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A mixture extension of signal detection theory is applied to source discrimination. The basic idea of the
approach is that only a portion of the sources (say A or B) of items to be discriminated is encoded or
attended to during the study period. As a result, in addition to 2 underlying probability distributions
associated with the 2 sources, there is a 3rd distribution that represents items for which sources were not
attended to. Thus, over trials, the observed response results from a mixture of an attended (A or B)
distribution and a nonattended distribution. The situation differs in an interesting way from detection in
that, for detection, there is mixing only on signal trials and not on noise trials, whereas for discrimination,
there is mixing on both A and B trials. Predictions of the mixture model are examined for data from
several recent studies and in a new experiment.

In a detection study, an event is either presented or not presented
on each trial, and the observer’s task is to decide whether or not an
event was presented. For example, in a recognition-memory study,
words from a previously studied list are presented during a test,
along with new words, and the observer’s task is to decide whether
each word is old or new. In a discrimination study, however, one
of two types of events, say A or B, is presented on each trial, and
the observer’s task is to decide whether A or B was presented. In
terms of memory research, the difference is that, for detection, a
new or an old item is presented on each trial, whereas for discrim-
ination, only old items are presented. The present article shows
that this difference is rather interesting when viewed from the
perspective of a mixture extension of signal detection theory
(SDT; DeCarlo, 2000, 2002b). In particular, the mixture approach
assumes that mixtures arise in SDT because of the influence of an
additional process. For example, with respect to detection, it is
assumed that there is mixing for old items because some items are
not attended to during the study period; it has previously been
shown that this mixing leads to receiver operating characteristic
(ROC) curves on inverse-normal coordinates (i.e., z-ROC curves)
with nonunit slopes (DeCarlo, 2000, 2002b). With respect to
discrimination, if the same process that leads to mixing for detec-
tion (e.g., attention) also operates in discrimination, then there will
be mixing on both A and B trials, because some of the A and B
items will not have been attended to during the study period. In this
article, it is shown that mixture SDT in this case predicts curved
z-ROC curves; this prediction is examined below for data from
several recent source discrimination experiments and one new
experiment. The mixture approach as previously applied to detec-
tion is first reviewed briefly, and then the approach is applied to
discrimination.

Mixture SDT for Detection

Consider the basic signal detection experiment in which, on
each trial, either a signal or noise is presented. According to SDT,
the effect of a presentation of a signal or noise can be represented
by probability distributions on an underlying psychological con-
tinuum. The distance between the two distributions, denoted here
as d, reflects an observer’s ability to detect a signal. In the mixture
extension of SDT, the effect of a presentation of a signal is
represented by two (or more) probability distributions rather than
one. The two distributions correspond to different representations
of the signal and can be motivated in more than one way, depend-
ing on the particular research context. A simple and general
interpretation is that the distributions arise because over trials,
observers attend to the signal at different levels. As a result, there
are latent classes of items, such as attended or nonattended items,
on signal trials. Thus, the observed response on each signal trial is
based on one or the other of two distributions, depending on
whether the signal was attended to or not; it is not known which
signals were attended to or not, and so the two distributions are
mixed over trials. Note that, in the application to detection, there
is mixing only on signal trials.1

It has previously been shown that the mixture extension of SDT
provides an alternative to another extension of SDT, the unequal
variance SDT model (Green & Swets, 1966). To formalize the
ideas of SDT and introduce notation, first consider the equal
variance normal SDT model, which can be written as

p�Y � k�X � x� � ��ck � dx

� � , (1)

where Y is the response variable (e.g., a confidence-rating re-
sponse) that takes on values k � 1 � K, where K is the number of
response categories; X is a dummy-coded variable (x � 0, 1) that
indicates signal or noise (A or B, for the application to discrimi-
nation); p(Y � k�X � x) is the cumulative probability of a response

1 However, a situation in which there might be mixing on noise trials
was noted in DeCarlo (2002b).
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of k or less, conditional on X; � is the cumulative distribution
function for the normal distribution; ck is the kth response criterion
(where the criteria are strictly ordered); d is the detection param-
eter; and � is the standard deviation.

The unequal variance extension of SDT allows the variances of
the underlying distributions to differ across signal and noise,

p�Y � k�X � x� � ��ck � dNx

�S
x � , (2)

which shows that the model generalizes the equal variance normal
model by introducing the parameter �S � 0, which is the standard
deviation of the signal distribution; note that the model can be
generalized further by using distributions other than the normal
(via generalized linear models; see DeCarlo, 1998, 2000). If the
standard deviation of the noise distribution is set to unity (i.e.,
�N � 1), then 1/�S gives the ratio of the standard deviations of the
new and signal distributions, which corresponds to the slope of the
z-ROC curve. The parameter dN is the detection parameter scaled
with respect to the standard deviation of the noise distribution. The
unequal variance normal SDT model and the mixture normal SDT
model are compared for data from detection and discrimination
studies in DeCarlo (2000, 2002b); see DeCarlo (2003b) for some
additional examples of the unequal variance SDT model and
comparisons with other models.

