
addition, subjects in the fixed reference condition were told to choose 
their reference loudness and its number during the practice session. 
Upon completion of the second practice session, the message "You 
will now be given an opportunity to review the instructions one more 
time before beginning the experiment. Press the top button to con- 
tinue." appeared on the terminal. After the button was pressed, the 
instructions for the experiment appeared and subjects were given one 
last opportunity to ask questions. They were then able to start the 
experiment by pressing the KAT's button. 

For both conditions, a numerical keypad appeared on the terminal 
approximately 0.5 s after the offset of each tone. The keypad was a 3 
x 4 array consisting of the numbers 0 through 9, a period (for 
decimals), and a clear entry key (to correct mistakes). A rectangle 
labeled ENTER was located on the right side of the keypad. Subjects 
controlled the movement of an arrow located on the keypad (i.e., on 
the terminal) by moving a stylus across the surface of the KAT. 
Subjects entered each digit of their chosen number by placing the 
arrow on a number and then pressing the KAT's button. The final 
response was entered by moving the arrow to ENTER and pressing 
the KAT's button. The next trial began approximately 1 s after the 
response was entered. Subjects quickly became skilled at rapidly 
entering numbers using the keypad. 

The instructions for thefixed reference condition were as follows: 

You will next be presented with a series of tones that vary in 
loudness. Your task is to indicate how loud each tone seems by 
assigning a number to its loudness. Use only one loudness, any 
one you like, and its number as a reference point. Try to make 
all your judgments relative to this reference point. That is, assign 
your numbers so that the ratio of the current number to the 
reference number matches the ratio of the current loudness to 

the relerence loudness. You may use any positive numbers you 
like, including decimals. Do not use zero or negative numbers. 
If you have any questions, please ask the experimenter now. If 
not, press the top button to begin. 

Note that subjects were allowed to choose their own reference point, 
which is basically the method of free magnitude estimation. 

The instructions for the prior reference condition (i.e., ratio mag- 
nitude estimation) were as follows: 

You will next be presented with a series of tones that vary in 
loudness. Your task is to indicate how loud each tone seems by 
assigning a number to its loudness. Use only the immediately 
preceding loudness and its number as a reference point. Try to 
make all your judgments relative to this reference point. That is, 
assign your numbers so that the ratio of the current number to 
the previous number matches the ratio of the current loudness 
to the previous loudness. You may use any positive numbers 
you like, including decimals. Do not use zero or negative num- 
bers. If you have any questions, please ask the experimenter now. 
If not, press the top button to begin. 

The instructions for the two conditions are identical, except for 
the specification to use either one loudness and its number as a 
reference (the fixed reference condition) or the previous loudness and 
its number as a reference (the prior reference condition). 

Results 

Mean and variability of responses. The upper  panels o f  
Figure 1 present the medians  (across subjects) o f  the mean 
log responses to each sound pressure level for the fixed refer- 
ence instructions (left) and prior  reference instructions (right). 
The  group data is summar ized  using medians  in lieu o f  means  
because the pooled data (across subjects) were (slightly) 
skewed (the group summaries  are virtually unchanged,  how- 
ever, i f  means  are used instead of  medians). 

For  both conditions,  the t rend is approximately  linear. The  
fixed reference results suggest a break or  dip at a round 60 dB. 
Departures f rom linearity o f  this sort have frequently been 
found in magni tude est imation experiments  (see Gregson, 
1976; Teghtsoonian,  1985). 

The lower panels o f  Figure 1 present, for each st imulus 
intensity, the medians  and interquarti le ranges (computed  
across subjects) o f  the standard deviations o f  the log responses. 
The  standard deviations were computed  separately for each 
subject, the medians  and interquarti le ranges o f  the standard 
deviations pooled across subjects were then determined.  The  
figure shows that the variability o f  log responses tends to 
decrease with increasing log st imulus intensity, a result also 
evident  in the individual  plots (not shown). This result has 
frequently been found in magni tude  scaling experiments  (e.g., 
see Luce, Baird, Green,  & Smith,  1980; Marley & Cook,  
1986). 

Time series analysis of residuals. Figure 2 presents the 
group autocorrelat ion (ACF), partial autocorrelat ion (PACF), 
and cross-correlation functions (CCF) for the residuals of  
Equat ion 4 (see the Appendix  for a discussion of  these func- 
tions). The  plots were determined in two steps. First, the ACF, 
PACF, and CCFs were computed  and plotted separately for 
each subject using P R O C  A R I M A  of  SAS (see SAS Institute 
Inc., 1985b). The  medians  and interquarti le ranges o f  the 
correlations were then computed  across subjects for each lag 
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Figure I. Experiment h Magnitude estimation of loudness. The 
upper panels present, for both instructions, the medians (across 
subjects) of the mean log responses to each sound pressure level. The 
lower panels present the medians and interquartile ranges (across 
subjects) of the standard deviations of the log responses. 

and are plotted in Figure 2. The group plots provide a sum- 
mary of the individual plots. 

Both ACFs of  Figure 2 show an approximate geometric 
decay, which is a characteristic of autoregressive processes 

Fixed Re fe rence  

1°  1 
o-st 

~ ° q  , - ~ , - , -  
2 -o.5{ 
= / ACF 
< - 1 . o l  . . . . . . .  , , , 

0 1 2 3 4 5 6 7 8  

1.0 

0.5 

0,0 

- 0 . 5  

- 1 . 0  

Pr io r  Re fe rence  

, ACF , , 

1 2 3 4 5 6 7 8  

ilot 
;°51 2f PACF PACF 

:~ -~ .Ol . . . . . . . . .  
0 Q 1 2 ,,3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 

~o,51 0.5 
,~ ,71_ ~_~, ~ ° ° l  " ~ c F " :  . . . .  • . . . .  

l - 
~ -°.5 ,~ 

Log Log 

Figure 2. Experiment 1: Magnitude estimation of loudness. The 
group (medians) autocorrelation functions (ACF), partial autocorre- 
lation functions (PACF), and cross-correlation functions (CCF) are 
presented for the residuals of Equation 4 (see Appendix for compu- 
tational details). The functions are plotted separately for each instruc- 
tion. 

(see Box & Jenkins, 1976, and the Appendix). An abrupt drop 
after the first lag is apparent in both PACFs, which suggests a 
first-order autoregressive error process. 

A comparison of the autocorrelations across the two sets of  
instructions is of  primary interest because the basic prediction 
of the relative judgment model is that the prior reference 
instructions will increase the magnitude of  the first-order 
autocorrelation over that obtained for the fixed reference 
instructions. The ACF and PACF plots of  Figure 2 dearly 
show that the autocorrelation was larger for the prior reference 
instructions. This result is also evident in the individual 
analyses, as shown below by the regression analysis. 

The cross-correlation functions for both instructions show 
a positive correlation between ~t and log S,.,, which is consist- 
ent with the positive relation of  Result 1. Although only the 
cross-correlation for the first lag tends to depart from zero, 
the CCF plots also suggest a pattern of positive correlation(s) 
for the first one or two lags, followed by negative correlations 
for more'  remote lags. This result may be related to one 
obtained by Staddon, King, and Lockhead (1980) in an 
absolute identification experiment. 

Deviations from linearity may affect the time series statis- 
tics. Although this does not seem likely in this case (because 
the deviations are small), this possibility was nevertheless 
assessed by analyzing the residuals obtained by subtracting, 
separately for each subject, the mean log response for each 
stimulus intensity from each individual log response. The 
residuals in this case are estimates of  what is referred to as 
"pure error" in tests of  goodness-of-fit (i.e., tests of linearity) 
for repeat observations (e.g., see Draper & Smith, 1981). No 
assumptions about the form of the function are made (an 
ANOVA model is used). Figure 3 presents the ACF, PACF, 
and CCF obtained (as described above) for the group data 
using the pooled (pure error) residuals. The plots are virtually 
identical to those of  Figure 2. Thus, the sequential effects do 
not arise because of  departures from linearity. 

Figure 4 presents the first-order autocorrelations computed 
separately for each difference between successive log stimulus 
intensities (see Appendix for details). The left and fight panels 
of the figure show the results for the fixed and prior reference 
instructions, respectively. In both cases, an inverted-V pattern 
appears. The pattern is flatter and slightly higher up (the 
autocorrelations are larger) for the prior reference instructions 
than for the fixed reference instructions. The plots show that, 
in addition to the presence of  autocorrelation and cross- 
correlation, there is a pattern of  first-order autocorrelations 
(the relative judgment model provides a simple interpretation 
of this pattern, see Discussion below). 

Regression analysis. Table 3 presents the estimated coef- 
ficients obtained by fitting Equation 4 to each subject's data, 
the mean estimates (across subjects), the coefficient of  deter- 
mination (R2), and the d statistic of the Durbin-Watson (DW) 
test (see the Appendix). The upper half of  the table presents 
the results for the fixed reference instructions, the lower half 
presents the prior reference results. The mean estimate of the 
coefficient of log St is smaller for the prior reference instruc- 
tions (0.546) than for the fixed reference instructions (0.575). 
Both estimates are well within the range of those typically 
found for magnitude estimation of  loudness (see Table l). 
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Figure 3. Experiment 1: Magnitude estimation of loudness. The 
group (medians) autocorrelation, partial autocorrelation, and cross- 
correlation functions are presented for the residuals from a categorical 
(ANOVA) analysis (see the Appendix for computational details). The 
functions are plotted separately for each instruction. 

Table 3 also shows that R z tends to be smaller for the prior 
reference instructions than for the fixed reference instructions 
(see Discussion). The d statistic of  the DW test indicates the 
presence of  first-order autocorrelated errors (in every case 
except one), which is consistent with the results shown in 
Figure 2. The d statistic also tends to be smaller for the prior 
reference instructions, which indicates that the magnitude of 
the autocorrelation is larger, because d = 2( I - p). 

Table 4 presents the results for Equation 11. PROC AU- 
TOREG of SAS was used; this procedure gives maximum 
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Figure 4. Experiment 1: Magnitude estimation of loudness. The 
first-order autocorrelations plotted separately for each (nominal) dif- 
ference between successive log stimulus intensities (see Appendix for 
computational details). 

likelihood estimates of the parameters (see SAS Institute Inc., 
1985b, for details). The upper and lower halves of  the table 
present, respectively, the fixed and prior reference results. The 
results of  significance tests on the estimated coefficients of  the 
lagged regressors are also shown (for the individual analyses). 

The mean estimates of the coefficient of  log S, (0.573 fixed, 
0.546 prior) for the two instructions are virtually identical to 
those obtained for Equation 4. The mean estimates of  the 
coefficient of  log S,_L (0.084 fixed, 0.096 prior) are positive 
and similar in magnitude across the two instructions and are 
also close to those obtained in previous studies (see Table 2). 
The mean estimate of  the autocorrelation parameter, 13, is 
considerably larger for the prior reference instructions (0.557) 
than for the fixed reference instructions (0.283). For the 
individual analysis,/; is larger for 7 of the 8 subjects. 

Table 5 presents the results for Equation 6. The usual 
pattern of  positive coefficients for log R,4 (assimilation) and 
negative coefficients for log S,.~ (contrast) appears across both 
instructions. The mean estimate of the coefficient of log R,_, 
is larger for the prior reference instructions (0.541) than for 
the fixed reference instructions (0.252); both estimates are 
close to the ~s obtained for Equation 11. The results differ 
from those of  Equation 11 in that the mean estimate of  the 
coefficient of log S~.~ is negative and considerably larger for 
the prior reference instructions (-0.167) than for the fixed 
reference instructions (-0.065). 

Discuss ion  

Magnitude scaling procedures are typically used to obtain 
information about the form of the psychophysical function 
and an estimate of its parameters. Another aspect of  these 
procedures, however, is that the temporal structure of  the 
data provides important information about underlying proc- 
esses. As Figure 1 shows, the mean responses are approxi- 
mately the same irrespective of what reference points the 
subjects use. Similarly, Table 3 shows that manipulating the 
instructions has little if any effect on the exponent of Stevens' 
power law. On the other hand, the time series analyses show 
that the sequential structure of  the data is greatly affected by 
the instructions. 

The basic goal of  Experiment 1 was to determine whether 
the magnitude of  the autocorrelation could be manipulated 
within subjects by varying the instructions. As Figure 2 and 
Table 4 show, the observed autocorrelation was considerably 
larger when subjects were instructed to make their judgments 
relative to immediate context instead of  fixed context. In 
addition, Figure 3 shows that the sequential effects are un- 
changed if an arbitrary function (ANOVA) is used in lieu of 
a linear function. Thus, although autocorrelation in magni- 
tude scaling experiments could arise because any one of  a 
number of  (autocorrelated) variables have been omitted from 
the model (e.g., memory, attention, motivation, etc.), the 
results support the view that autocorrelation arises in part 
because of  the relativity of judgment to short- and long- 
term context. Experiment 1 shows that the relative judgment 
model does more than simply explain autocorrelation, it 
suggests how to gain experimental control over it as well. 
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Table 3 
Experiment 1: Results for Equation 4 

Subject S~ R 2 d 

Fixed reference in~ructions 
S1 .529 .901 1.470" 
$2 .665 .876 1.435" 
$3 .984 .809 1.245" 
$4 .558 .823 1.854 
$5 .437 .786 1.538" 
$6 .414 .776 1.366" 
$7 .448 .828 1.400" 
$8 .566 .819 1.609" 

M .575 

Prior reference instructions 
S1 .415 .845 1.014" 
$2 .454 .633 .742* 
$3 1.130 .708 1.171" 
$4 .522 .817 1.200" 
$5 .540 .544 .451" 
$6 .310 .466 .482* 
$7 .372 .698 .802* 
$8 .628 .776 1.503" 

M .546 

Note. d = Durbin-Watson test statistic. 
*p < 0.05. 