Mixture SDT for Discrimination

Source monitoring has been studied intensively and applied to a
variety of research areas (for a review, see Johnson, Hashtroudi, &
Lindsay, 1993). In the typical procedure, items are presented by
two sources, say A or B (e.g., words are read by a man or a
woman), and in a subsequent test, observers are required to decide
if an item is new, old and presented by Source A, or old and
presented by Source B. Thus, the task involves both detection (a
decision as to whether an item is new or old) and discrimination (a
decision as to the source of an old item). Recently, due in part to
the large number of studies that have examined source monitoring,
there has been an increased interest in source discrimination. To
examine source discrimination in and of itself, recent studies have
used a variant of the procedure that is typically used in source
monitoring studies. In particular, observers were shown items from
two sources, as in the usual source monitoring study, but the
subsequent test differed in that it was solely a test of source
discrimination; that is, the previously studied A and B words were
presented (without new words), and the observers’ task was to
decide whether the words were presented by Source A or by
Source B (e.g., Hilford, Glanzer, Kim, & DeCarlo, 2002; Yoneli-
nas, 1999). Thus, the procedure was one of pure discrimination,
without detection, because all of the words presented during the
test were old. In addition, confidence-rating responses were used,
because the studies were concerned with the form of the ROC
curve for discrimination. For example, observers indicated their
confidence about the source of an item on a 1 to 6 scale, with a
response of 1 indicating sure A, 2 indicating slightly sure A, and so
on up to 6 indicating sure B.

The discrimination procedure just described is rather interesting
when viewed from the perspective of the mixture extension of
SDT. What makes it interesting is that, during the test, only old

items are presented, namely the A and B items that were previ-
ously presented during the study phase. So the test phase presents
two types of signals, rather than signal and noise (i.e., old and new
items). It follows from the idea used to motivate mixture SDT for
detection that each of the two signal distributions might consist of
a mixture of distributions; that is, in addition to the A and B
distributions, corresponding to items that were attended to during
the study period, there are A� and B� distributions, corresponding
to A and B items that received different levels of attention or
processing during the study period. Further, if the A� and B�
distributions correspond to nonattended items, then it is reasonable
to assume that they have the same location.

Figure 1 illustrates the theory. In the context of research on
source memory, the A and B distributions might represent percep-
tions of features associated with the two sources; the distributions
are referred to here simply as discrimination distributions. The
distances of the A and B distributions from the nonattended
distribution (which is used as the zero point) are given by the
means 	A and 	B, which can be viewed as measures of source
memory strength; the measures are denoted here simply as dA and
dB, respectively (in line with SDT notation). Of primary interest is
the distance between the A and B distributions, dAB � dB � dA,
as shown in Figure 1, which is a measure of an observer’s ability
to discriminate between the two sources.

A General Mixture SDT Model for Discrimination

A general mixture SDT model for source discrimination follows
directly from the ideas illustrated in Figure 1 and can be written,
for normal distributions, as

p�Y � k�X � x�

� ��A��ck � dA� � �1 � �A���ck� x � 0
�B��ck � dB� � �1 � �B���ck� x � 1 , (3)

where the variances are set to unity (without loss of generality).
The remaining terms are as defined above, except for the addition
of the mixing parameters �A and �B, which can be interpreted as
indicating the proportion of A and B items for which features were
attended to during the study period. A comparison of Equation 3,

Figure 1. Signal detection theory with finite mixture distributions as
applied to source discrimination for attended (solid lines) and nonattended
(dashed line) items. The distances (d) of the A and B distributions from the
nonattended distribution (	N) are given by 	A and 	B, respectively.
Responses of 1, 2, 3, and 4 are delineated by the criteria c1, c2, and c3.
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which is a mixture signal detection model for discrimination, with
Equation 2 of DeCarlo (2002b), which is a mixture signal detection
model for detection, shows that the difference is that for discrim-
ination, there is mixing on both A and B trials (i.e., for x � 0, 1),
whereas for detection, there is mixing only on signal trials (i.e.,
only for x � 1).

Parameter Restrictions

Given Equation 3, there are several parameter restrictions that
are of substantive interest. For example, the restriction �A � �B

means that the level of attention is equal across the A and B items,
whereas �dA � dB means that the A and B distributions are the
same distance (but in opposite directions) from the nonattended
distribution (and so the absolute values of both �dA and dB are
equal to 1⁄2 dAB). The implication of the latter restriction is that the
two source distributions are strengthened equally when attended to
during the study period (i.e., shifted by the same amount but in
opposite directions), which represents a symmetrical strengthening
effect.

A simple mixture model for discrimination follows from an
application of both of the restrictions noted above—that is, �A �
�B and �dA � dB � 1⁄2 dAB. The restricted version of Equation 3
can then be written as

p�Y � k�X � x� � ���c�k � 1⁄2dABx� � �1 � ����c�k�, (4)

where x is coded as �1 for presentation of one event, say A, and
as 1 for presentation of the other event, say B, and c�k are the
criteria located with respect to the intersection point of the A and
B distributions (see the choice theory parameterization discussed
in Appendix A of DeCarlo, 1998). With this (effect) coding,
Equation 4 shows that the coefficient of X gives one half of the
discrimination parameter dAB (and 1⁄2 dAB � �dA � dB).