Table 3 shows that R 2 for Equation 4 is consistently smaller 
for the prior reference instructions than for the fixed reference 
instructions (the result appears for all eight subjects). Ward 
(1987) also noted a decrease in R 2 (between subjects) across 

Table 4 
Experiment 1." Results for Equation II  

Subject St St - l et_ i R 2 

Fixed ~ n c e i n ~ r u ~ i o n s  
Sl .524 .053* .272* .918 
S2 .663 .092* .267* .902 
$3 .987 .192" .431" .872 
$4 .553 .084* .078 .839 
$5 .440 .006 .231" .807 
$6 .405 .090* .376* .826 
$7 .438 .088* .380* .870 
$8 .569 .069* .232* .839 

M .573 .084 .283 

Prior reference instructions 
S1 .411 .040* .527* .904 
$2 .441 .102" .671" .799 
$3 1.117 .245* .458* .785 
$4 .528 .054* .416" .867 
$5 .559 .065* .778* .823 
$6 .314 .081" .774* .783 
$7 .376 .085* .625* .856 
$8 .617 .094* .209* .795 

M .546 .096 .557 

Note. The coefficient of e~_, was tested for significance using the d 
statistic computed on the residuals of Equation 5. 
* p < 0.05. 

ratio and absolute magnitude estimation instructions. It is 
simple to show that this decrease is consistent with an increase 
in autocorrelation. If e, = pe,.t + ut, it follows from the 
assumptions about e, and ut noted above that 

= V a r ( ~ ) = V a f f p e , .  + u,) = p2Var(~.O + Var(ut) 

because it follows from the stationarity assumption that 
Var(e~.J = Var(e,) = ~2. Rearranging the last line of the above 
gives; 

~ = ~ / ( 1  - o ~) 

Thus, an increase in p leads to an increase in ~ ,  which in 
turn leads to a decrease in R 2 for Equation 4 (assuming that 

is approximately the same across the two instructions). In 
words, the accumulation of judgmental error over trials leads 
to an increase in the variability of responses that is not 
accounted for by the systematic part of the regression model. 

As was discussed above, the two judgmental models (Equa- 
tions 14 and 16) make different predictions about the behavior 
of the coefficients of the lagged regressors of Equation 6. In 
particular, the relative judgment model predicts that an in- 
crease in/33 will be accompanied by an increase in the absolute 
magnitude of #2 (at least for values of 3' --- )~, see Equation 
17a; Table 2 shows that this appears to be the usual case), 
whereas the response heuristics model predicts that r2 will 
decrease with an increase in f13. Table 5 shows that an increase 
in the estimate of the coefficient of log R,.I was accompanied 
by an increase in the absolute magnitude of the estimate of 
the coefficient of log S,, (from a mean of 0.065 to 0.167), in 
agreement with the relative judgment prediction. Ward's 
(I 987) results also show the predicted increase. 

Although the focus of the present article is on sequential 
effects, there are other characteristics of magnitude scaling 
data that have received attention (for a recent list, see Marley 
& Cook, 1986). For example, Figure 1 shows that the standard 
deviations of the logarithmically transformed responses tend 
to be smaller for larger stimulus intensities (this is usually 
referred to as an "end effect"). Several researchers have con- 
sidered this result to have implications about underlying 
processes and have incorporated it into theoretical accounts 
(e.g., Braida, 1984; Marley & Cook, 1986). 

Another result that has received attention in psychophysics 
is the inverted-V pattern first noted by Jesteadt et al. (1977) 
and shown in Figure 4 above. The relative judgment model 
suggests a simple interpretation of this finding: Immediate 
context is weighted more heavily in judgment when successive 
stimuli are similar. This suggests modifying the model by, for 
example, expressing ;~ as a function of log stimulus differences 
or by introducing an indicator variable as (for example) 
follows: 

R, = (Ro/',I%)~~'D,"t'dR~.ffff't.JXD,t~t 

where D, = 1 if the successive log stimulus difference is less 
than some value (say 15 dB for loudness estimation) and D~ 
= 0 if it is greater than that value (another possibility is to set 
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Table 5 
Experiment 1: Results for Equation 6 

Subject St St- z R~- ~ R 2 

instructions. For  Exper iment  2c, a class o f  18 students made  
magni tude estimates o f  the area o f  circles. Each half  of  the 
class received one o f  the two types o f  instructions. 

Fixed reference instructions 

SI .525 -.080* .252* .917 
$2 .667 -.085 .282* .905 
$3 .987 -.167" .367* .866 
$4 .552 .045 .071 .842 
$5 .439 -.100" .231" .797 
$6 .407 -.040 .316" .836 
$7 .437 -.047 .305* .877 
$8 .568 -.047 .188" .834 

M .572 -.065 .252 

SI 
$2 
$3 
$4 
$5 
$6 
$7 
$8 

M 

Prior re~renceinstru~ions 

.409 -.167" .495* .889 

.445 - .164" .625* .823 
1.132 - .210" .410" .790 
.530 - .155" .401" .855 
.576 -.352* .781" .828 
.342 -.123" .766* .840 
.390 -.118" .604* .862 
.617 - .048 .248* .813 

.555 -.167 .541 

* p < 0.05. 

D, equal to 0 or 1, depending on the log st imulus difference 
relative to the range of  log st imulus intensities used in the 
experiment).  If  the residuals f rom the modif ied model  no 
longer show the inverted-V pattern, then the model  is ade- 
quate. However ,  al though modif icat ions such as the above 
may account  for the inverted-V pattern (several other  recent 
theories also offer post-hoe accounts  o f  this result), further 
research is needed to determine  whether  or  not  the modifi-  
cation (i.e., the int roduct ion o f  additional parameters) is 
worthwhile (in terms of  generating new predictions and ex- 
periments).  

In sum, the results of  Exper iment  1 are in agreement  with 
the predictions o f  the relative j udgmen t  model.  In the next 
experiments,  we examine  the generality and replicability o f  
these results. 

Experiment 2: Cross-modality Matching and 
Magnitude Estimation 

The purpose o f  Exper iment  2a was to determine  whether  
the results depend in some way on number  usage. Eight 
subjects were required to produce line-lengths in response to 
different intensities o f  a 1000-Hz tone. The  exper iment  was 
similar in all respects to Exper iment  1 (two sets of  instructions 
were used in a within subjects design), with the except ion that  
instead of  numbers,  responses consisted of  line-lengths pro- 
duced by the subjects. 

Experiments  2b and 2c present between-subjects evidence 
o f  the effect o f  varying the instructions. Exper iment  2a was a 
classroom demonst ra t ion  that served as a pilot for Exper iment  
1. A class of  52 students made  magni tude  estimates o f  the 
loudness o f  noise bursts; hal f  the class were given fixed refer- 
ence instructions, the other  half  were given prior reference 

Method 

Subjects 

Cross-modality matching. Eight subjects, undergraduates en- 
rolled in an introductory psychology course at SUNY at Stony Brook, 
served as subjects; they received course credit for participating in the 
experiment. Only subjects who claimed to have normal hearing 
participated. 

Loudness and area estimation. The loudness estimation experi- 
ment consisted of 52 subjects enrolled in a sensation/perception class 
at SUNY at Stony Brook taught by L. T. DeCarlo. The area estima- 
tion experiment consisted of 18 subjects enrolled in a research meth- 
odology class at SUNY at Stony Brook. In both cases, participation 
in the experiment was voluntary. 

Apparatus 

Cross-modality matching. The apparatus was the same as that of 
Experiment 1. Seventeen tones, ranging from 40 to 88 dB in 3 dB 
steps, were presented binaurally through Grason Stadler headphones; 
each presentation was 1 s in duration. The order of presentation of 
the stimuli was determined by the sequences used in Experiment 1. 

Loudness estimation. A General Radio Company noise generator 
was used to generate USASI noise bursts of 2 s duration. Seventeen 
noise bursts, covering a 48-dB range in 3 dB steps, were presented 
according to a sequence generated by the uniform probability gener- 
ator of SAS. The selected sequence had at least four presentations of 
each stimulus intensity and no significant spikes in the ACF for at 
least the first five lags. The same sequence was used for both instruc- 
tions. The noise bursts were presented once every 6 s according to 
the selected sequence, and were taped using a Revox reel-to-reel tape 
recorder (model B77 MK 11). The Revox recorder was used along 
with a single speaker to play back the amplified noise bursts to the 
class. Before the start of class, the most intense noise burst was 
measured as approximately 104 dB, using a sound meter held about 
5 feet directly in front of the speaker. 

Area estimation. Nineteen circles were cut out of thin black 
plastic and were mounted on 282 x 356-mm white cardboard. The 
diameters of the 19 circles (in millimeters) were approximately 20, 
23, 26, 30, 35, 40, 46, 53, 61, 70, 80, 93, 107, 123, 141, 163, 187, 
215, and 247. The circles were presented according to a random 
sequence generated as described above. The same sequence was used 
for both sets of instructions (except that the order of two of the stimuli 
differed across the two conditions because of an error made during 
the stimulus presentations). The circles were presented for approxi- 
mately 3 s each with an intertrial interval of approximately 6 s. 

Procedure 

Cross-modality matching. The procedure was identical to that of 
Experiment 1, with the following exceptions. For the first practice 
session, subjects were required to enter line lengths in response to the 
numbers 2, 3, 5, 7, 10, 15, 20, 30, 50, 75, 125, and 200; the 12 
numbers were presented in a random order, for a total of 12 trials. 
For the second practice session (12 trials), subjects assigned line 
lengths to 12 of the 17 stimulus intensities used in the experiment 
(the least and most intense were included). 

During the experiment, a line length appeared in the middle of the 
screen approximately 0.5 s after the offset of each tone. The initial 
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length of the line was 1 of 50 values determined by sequences 
produced by the uniform probability generator of SAS. The lengths 
covered approximately the full range. Only "initial-length" sequences 
with no significant autocorrelations for at least the first five lags of 
the ACF were used. The cross-correlation functions of the stimulus 
sequences and the initial-length sequences were also examined; only 
initial-length sequences with no significant cross-correlations with the 
stimulus sequences for at least the first five lags were used. 

The subjects used the KAT to adjust the length of each line. 
Moving a stylus across the surface of the KAT increased or decreased 
the line length; movements to the right increased the line length, 
whereas movements to the left decreased the line length. The smallest 
line length subjects were able to produce was about 2 ram, the longest 
was about 203 mm. 

The instructions for the fixed reference condition were as follows: 

You will next be presented with a series of tones that vary in 
loudness. Your task is to indicate how loud each tone seems by 
assigning a line length to its loudness. Use only one loudness, 
any one you like, and its line length as a reference point. Try to 
make all your judgments relative to this reference point. That is, 
adjust your line lengths so that the ratio of the current length to 
the reference length matches the ratio of the current loudness to 
the reference loudness. If you have any questions, please ask the 
experimenter now. If not, press the top button to begin. 

Fixed Reference Prior Reference 
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Figure 5. Experiment 2a: Cross-modality matching. The upper 
panels present, for both instructions, the medians (across subjects) of 
the mean log responses (line lengths in millimeters) to each sound 
pressure level. The lower panels present the medians and interquartile 
ranges (across subjects) of the standard deviations of the log responses. 

Subjects were allowed to choose their own reference point. The 
instructions for the prior reference condition were as follows: 

You will next be presented with a series of tones that vary in 
loudness. Your task is to indicate how loud each tone seems by 
assigning a line length to its loudness. Use only the immediately 
preceding loudness and its line length as a reference point. Try 
to make all your judgments relative to this reference point. That 
is, adjust your line lengths so that the ratio of the current length 
to the reference length matches the ratio of the current loudness 
to the reference loudness. If you have any questions, please ask 
the experimenter now. If not, press the top button to begin. 

reference instructions (subjects were allowed to choose their own 
modulus). 

Each response folder contained two sheets with the numbers 1 
through 30 printed vertically on the front and back of each sheet. 
Subjects were instructed to slide each sheet up into the folder after 
they wrote each response, so that responses from previous trials were 
covered. The folders were collected at the end of each session, and 
the responses were entered into a spreadsheet. 

Results and Discussion 

The instructions are identical to those of Experiment 1, with the 
substitution of the words "line length" for "number." 

Loudness and area estimation. At the start of class, folders con- 
taining response sheets were distributed. The folders were numbered 
from 1 to 52 for the loudness estimation experiment and from l to 
18 for the area estimation experiment. Subjects with even numbers 
participated first, while the other half of the class waited outside the 
classroom. A coin toss was used to determine which instruction was 
given first (fixed reference in both cases). The loudness estimation 
experiment consisted of 120 trials, the area estimation of 118 trials. 
Each session (including practice trials) took about 30 min to complete. 

The subjects were first given a practice session that consisted of 20 
trials for the loudness estimation experiment (where each stimulus 
intensity was presented at least once), and 12 trials for the area 
estimation experiment (where the largest and smallest circles were 
included). Subjects were told that the purpose of the practice trials 
was to familiarize them with the range of stimuli used in the experi- 
ment. In addition, subjects in the fixed reference condition (of the 
loudness estimation experiment) were told to choose their reference 
loudness and its number during the practice session. 