The restricted model of Equation 4 generalizes the equal vari-
ance normal SDT model of Equation 1 with the addition of a single
parameter, �. The model offers a useful starting point for the study
of source discrimination; it was introduced in DeCarlo (2000) and
was also considered by Hilford et al. (2002). The more general
model of Equation 3, introduced here, is useful in situations in
which a need to relax the parameter restrictions of Equation 4 may
be motivated. For example, if the sources are treated in the same
way, referred to here as a symmetric treatment of the sources, then
Equation 4 should be adequate (though of course it is still possible
that participants may not attend to the sources equally or remember
them equally well). However, in situations in which the sources are
not treated symmetrically, as discussed below, the more general
model of Equation 3 may be needed. Thus, in the examples that
follow, particular attention is paid to exactly how the sources were
presented.

The model can be fit using software for latent class analysis. In
particular, the Appendix provides notes on the use of the software
LEM (Vermunt, 1997), which is freely available on the Internet
(the Web site is given in the Appendix); sample LEM programs are
also available at my Web site (http://www.columbia.edu/�ld208).
With respect to identifiability, Prakasa Rao (1992) has shown that
the family of finite mixtures of univariate normal distributions is
identifiable, and so the full model of Equation 3 is identified if a
rating response with at least five response categories is used (so

that the number of parameters is less than or equal to the number
of observations, which is a necessary condition for identification).
If a binary response is used, then multiple sessions are needed,
which is the usual case for constructing ROC curves from binary
data (and it must be assumed that the detection and attention
parameters are constant across the multiple sessions).

Inverse Normal ROC Curves

The ROC curves that follow from the theory can be derived by
noting that a z-ROC curve is simply a plot of the inverse normal
transformation of p(Y � k�X � 0) on the x-axis against the inverse
normal transformation of p(Y � k�X � 1) on the y-axis (e.g., see
DeCarlo, 1998). For the discrimination mixture model of Equa-
tion 3, it follows that the z-ROC curve is a plot of

��1
1 � ��A��ck � dA� � �1 � �A���ck��


on the x-axis (i.e., the inverse normal transformation of 1 �
Equation 3 for x � 0) against

��1
1 � ��B��ck � dB� � �1 � �B���ck��


on the y-axis (i.e., the inverse normal transformation of 1 �
Equation 3 for x � 1). The above equations are simply the
equations for the theoretical mixture z-ROC curves. Note that the
fitted z-ROC curves presented below were obtained by substituting
maximum-likelihood estimates of dA, dB, �A, and �B in the above
equations and plotting the curves generated by varying ck.

Figure 2 presents examples of z-ROC curves that follow from
the mixture SDT model as applied to discrimination. The upper left
panel shows a curve for the restricted model (Equation 4) with
equal attention and memory strength (i.e., detection parameters)
across the sources, using values suggested by the results obtained
below. The figure shows that the z-ROC curve is symmetrical and
the effect of the mixing is to pull the curve down toward the
diagonal, which results in a nonlinear curve that is curved upward.
The upper right panel shows an example in which the attention
parameters �A and �B are not equal. The effect is to move the point
of greatest dip away from the center (to the right in this case), and
so the curve is not symmetrical. The two lower panels show
examples in which attention is equal across the sources but mem-
ory for the sources differs (these panels show a large difference,
with detection being 1 for one source and 3 for the other). The
effect on the z-ROC curves is apparent, in that the curves have
slopes other than unity, are curved, and are asymmetrical.

The general model of Equation 3 offers a rich means for exam-
ining data from research in which a source discrimination proce-
dure was used. The next section examines data from several recent
experiments involving source discrimination, with attention paid to
how the sources were presented. In particular, in a symmetric
procedure, words presented from the two sources (e.g., in a male
or a female voice) are intermingled during the study period (i.e.,
they differ only with respect to voice, with all other aspects of the
word presentations kept the same across the two sources). In this
case, it seems reasonable to assume that memory and attention are
equal across the sources, and Equation 4 is used to examine the
data. In contrast, in an asymmetric procedure, the two sources are
not treated symmetrically. For example, in one version of an
asymmetric procedure, all of the words from one source are
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presented first, followed by words from the other source. In this
case, one would expect that memory for the more recent source
might be better, in which case Equation 3 with �dA� � dB would be
appropriate. This prediction is examined below in several
experiments.