Subjects in the loudness estimation experiment were instructed to 
make relative judgments of loudness using either one loudness and 
its number as a reference point (fixed reference instructions), or the 
immediately preceding loudness and its number as a reference point 
(prior reference instructions). The instructions for the area estimation 
experiment were read to the subjects by the experimenter. + The 
instructions were identical to those presented above, except that 
subjects were asked to judge area. In addition, the middle-sized circle 
(70-mm diameter) was designated as the standard for the fixed 

Mean and Variability o f  Responses 

Cross-modality matching. The  upper  panels o f  Figure 5 
show, separately for each instruction, the medians  (across 
subjects) of  the mean  log responses to each sound pressure 
level. The  t rend is approximately  linear. The  lower panels 
present the medians  and interquarti le ranges (across subjects) 
of  the standard deviat ions of  the log responses. As in Experi- 
men t  1, the variability tends to decrease as s t imulus intensity 
increases. 

Loudness estimation. The upper panels o f  Figure 6 pres- 
ent  the medians  (across subjects) o f  the mean  log responses 
to each (nominal  dB) noise burst for the fixed reference (left) 
and prior reference instructions (right). The  t rend in both 
cases is approximately  linear. The  lower panels show the 
medians  and interquarti le ranges (across subjects) of  the stand- 
ard deviations. The  variability of  the log responses decreases 
for higher st imulus intensities. The  results replicate those o f  
Exper iment  1. 

Area estimation. The upper  panels o f  Figure 7 show the 
medians  (across subjects) of  the mean  log responses to each 
log area (in square centimeters)  for the fixed (left) and prior 
(right) reference instructions. The  t rend in both cases is ap- 
proximately linear. The  lower panels present the medians  and 

4 We thank Gregory Corona for conducting this experiment. 
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Figure 6. Experiment 2b: Magnitude estimation of loudness. The 
upper panels present, for both instructions, the medians (across 
subjects) of the mean log responses to each sound pressure level. The 
lower panels present the medians and interquartile ranges (across 
subjects) of the standard deviations of the log responses. 

interquartile ranges (across subjects) of  the standard devia- 
tions of the log responses. There appears to be a decrease in 
variability at the standard for the fixed reference instructions; 
this result has frequently been found when visual area is 
judged (see Baird, 1970; Baird, Green, & Luce, 1980). 

Time Series Analysis of  Residuals 

Cross-modality matching. Figure 8 presents the group 
autocorrelation, partial autocorrelation, and cross-correlation 
functions for the residuals of Equation 4, computed as de- 
scribed above. The CCF plots are similar to those obtained in 
Experiment 1; both show a positive correlation between 6t 
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Figure 7. Experiment 2c: Magnitude estimation of area. The upper 
panels present, for both instructions, the medians (across subjects) of 
the mean log responses to each log area (square centimeters). The 
lower panels present the medians and interquartile ranges (across 
subjects) of the standard deviations of the log responses. 

and log S,.~. The critical finding is that the ACF and PACF 
plots show that the prior reference instructions yielded larger 
autocorrelation. Thus, manipulation of  the instructions in- 
creases the autocorrelation, irrespective of  whether responses 
are lines or numbers. 

Figure 9 presents the first-order autocorrelations plotted 
separately for each difference between successive log stimulus 
magnitudes. The left panel shows the results for the fixed 
reference instructions, the fight panel shows the prior refer- 
ence results. In both cases, an inverted-V pattern is evident. 
The results are consistent with those of  Experiment 1 and 
Jesteadt et al. (1977). 

Loudness estimation. Figure 10 presents the group auto- 
correlation, partial autocorrelation, and cross-correlation 
functions for the residuals of Equation 4. A geometric decay 
appears in both ACF plots. It is also apparent that the auto- 
correlation is larger for the prior reference instructions than 
for the fixed reference instructions. The PACF plots show 
spikes for the first (and perhaps second) lags. A positive 
correlation between 6, and log S~.~ appears in the CCF plots. 

Area estimation. Figure 11 presents the ACF, PACF, and 
CCF for the residuals of  Equation 4. The ACF and PACF for 
the fixed reference instructions show no evidence of  autocor- 
relation. Whether this is a characteristic of  area estimation 
(perhaps because of better visual memory than auditory 
memory) or whether it resulted from the instruction to use 
the middle circle as a standard is not known. In contrast, 
autocorrelation is evident in the ACF and PACF plots for the 
prior reference instructions. There are no spikes in the CCF 
for the fixed reference instructions, whereas the CCF for the 
prior reference instructions shows a small positive spike for 
the first lag. 

Figure 12 presents, for both experiments, the first-order 
autocorrelations plotted separately for each difference be- 
tween successive log stimulus magnitudes. The upper panels 
show the results for loudness estimation, the lower panels 
show the results for area estimation. An inverted-V pattern is 
evident for both experiments. 

Regression Analysis 

Cross-modality matching. Table 6 presents the results for 
Equation 4. The upper half of the table presents the fixed 
reference results, the lower half the prior reference results. 
The mean estimate of  the coefficient of log S, is smaller for 
the prior reference instructions (0.596) than for the fixed 
reference instructions (0.700); both coefficients are well within 
the range of  those typically obtained for loudness estimation 
(see Table 1). The individual fits show that R 2 tends to be 
smaller for the prior reference instructions than for the fixed 
reference instructions; the result appears for 7 of  the 8 subjects. 
As was noted above, this result is consistent with larger 
autocorrelation. The d statistic of  the DW test indicates the 
presence of  first-order autocorrelation in almost every case, 
which is consistent with Figure 6. The d statistic is also smaller 
for the prior reference instructions than for the fixed reference 
instructions (for 7 of  the 8 subjects), which, as noted above, 
indicates larger autocorrelation. 

Table 7 presents the results for Equation 11 (see the Appen- 
dix). The upper and lower halves of  the table present, respec- 
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Figure 8. Experiment 2a: Cross-modality matching. The group (me- 
dians) autocorrelation functions (ACF), partial autocorrelation func- 
tions (PACF), and cross-con'elation functions (CCF) are presented 
for the residuals of Equation 4 (see Appendix for computational 
details). The functions are plotted separately for each instruction. 

tively, the results for the fixed and prior reference instructions. 
The mean estimates of  the coefficient of log St (0.695 fixed, 
0.591 prior) are virtually identical to those obtained for fits 
of  Equation 4. The mean estimates of the coefficient of log 
S~, are similar across the two instructions (0.060 fixed, 0.067 
prior) and are close in magnitude to those obtained above 
and in previous studies (see Table 2). The mean estimate of 
o is considerably larger for the prior reference instructions 
(0.427) than for the fixed reference instructions (0.277); the 
result appears for seven of  the eight individual cases. 

Table 8 presents the results for Equation 6. The usual 
pattern of  positive and negative coefficients for log Rt.~ and 
log S,.~, respectively, appears across both sets of  instructions. 
The mean estimate of  the coefficient of  log S~.~ is larger in 
absolute magnitude for the prior reference instructions (0.173) 
than for the fixed reference instructions (0.120). The mean 
estimate of  the coefficient of  log R,4 is larger for the prior 
reference instructions than for the fixed reference instructions 
(0.417 vs. 0.268); the estimates are close in magnitude to the 
mean t;s of Table 7. 