Applications to Recent Research

Source Discrimination With Rating Responses: Sources
Treated Symmetrically

In this section, experiments that used a source discrimination
procedure in which the sources were treated symmetrically are
examined—specifically, Experiment 1 of Yonelinas (1999) and
Experiments 2 and 3 of Hilford et al. (2002).2 In all three exper-
iments, participants saw two lists of words, denoted here simply as
A and B. During a subsequent test, they were shown words from
both lists and were asked to rate their confidence as to which list
each word was from (from 1 � sure A to 6 � sure B). Thus, the
task consisted solely of source discrimination. For Experiment 1 of
Yonelinas, the two sources were the position of the word on the
screen during the study period (left or right); for Experiment 2 of
Hilford et al., the two sources were whether the word had been
read by a man or a woman; and for Experiment 3 of Hilford et al.,

the two sources were whether the word had appeared on the top or
the bottom of the screen during the study period.

Table 1 presents goodness-of-fit statistics and information cri-
teria for maximum-likelihood fits of the unequal variance normal
SDT model and the mixture normal SDT model of Equation 4. The
likelihood ratio (LR) statistic provides information about the ab-
solute fit of the model, whereas Akaike’s information criterion
(AIC) and the Bayesian information criterion (BIC) are used to
compare the different models, with smaller values indicating a
preferred model (see Agresti, 1990; Burnham & Anderson, 2002;
DeCarlo, 2002a, 2002b). The information criteria are used here,
for example, to compare the unequal variance model and the
mixture models (which are not nested, in that one model cannot be
obtained by restricting parameters of the other model).

Table 1 shows that, for all three experiments, the unequal
variance model provides a poor description of the data, in that all
of the LR goodness-of-fit statistics are large and significant. As
shown by the z-ROC plots presented in Figure 3, this lack of fit
reflects the fact that the curves are nonlinear, which is inconsistent

2 Experiment 1 of Hilford et al. (2002) gave similar results, but it used
a different procedure in that a source discrimination response was made
contingent on a detection response of “old.”

Figure 2. Examples of mixture receiver operating characteristic curves for discrimination on inverse normal
coordinates.
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with unequal variance SDT; AIC and BIC are also considerably
larger (i.e., �10; see Burnham & Anderson, 2002) for the unequal
variance model than they are for the mixture model. In contrast,
Table 1 shows that the fit of the simple mixture SDT model of
Equation 4 is adequate for all three experiments, in that the LR
statistics are not significant.

Figure 3 shows the fitted mixture z-ROC curves and maximum-
likelihood estimates of the detection and mixture parameters for all
three experiments for a fit of Equation 4. The figure shows that the
fitted mixture z-ROC curves provide good descriptions of the data
in all cases, which is as expected in light of the goodness-of-fit
statistics shown in Table 1. Thus, the mixture SDT model accu-
rately describes the curvature that is evident in the data. The reason
why the unequal variance SDT model fits poorly is also appar-
ent—the z-ROC curves are clearly nonlinear. The z-ROC curves
are remarkably similar across the three experiments, in that they all
have slopes near unity and are symmetrically curved upward.

With respect to the parameter estimates and standard errors,
Figure 3 shows that, for all the experiments, the estimates of dAB

are in the range of 3.5 to 4.9, which indicates good discrimination,
and the estimates of � are in the range of .3 to .4, which can be
interpreted as showing that the source of about 30%–40% of both
the A and B items was attended to during the study period. Note
that, for the experiments of Hilford et al. (2002), discrimination
was higher when the source was a male versus a female voice (the
estimate of dAB � 4.8) than it was when the source was whether
the word appeared on the top or the bottom of the screen (the
estimate of dAB � 3.5), yet attention was not higher for the
male–female voices (the estimates of � are .32 for male–female
voices and .37 for top–bottom word position). This finding pro-
vides some evidence that the discrimination parameter can vary
independently of the mixing parameter �; some additional evi-
dence on this is noted below.

In summary, the mixture SDT approach to discrimination pre-
dicts that, if the source is not attended to on a proportion of the
study trials, then z-ROC plots of the data will be curved, as shown

by the upper left panel of Figure 2. This result was found for the
experiments of Yonelinas (1999) and Hilford et al. (2002). In all
three experiments, the sources were treated symmetrically, in that
the sources were intermixed during the study trials. The results, in
terms of z-ROC plots, were curves that were symmetrically curved
upward, with slopes close to unity. It is important to recognize that
these two results have a specific interpretation in terms of the
mixture SDT model of Equation 4, which is that during the study

Figure 3. Data and fitted mixture receiver operating characteristic curves
on inverse normal coordinates for Experiment 1 of Yonelinas (1999) and
Experiments 2 and 3 of Hilford et al. (2002). Standard errors appear in
parentheses.

Table 1
Goodness-of-Fit Statistics and Information Criteria for
Experiment 1 of Yonelinas (1999) and Experiments 2 and 3 of
Hilford et al. (2002): Sources Treated Symmetrically

Model LR df p AIC BIC

Yonelinas, Experiment 1 (N � 2,400)

Unequal variance SDT 37.87 3 � .01 7,368 7,409
Mixture SDT 4.58 3 .21 7,335 7,375

Hilford et al., Experiment 2 (N � 7,850)

Unequal variance SDT 125.34 3 � .01 26,378 26,426
Mixture SDT 6.82 3 .08 26,259 26,308

Hilford et al., Experiment 3 (N � 7,198)

Unequal variance SDT 23.22 3 � .01 23,889 23,937
Mixture SDT 3.24 3 .36 23,869 23,917

Note. LR � likelihood ratio goodness-of-fit test; AIC � Akaike’s infor-
mation criterion; BIC � Bayesian information criterion; SDT � signal
detection theory; Mixture SDT � Equation 4 in the text.
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period, the sources were attended to equally, and memory for both
sources was strengthened equally.

Source Discrimination With Rating Responses: Sources
Not Treated Symmetrically

This section examines situations in which the sources were not
treated symmetrically. For example, in Experiment 4 of Yonelinas
(1999), the sources were whether words were (a) on a list read
aloud immediately before the test or (b) on a list read aloud 5 days
earlier. In this case, one would expect that memory for the source
of words that were presented 5 days earlier would be poorer than
memory for the source of words that were presented immediately
before the test, and so the mixture model with �dA� � dB should be
appropriate. This model can be implemented by using Equation 3;
it seems reasonable to assume that manipulating the delay between
study and test should not affect the proportion of items attended to
during each study period (because the delay occurs after the first
list is presented), and so the assumption �A � �B is maintained.

Also examined here are two other experiments of Yonelinas
(1999) in which the sources were not treated symmetrically; the
procedure also differed somewhat from that used in the other
experiments.3 In Experiment 2 of Yonelinas, first one list of words
was read aloud in a male voice, and then a second list of words was
read aloud in a female voice. The procedure in Experiment 3 of
Yonelinas was similar, except that the first list (in a male voice)
was presented twice, whereas the second list (in a female voice)
was presented only once. Because of the asymmetric nature of the
procedures, it would be expected that, for both experiments, there
might be differences in memory strength (as reflected by dA and
dB) across the two sources.

Table 2 shows goodness-of-fit statistics and information criteria
for fits of the unequal variance normal SDT model, the restricted
mixture model of Equation 4, and the mixture model of Equation 3
with �dA� � dB but �A � �B. The table shows that, for all three

experiments, the LR statistics are large and significant for the
unequal variance model. As the z-ROC curves presented in Figure
4 show, this lack of fit occurs because the curves are again
nonlinear. With respect to the restricted mixture SDT model of
Equation 4, the table shows that the LR statistic is quite large for
Experiment 4 and is also significant for Experiment 3. As shown
by the z-ROC plots presented in Figure 4, this occurs because the
plots are not symmetrical. Table 2 also shows that the fit of
Equation 3 with �dA� � dB is acceptable, in terms of the LR
statistic, for all three experiments. With respect to the information
criteria, for Experiment 4 of Yonelinas (1999), both AIC and BIC
are clearly smallest for Equation 3 with �dA� � dB; for Experi-
ments 2 and 3, AIC suggests that Equations 3 and 4 are about
equal, whereas BIC favors Equation 4. As shown by the z-ROC
plots and parameter estimates for Experiments 2 and 3, the asym-
metry, if any, is small, which is why the information criteria
suggest that Equation 4 is adequate for these experiments.

Figure 4 shows, for Experiments 2, 3, and 4 of Yonelinas
(1999), plots of the data, fitted mixture z-ROC curves, and
maximum-likelihood estimates of the parameters and their stan-
dard errors. With respect to Experiment 4, which used a 5-day
delay between the lists, the top panel of Figure 4 shows that the
z-ROC curve is clearly neither linear nor symmetrical, which is
why relaxing the restriction �dA� � dB provides a considerable
improvement in fit over Equation 4. The estimates of dA and dB are
�1.0 and 2.9, respectively (and so the estimate of dAB is 3.9),
which shows that memory for items presented 5 days earlier (�dA�

3 The procedure differed from the other experiments in that new items
were presented during the test phase, and both discrimination and recog-
nition judgments were made on each trial; only the discrimination judg-
ments are examined here. A more general model that simultaneously
considers both types of judgments can also be formulated (see DeCarlo,
2003a).

Table 2
Goodness-of-Fit Statistics and Information Criteria for Experiments 2–4 of Yonelinas (1999):
Sources Not Treated Symmetrically

Model LR df p AIC BIC

Experiment 4 (N � 3,840)

Unequal variance SDT 70.12 3 � .01 12,429 12,437
Mixture SDT 147.39 3 � .01 12,506 12,550
Equation 3 with �dA � dB 2.69 2 .26 12,363 12,414

Experiment 3 (N � 4,344)

Unequal variance SDT 15.18 3 � .01 14,629 14,673
Mixture SDT 8.14 3 .04 14,621 14,666
Equation 3 with �dA � dB 5.46 2 .07 14,621 14,672

Experiment 2 (N � 3,840)

Unequal variance SDT 63.07 3 � .01 12,914 12,958
Mixture SDT 6.13 3 .11 12,857 12,901
Equation 3 with �dA � dB 1.71 2 .43 12,855 12,905