Loudness estimation. Table 9 presents, for both experi- 
ments, the mean (across subjects) estimates obtained for fits 
of Equation 11. For loudness estimation, the mean estimated 
coefficients of log S, (0.479 fixed, 0.414 prior) are smaller 
than those found in Experiments 1 and 2, and the estimated 
coefficients of  log S,., are small, positive, and virtually iden- 
tical across the two instructions (0.044 fixed, 0.043 prior). 
The mean ~ is larger for the prior reference instructions 
(0.421) than for the fixed reference instructions (0.276). Once 
again, emphasizing immediate context leads to greater auto- 
correlation. 

Area estimation. The mean estimates of  the coefficient of  
log S, (0.697 and 0.802) are within the range of  those typically 
found for area estimation (see Baird, 1970, Table 3.3, p. 50- 
51). The mean estimate of the coefficient of log S,_, for the 
fixed reference instructions is close to zero (-0.006), whereas 
that for the prior reference instructions is small and positive 
(0.044). The mean estimate ofp  is considerably larger for the 
prior reference instructions (0.348) than for the fixed reference 
instructions (0.035). 

Table 9 also presents the results for Equation 6. The usual 
finding of positive and negative coefficients for log Rt-i and 
log S,4, respectively, appears in both experiments. The mean 
estimate of the coefficient of  log S,.t is larger in absolute 
magnitude for the prior reference instructions than for the 
fixed reference instructions (0.115 vs. 0.082 for loudness 
estimation, 0.274 vs. 0.030 for area estimation). This agrees 
with Experiments 1 and 2 above, and with Ward's (1987) 
results. The mean estimate of the coefficient of  log R,4 is 
larger for the prior reference instructions than for the fixed 
reference instructions (0.408 vs. 0.265 for loudness estima- 
tion, 0.360 vs. 0.041 for area estimation); the estimates are 
similar in magnitude to the estimates of p. 

Fixed Reference 
1.0 

.o T,T \ 
~_~ 0.6 
0 
~ 0.2 ~ 
3 i 
o-0=  1 I 'T'II 
<~ -0 .6  , , , , , 

- 4 8 - . 5 2 - 1 6  0 16 32 48 

St imu lus  Di f fe rence  

Prior Reference 
1.0~ 

0 . 6  I 1 " " ' 

- 4 8 - 3 2 - 1 6  0 16 52 4-8 

Stimulus Difference 

Figure 9. Experiment 2a: Cross-modality matching. The first-order 
autocorrelations plotted separately for each (nominal) difference be- 
tween successive log stimulus intensities (see Appendix for compu- 
tational details). 

Genera l  Discussion 

If regression models are to be used for more than merely 
descriptive purposes, then the relation between their coeffi- 
cients and the parameters of  theoretical models must be made 
explicit. For example, it was shown above that conclusions 
about the perceptual/memory process depend on which judg- 
mental process is assumed. In particular, we noted that ob- 
taining a negative value for the coefficient of log St4 does not 
automatically lead to the conclusion that the underlying per- 
ceptual process is contrastive. Equation 17a, together with 
Table 2, present another possibility: if judgment is relative, in 
the sense of  Equation 16, then an assimilative influence can 
appear to be contrastive. Clearly, conclusions about underly- 
ing processes must be tempered by a recognition of  how 
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Figure 10. Experiment 2b: Magnitude estimation of loudness. The 
group (medians) autocorrelation functions (ACF), partial autocorre- 
lation functions (PACF), and cross-correlation functions (CCF) are 
presented for the residuals of Equation 4 (see Appendix for compu- 
tational details). 

different models, with different interpretations, are interre- 
lated. 

We have also stressed the importance of  the error term in 
theoretical and empirical models. Our analysis, for example, 
shifts attention from the autocorrelation of  successive log 
responses, which has frequently been the focus in prior re- 
search, to the autocorrelation of residuals. Several advantages 
of analyzing the residuals were shown. For example, although 
Equation 5 accounts for the autocorrelation of  log responses, 
it does not account for the autocorrelation of  Equation 4's 
residuals. Thus, analysis of  the residuals reveals that Equation 
5 is not complete, whereas analysis of  log responses does not. 
It is also noted in the Appendix that there are advantages to 
checking for the inverted-V pattern by analyzing the residuals 
instead of  log responses. 

We also show that it is important  to include the error term 
in algebraic manipulations of  theoretical models. For exam- 
ple, it was shown above that the response ratio hypothesis of  
Luce and Green (1974a, 1974b; Equation 7) predicts sequen- 
tial effects if an error term is included in the model, otherwise 
it does not. 

The basic issue addressed in the present article is that, 
although Equation 6 accounts for the observed autocorrela- 
tion, questions remain as to the source of  the autocorrelation. 
According to the response heuristics model (Equation 14), the 
autocorrelation arises from a response process. In particular, 
subjects' responses are viewed as being determined by not 
only sensation magnitude, but also by the use of  a response 
heuristic, such as the tendency to choose a response close to 
the previous response. The heuristic is typically considered as 

being used when subjects are uncertain about sensation mag- 
nitude. This view motivated Ward's  1979 attempt to test the 
model by manipulating information. Ward used computer 
simulation to show that increased reliance on the heuristic 
should lead to a decrease in the magnitude of  the coefficients 
of  log St and log St.~ in Equation 6. As was shown above, this 
prediction follows directly from Equation 14--as reliance on 
the heuristic increases, responses are determined to a lesser 
extent by perception, which in turn depends on the current 
and previous stimulus intensities (see Equation 13a). Ward's  
1979 results were somewhat ambiguous: the magnitude esti- 
mation experiment supported the predictions, but the cross- 
modality matching experiment did not. It is also not clear 
what the "low information" results reveal about judgmental  
processes in the typical "high information" conditions of  
magnitude scaling experiments. 

According to the relative judgment model (Equation 16), 
autocorrelation arises because of  the influence of different 
frames of  reference on judgment.  The basic implication of  
the model, as shown by Equations 17 and 17a, is that the 
autocorrelation parameter of Equation 11 or, similarly, the 
coefficient of  log R,_, in Equation 6 can be interpreted as a 
measure of  the relativity of  judgment  to short- and long-term 
context. Evidence in favor of  this interpretation is provided 
by Ward's  1987 experiment: the autocorrelation was larger 
(between subjects) for ratio magnitude estimation instructions 
than for absolute magnitude estimation instructions. How- 
ever, rather than simply presenting a post hoc explanation of  
autocorrelation, we tested the model using a within-subjects 

~) 1.0 I 0.5 

L 

~ - - 0 5  

- - 1 0  
0 

g 

 i'il ~ 0 5  L 

3 
o 

? 