Note. LR � likelihood ratio goodness-of-fit test; AIC � Akaike’s information criterion; BIC � Bayesian
information criterion; SDT � signal detection theory; Mixture SDT � Equation 4 in the text.
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� 1.0) is considerably poorer than memory for items presented
immediately before the test (dB � 2.9). This finding provides
important evidence that the parameters of Equation 3 behave as
expected in response to an experimental manipulation. The inter-
pretation in terms of mixture SDT is simple yet compelling: The A
item distribution might have originally been shifted as much as the
B item distribution during the study period (i.e., about 2.9 standard
deviations to the left), but the distribution drifted back toward the
nonattended distribution during the 5-day intervening period (to 1

standard deviation), possibly due to decay in memory. From this
perspective, the estimates of dA and dB quantify effects of decay in
memory.

The middle and lower panels of Figure 4 show results for
Experiments 2 and 3 of Yonelinas (1999). The z-ROC curve for
Experiment 3 suggests possible, though small, asymmetry. The
z-ROC curve for Experiment 2, in contrast, is nearly symmetrical,
which is why Equation 4 was found to be adequate in terms of fit.
Note, however, that for both experiments the point estimates of d
differ slightly across the two sources. For Experiment 3, the
middle panel of Figure 4 shows that the estimate of dB is 2.2 for
words on the more recent list, whereas the estimate of �dA� is 1.5
for words on the list presented earlier, in spite of the fact that the
first list was presented twice (the standard errors are relatively
large, however). For Experiment 2, the lower panel of Figure 4
shows that the estimate of dB is 2.5 for words on the more recently
presented list, and the estimate of �dA� is 2.0 for words on the list
presented earlier (the difference is small, however, relative to the
standard errors, and it is not statistically significant). Thus, in
terms of Equation 3, the results for both Experiments 2 and 3
suggest that memory might have been slightly better for more
recently presented words, which is as expected (the results suggest
that a larger sample size might be needed to detect the small effect
of simply presenting one list before the other). Note that although
differences in the parameter estimates were small for Experi-
ments 2 and 3, they were nevertheless in the correct direction, in
that d was consistently larger for the most recently presented list.
Finding a smaller effect in Experiments 2 and 3 than in Experi-
ment 4 is not surprising, because Experiment 4 used a 5-day delay,
which should have had a larger effect on memory than simply
presenting one list before the other in the same session, which
represents a much smaller delay.

In summary, for the three experiments of Yonelinas (1999) with
asymmetric source presentations, plots of the data on inverse
normal coordinates gave z-ROC curves that were curved upward,
as was also found for the three experiments discussed earlier and
shown in Figure 3. Additionally, there was some evidence of
asymmetry in the z-ROC curves. Asymmetry showed up most
clearly for an experiment in which a strong experimental manip-
ulation—namely a 5-day delay—was used, whereas presenting one
list before the other in the same session appears to have had at
most only a small effect on memory strength, as shown by the
z-ROC plots and the parameter estimates of Equation 3.

Summary: Source Discrimination

Together, the six experiments discussed above show that, for
source discrimination data, (a) z-ROC curves were curved upward,
as predicted by mixture SDT; (b) z-ROC curves for experiments in
which the sources were treated symmetrically were symmetric;
and (c) z-ROC curves for experiments in which the sources were
not treated symmetrically showed deviations from symmetry (at
least in two of three cases). The mixture SDT model helps to
organize and summarize these results in terms of effects on mem-
ory, as reflected by the estimates of dA and dB, and in terms of
effects on attention, as reflected by the mixture parameter �.

The above experiments varied a factor that one would expect to
affect memory strength, namely the length of time between pre-
senting a list and testing memory. The approach in the current

Figure 4. Data and fitted mixture receiver operating characteristic curves
on inverse normal coordinates for Experiments 2, 3, and 4 of Yonelinas
(1999).
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experiment, reported below, differed in that a factor that might
affect attention was manipulated. Specifically, it seemed reason-
able to assume that presenting an item for a shorter period of time
might decrease the probability that it would be attended to. An
analysis of data of Ratcliff, McKoon, and Tindall (1994; presented
in DeCarlo, 2002b) provided some evidence that this would be the
case. The current experiment examined the effects of varying the
presentation time in a source discrimination study, with the expec-
tation that the mixing parameter would be affected if indeed it
reflects attention. In addition, both symmetric and asymmetric
conditions were used. With respect to the asymmetric condition,
unequal presentation times were used across the sources to see if
this manipulation would affect the z-ROC curves; these conditions
were motivated by the results found for the experiments of Yoneli-
nas (1999). In terms of the mixture SDT model, the predictions
were that (a) z-ROC curves should be curvilinear; (b) increasing
the presentation time should affect the mixing parameter �; and (c)
asymmetry in the treatment of the sources should be reflected by
an asymmetry in the parameters of Equation 3, and in particular the
model with �A � �B should be appropriate if presentation time
affects the proportion of items that are attended to.

Method

Participants

The participants were 48 graduate students enrolled in courses in cog-
nitive psychology or measurement. Four conditions were examined,
with 12 participants randomly assigned (using sampling without replace-
ment) to each condition. Each student participated in one session, which
was 30 min or less in duration.

Materials

A list of 120 words was selected from the list provided by Coltheart
(1981), with the criteria that the words were 5 or 6 letters in length and had
a word-frequency count between 40 and 60 per million (Kučera & Francis,
1967).

Design and Procedure

The experiments were run on personal computers. The experiment was
controlled using E-prime (Version 1.0, Beta 5.0; Schneider, 2000). The
participants were first given a short practice session, during which 10
words were presented on either the left or the right side of the computer
screen (i.e., random sampling without replacement, with 5 words presented
on the left and 5 on the right). For the test, participants rated their
confidence that a word had been presented on the left or right side of the
screen by using a 1 to 6 response, with 1 � sure left, 2 � fairly sure left,
3 � slightly sure left, 4 � slightly sure right, 5 � fairly sure right, and 6 �
sure right.

For the experiment, 120 words were presented in two blocks of 60 (i.e.,
a block of 60 words followed by a test, then another block of 60 words
followed by a test). During the study period, a fixation cross appeared on
each trial for 500 ms on either the left or the right side of the screen,
indicating where the word was to appear. The study word then appeared for
either 1 s or 3 s, depending on the condition (described below). The screen
was then cleared, and the next fixation cross and word were presented. For
the test, each word was presented in the center of the screen, and the
response scale (i.e., numbers with labels as given above) appeared below
the word. The participant then entered his or her response by using the
numbered keys located at the top of the computer keyboard. The screen

was then cleared and the next trial began. Participants were told that they
should try to use each response category at least once.

There were four conditions, with different participants in each condition.
The conditions differed with respect to how long the words appeared on the
left or right side of the screen. In two symmetric conditions, the words
appeared either for 1 s on the left or right side of the screen (half on each
side) or for 3 s on either side. These conditions allowed me to see whether
curved ROC curves would again be found for a source discrimination
procedure; they also provided information as to whether increasing the
presentation time would lead to an increase in attention, as measured by the
mixture parameter. In two asymmetric conditions, the presentation times
were different across the two sources: The times were 3 s left, 1 s right for
one condition and 1 s left, 3 s right for the other condition; the effects of
asymmetry of presentation time on the ROC plots and mixture parameter
estimates are examined below.

Results

Symmetric Conditions

The top part of Table 3 shows LR statistics and information
criteria for fits of the unequal variance model and the mixture
model of Equation 4 to the data from the two symmetric condi-
tions, with 1-s and 3-s presentation times for each source. The LR
statistics indicate rejection of the unequal variance SDT model for
both conditions. However, the fit of the mixture model of Equa-
tion 4 is adequate, in that the LR statistics are not significant; both
information criteria are also considerably smaller for the mixture
model.

Figure 5 shows the data and fitted mixture z-ROC curves (for
Equation 4). The figure shows why the unequal variance SDT
model fits poorly, in that the curves are clearly curved upward, as
was also found for the experiments of Hilford et al. (2002) and
Yonelinas (1999). Thus, the present results join a growing body of
evidence showing that the unequal variance SDT model does not
describe data from source discrimination studies, in that z-ROC
curves are not linear but, rather, are curved upward. The mixture
SDT model, in contrast, accurately describes the curvature and
provides a simple explanation for it (i.e., it results from mixing).

The parameter estimates and standard errors for a fit of Equa-
tion 3 are also shown in Figure 5. The estimates of the discrimi-
nation parameter dAB are large (5.2 and 4.2) for both presentation
times; with the standard errors taken into account (and noting that
a 95% confidence interval is formed by multiplying the standard
errors by 1.96 and adding and subtracting), the results indicate that
discrimination did not differ significantly across the two condi-
tions (in that 95% confidence intervals overlap). The estimates of
�, however, differed across the conditions; the estimate is .27 for
the 1-s left, 1-s right condition and .41 for the 3-s left, 3-s right
condition (and 95% confidence intervals do not overlap). If �
indeed reflects attention, then the results suggest that an increase in
presentation time for both sources from 1 s to 3 s led to an increase
in the percentage of items for which source was attended to, from
27% to 41%, with no apparent effect on discrimination strength
(i.e., dAB). Thus, the results add to earlier evidence (see DeCarlo,
2002b) that manipulating presentation time affects the mixing
parameter, which supports the view that the mixing parameter
provides a measure of attention. In addition, the results also
suggest that � and dAB can vary independently, in that the estimate
of � is clearly larger for the 3-s presentation times than for the 1-s
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presentation times, but the estimate of dAB is not larger for the 3-s
presentation times.