~ 0 
G_ 

1 
*0 0 5  

oo 

0 

(~ - 1 , 0  
0 1 2 3 

Fixed Reference Prior Reference 
1.0 

0.5! 1 

t ~ - -  ! ~ ~ 0.0 - ~  

-0.5 
ACF ACE 

-10 , 1 2 3 4 5 6 7 8 9 " 1 ½ ; '~ ; 6 ; 8 

1.0 

0"5 I 0.0 

-0.5 

-1.0 
PACE 

I 

PACF 

1 2 3 4 5 6 7 8  0 1 2 3 4 5 6 7 8  

,o I 

I 
= ~ 0.0 

-0.5 
CCF 

, - 1 0  
4 5 6 7 8 9  0 
Lag 

CCF 

1 2 5 4 5 5 7 8  
Lag 

Figure 11. Experiment 2c: Magnitude estimation of area. The group 
(medians) autocorrelation functions (ACF), partial autocorrelation 
functions (PACF), and cross-correlation functions (CCF) are pre- 
sented for the residuals of Equation 4 (see Appendix for computa- 
tional details). 
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Figure 12. Experiments 2b & c: Magnitude estimation of loudness 
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sive log stimulus intensities (see Appendix for computational details). 

Table 7 

Experiment 2a: Results for Equation 11 

Subject St St-  i e t -  l R :z 

Fixed re~renceinstrucfions 

SI .659 .039* .345* .860 
$2 .702 .018 .379* .892 
$3 .565 .063* .316" .876 
$4 .820 .094* .285* .831 
$5 .812 .027 .105 .706 
$6 .794 .051" .061 .897 
$7 .618 .058* .454* .838 
$8 .591 .134" .274* .752 

M .695 .060 .277 

Prior ~rencein~rucfions 
S1 .788 .064* .468* .831 
$2 .560 .042* .584* .893 
$3 .390 .018 .140 .711 
$4 .642 .136" .347* .798 
$5 .736 .024 .273* .747 
$6 .585 .063* .316" .871 
$7 .459 .105" .592* .828 
$8 .532 .083* .696* .795 

M .591 .067 .427 

Note. The coefficient of e~_ ~ was tested for significance using the d 
statistic computed on the residuals of Equation 5, 
* p < 0.05. 

design. If the model is at least partially correct, then it should 
be possible to manipulate the magnitude of the observed 
autocorrelation by varying the instructions. All four of the 
experiments presented above, as well as Ward's 1987 study, 
show that varying the instructions affects the magnitude of 
the observed autocorrelation as expected: The autocorrelation 

Table 6 
Experiment 2a: Results for Equation 4 

Subject St R 2 d 

Fixed reference instructions 

S1 .666 .835 1.325" 
$2 .670 .858 1.237" 
$3 .570 .851 1.396" 
$4 .835 .814 1.474" 
$5 .810 .700 1.766 
$6 .797 .893 1.909 
$7 .621 .776 1.019" 
$8 .599 .716 1.505" 

M .700 

Prior reference instructions 
S1 .791 .773 1.073" 
$2 .602 .803 .852* 
$3 .391 .706 1.703" 
$4 .654 .750 1.352" 
$5 .727 .713 1.456" 
$6 .587 .844 1.387" 
$7 .465 .667 .781" 
$8 .550 .589 .623* 

M .596 

* p < 0.05. 

was consistently larger when the instructions emphasized the 
short-term frame over the long-term frame. The increase in 
autocorrelation is also consistent with the finding of the 
present experiments, and Ward (1987), that R 2 for fits of 
Stevens's power law tends to be smaller for ratio magnitude 
estimation instructions than for absolute magnitude estima- 
tion instructions. 

A comparison of Equations 15 and 17a shows that the two 
judgmental models make different predictions about the be- 
havior of the coefficients of the lagged regressors in Equation 
6. The response heuristics model predicts that an increase in 
the magnitude of the coefficient of log Rt4 will be accom- 
panied by a decrease in the absolute magnitude of the coeffi- 
cient of log St4, because responses are determined to a lesser 
extent by perception as reliance on the heuristic increases. On 
the other hand, the relative judgment model predicts that an 
increase in the coefficient of log R,, will be accompanied by 
an increase in the magnitude of the coefficient of log S,_,, 
because of the greater influence of immediate context. All of 
our results, as well as Ward's (1987) data, support the predic- 
tion of the relative judgment model: An increase in the 
coefficient of log R,, for Equation 6 was accompanied by an 
increase in the absolute magnitude of the coefficient of log 
S t -  I • 

Although the results support the relative judgment model 
over the response heuristics model, we do not conclude that 
the latter model should be dropped; some of the autocorrela- 
tion might arise because a heuristic is used. Instead, our goal 
has been to show that autocorrelation in magnitude scaling 
arises in large part because of the relativity of judgment to 
short- and long-term context. Equation 16 is important be- 
cause it explicitly defines the contexts, clarifies the role of 
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Table 8 

Experiment 2a: Results for Equation 6 

Subject St St- t Rt- j R 2 

Fixed reference instructions 
SI .660 -.186" .338* .855 
$2 .699 -.259* .380* .878 
$3 .566 -.105" .302* .875 
$4 .821 -.131" .263* .837 
$5 .812 -.063 .113 .703 
$6 .794 .019 .037 .898 
$7 .625 -.225* .469* .844 
$8 .589 -.011 .242* .769 

M .696 -.120 .268 

S1 
$2 
$3 
$4 
$5 
$6 
$7 
$8 

Prior reference instructions 
.791 -.298* .462* .827 
.603 -.298* .573* .872 
.390 -.040 .144" .715 
.652 -.064 .323* .812 
.735 -.179" .273* .735 
.586 -.114" .302* .867 
.470 -.142" .575* .845 
.552 -.252* .686* .813 

M .597 -.173 .417 

* p < 0.05. 

judgmental error in magnitude scaling, allows us to make 
specific predictions about the behavior of the coefficients of 
empirical models, and indicates how to gain experimental 
control over the time series structure of the data. The model 
incorporates earlier ideas about absolute and relative judg- 
ment and is also in line with recent research suggesting that 
responses in magnitude scaling experiments represent a com- 
promise between absolute and relative judgment (e.g., Marks, 
Szczesiul, & Ohlott, 1986; Ward, 1987). 

In a recent review of psychophysical scaling, Gescheider 
(1988) noted that there are "two fundamentally different 
approaches to research on psychophysical scaling" (p. 183). 
One "represents the approach of the sensory scientist whose 
goal is to obtain unbiased scales of sensory magnitude to study 
sensory processes," the second "represents the approach of 
the cognitive scientist whose goal is to understand the process 
of judgment." The present article shows that it is important 
to understand both cognitive and perceptual processes, irre- 
spective of one's research orientation. 

Table 9 
Experiments 2b & c: Mean Coefficients for 
Equations 11 and 6 

Equation 11 Equation 6 

Instructions St St- t e t -  ] St S t -  ] R t -  x 

Magnitude estimation of noise 
Fixed .479 .043 , 2 7 6  . 4 7 9  -.082 .265 
Prior .414 .044 ,421 .416 -.115 .408 

Magnitude e~imation ofarea 
Fixed .697 -.006 . 0 3 5  . 6 9 7  -.030 .041 
Prior .802 .044 . 3 4 8  . 8 0 0  -.274 .360 
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Appendix 

Time Series Analysis of Psychophysical Data 

This section reviews the Durbin-Watson test, several cor- 
relation functions used in time series analysis, and the method 
of estimation for Equation 1 I. 
The Durbin-Watson Test 

The Durbin-Watson (DW) test (Durbin & Watson, 1950, 
1951) is a widely accepted test for autocorrelation that is 
available in most statistical packages (e.g., SAS, SPSS, 
BMDP). The test assumes that the error terms follow an 
AR(1) error process (Equation 8) and determines whether or 
not p is zero. If it is, Equation 8 reduces to e, = u,, and the 

errors are uncorrelated. The d statistic of the DW test is 
computed from the residuals of an ordinary least squares 
regression as follows: 

d -  ZT=2(~t - &t)2 (A1) 
E,L,~? 

where T is the number of trials. If p equals zero, then the d 
statistic is approximately equal to 2. Values of d less than 2 
indicate positive autocorrelation, whereas values greater than 
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2 indicate negative autocorrelation. The DW test is a bounds 
test; that is, the null hypothesis is rejected if d falls outside 
lower and upper bounds, dE and du, tabulated by Durbin and 
Watson and reprinted in many statistical texts. When testing 
for positive autocorrelation, it is concluded that p = 0 if d > 
du, and that p > 0 i fd  < dL; the test is inconclusive ifdL ~ d 
--< du. To test for negatively autocorrelated errors, the test 
statistic used is 4 - d. 

A significant value of  the d statistic means that either (a) 
the functional form of the model has been misspecified, or 
the model variables are incorrect (either relevant variables 
have been omitted, or irrelevant variables have been in- 
cluded), (b) the errors are generated by a first-order autore- 
gressive process, or (c) the errors are generated by some other 
process. There are three alternatives instead of  one because 
the test is not robust to other violations of  the model. For this 
reason, the DW test is considered to be a test of  model 
misspecification (e.g., see Johnston, 1984). 
Correlation Functions 

The DW test is relevant for psychophysical research because 
the evidence discussed in the text clearly indicates the presence 
of first-order autocorrelation. Higher order autocorrelations, 
however, should also be examined. We analyze the residuals 
of  Equation 4 using the autocorrelation function (ACF), 
partial autocorrelation function (PACF), and cross-correla- 
tion function (CCF). The ACF is the correlation between 
residuals separated by lags of  0, 1, 2, and so on. The PACF is 
similar, except that correlations for intermediate lags are 
partialed out (see Box & Jenkins, 1976). These plots are used 
in time series analysis to determine whether or not the process 
is stationary, to indicate the order of  the process, and to 
determine whether an autoregressive process is appropriate, 
or whether another process should be considered. For exam- 
ple, it is simple to show for a first-order autoregressive process 
that the ACF is a geometrically decaying function of  the lag. 
The PACF for an AR(1) process, on the other hand, cuts off 
abruptly after the first lag (see Box & Jenkins, 1976). Thus, 
for example, if p is positive and the errors are first-order 
autocorrelated, then the (theoretical) ACF will show a geo- 
metric decay over lags, whereas the PACF will show an abrupt 
drop after the first lag. 

The CCF we examine is the cross-correlation of  Equation 
4's residuals with the current and lagged log stimulus values. 
This type of  plot is used in time series analysis to determine 
the appropriate transfer function (see Box and Jenkins, 1976). 
The finding of a positive spike for the first lag in the CCF 
plots presented above is consistent with the positive relation 
of  Result 1. 
A utocorrelation Patterns 

We also examine the residuals for the inverted-V pattern 
discussed in the text. Jesteadt et al.'s (1977) approach was to 
first fit Equation 4 to each individual's data and to then 
compute the residual autocorrelations separately for each pair 
of stimulus intensities. The autocorrelations were then aver- 
aged across subjects for each log stimulus intensity difference. 
The same approach has been used to study the autocorrelation 
of  (log) responses. Luce and Green (1978) pointed out that 
the response autocorrelations should be computed separately 
for each stimulus pair because the range of  response magni- 
tudes across pairs varies with the range of  the corresponding 

stimulus intensities. However, this approach is only feasible 
when a large number of  observations are available for each 
subject. The usual means of  collecting a large number of  
observations is to run each subject in several sessions and to 
then pool the data across sessions. For data sets obtained from 
single sessions (which usually consist of  no more than several 
hundred trials) not enough observations are available to com- 
pute each correlation separately for each pair of  stimulus 
intensities. However, if the autocorrelation of  the residuals is 
analyzed instead of  the autocorrelation of  responses, then the 
range problem does not arise, because the range of  residual 
magnitudes across pairs does not vary systematically with the 
range of  stimulus intensities, as response magnitudes do. 
Thus, the correlations can be computed by fitting Equation 4 
to each individual's data and then computing the correlation 
between ~ and 6t-~ for each log stimulus intensity difference, 
instead of  separately for each pair of log stimulus intensities. 
The advantage of this approach is that it greatly increases the 
number of  residuals used to compute the correlations and 
makes it possible to check for the inverted-V pattern using 
much fewer observations per subject. 

For the inverted-V plots presented in the text, the successive 
log stimulus differences were grouped so that the number of 
observations in each group were roughly equal. For the loud- 
ness estimation experiments, the log stimulus differences were 
grouped into 19 intervals; the abscissae of  the plots show the 
approximate midpoints of  the intervals. For the area estima- 
tion experiment, the log area differences were grouped into 
11 categories. The abscissa of  Figure 11 (bottom panel) shows 
the difference between successive categories. All of the in- 
verted-V figures present the medians and interquartile ranges 
(across subjects) of  the correlations for each log stimulus 
difference, because the correlations pooled across subjects 
tended to be slightly skewed. However, the figures are un- 
changed if the means and standard deviations are plotted 
instead. 
Estimation for Equation 11 

Methods of fitting models with autoregressive error proc- 
esses have been widely investigated in econometrics (e.g., see 
Kmenta, 1986). The usual method, referred to as estimated 
generalized least squares, is to first estimate p using the 
residuals from a least squares regression (on Equation 4 in 
this case), transform the dependent and independent variables 
to remove the autocorrelation, then run a second least squares 
on the transformed variables. The variables can be trans- 
formed as follows: 

= ( I  - -  p2)V~y,, Y~t = Yt - pYt-,, 

x*, = ( i  - p~)'+ s , ,  x*, = iv, - px, . ,  . 

Note that the transformation preserves the first observation 
(the above is referred to as the Prais-Winston method in 
econometrics; see Hibbs, 1974). Ordinary least squares is then 
performed on the transformed variables Y* and X*, which 
yields asymptotically efficient estimates. The coefficients pre- 
sented in the text were obtained using PROC AUTOREG of 
SAS (for technical details, see SAS Institute Inc., 1985b). 
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