Asymmetric Conditions

The lower part of Table 3 shows that for the 3-s left, 1-s right
condition, the LR statistic is significant for both the unequal
variance SDT model and the mixture model of Equation 4. As
shown by the plots presented in Figure 6, this significance occurs
because the z-ROC curve is nonlinear and asymmetric. The table
also shows that relaxing the restriction �A � �B for this condition
results in a model with acceptable fit in terms of the LR statistic;
both of the information criteria also are considerably smaller than
those for the unequal variance model or Equation 4. Thus, an effect
of asymmetric presentation times is clearly apparent in this con-
dition. For the 1-s left, 3-s right condition, however, Table 3 shows
that fits of the unequal variance SDT model, Equation 4, and

Equation 3 with �A � �B are all acceptable. There is little differ-
ence with respect to fit for Equation 4 and Equation 3 because, as
shown by the z-ROC plot presented in Figure 6, the asymmetry, if
any, is small (as is the amount of curvature, which is why the
unequal variance model also is not rejected). In this case, both
information criteria are smallest for Equation 4; the criteria favor
the simpler model of Equation 4 because Equation 3 provides little
improvement in fit, the unequal variance model provides no im-
provement, and the criteria include a penalty term for additional
parameters (with BIC using a heavier penalty).

Figure 6 shows plots of the data and fitted mixture z-ROC
curves. Asymmetry in the z-ROC plot is apparent only for the 3-s
left, 1-s right condition, shown in the left panel; note that the data
suggest a curve with a slope greater than unity (for a fit of the
unequal variance SDT model, the estimates of the slope differed
significantly from unity only for the 3-s left, 1-s right condition).
For the 1-s left, 3-s right condition, shown in the right panel of

Table 3
Goodness-of-Fit Statistics and Information Criteria for the Four Conditions of the Current
Experiment (N � 1,440)

Model

1-s left, 1-s right 3-s left, 3-s right

LR df p AIC BIC LR df p AIC BIC

Symmetric conditions

Unequal variance SDT 34.11 3 � .01 4,924 4,961 17.01 3 � .01 4,734 4,771
Mixture SDT 0.87 3 .83 4,752 4,789 2.02 3 .57 4,581 4,618

3-s left, 1-s right 1-s left, 3-s right

LR df p AIC BIC LR df p AIC BIC

Asymmetric conditions

Unequal variance SDT 11.36 3 .01 4,919 4,956 5.90 3 .12 4,525 4,562
Mixture SDT 13.06 3 � .01 4,921 4,958 0.59 3 .90 4,520 4,557
Equation 3 with �A � �B 4.60 2 .10 4,776 4,818 0.58 2 .75 4,522 4,564

Note. LR � likelihood ratio goodness-of-fit test; AIC � Akaike’s information criterion; BIC � Bayesian
information criterion; SDT � signal detection theory; Mixture SDT � Equation 4 in the text.

Figure 5. Data and fitted mixture receiver operating characteristic curves on inverse normal coordinates for the
two symmetric conditions of the current experiment.
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Figure 6, the z-ROC plot appears to be slightly curved but nearly
symmetrical.

Figure 6 also shows that the estimates of the discrimination
parameter (3.6 and 3.7) are close in magnitude across the two
asymmetric conditions. The left panel of Figure 6 shows that the
estimates of �A and �B for the 3-s left, 1-s right condition are .42
for 3-s left words and .21 for 1-s right words. This difference can
be interpreted as showing that, with a presentation time of 3 s for
left words, the source of 42% of the words was attended to,
whereas with a presentation time of 1 s for right words, the source
of only 21% of the words was attended to. Thus, an asymmetric
effect of presentation time was found; the results are also consis-
tent with those found above for the symmetric conditions, in that
the estimate of � was larger for a longer presentation time. The
right panel of Figure 6 shows that the estimates of �A and �B are
close in value for 1-s left and 3-s right presentation times, and so
an asymmetric effect of presentation time was not found in this
case. Note that both estimates of � are rather large (around 51%)
as compared with those obtained in the other conditions; the large
estimates of � suggest that observers in this condition might
simply have had higher levels of attention overall, which could
reflect a sampling fluctuation or possibly a position effect of some
sort. Additional studies are needed.

In summary, the results for all four conditions of the current
experiment show that curved z-ROC curves are again found for
source discrimination experiments. This is important evidence in
favor of the mixture SDT model, which provides a simple account
of why curvature is found: because of mixing for both A and B
items. In addition, the results suggest that increasing the presen-
tation time from 1 s to 3 s in symmetric conditions led to an
increase in the percentage of words for which the source was
attended to. This relationship was shown by the larger estimate of
� obtained in the 3-s left, 3-s right condition (41%) as compared
with that in the 1-s left, 1-s right condition (27%). Further, the
results for the 3-s left, 1-s right asymmetric condition suggest that
the source of twice as many 3-s words (42%) received attention
than did the source of 1-s words (21%). Thus, this condition
provides evidence, in addition to that found for the symmetric
conditions, that a manipulation of presentation time affects �. The
results for the 1-s left, 3-s right condition, in contrast, did not show

differences in the estimates of � (51%) across the sources, and so
the simple model of Equation 4, with equal attention and equal
strengthening across the sources, was adequate. The z-ROC plot in
this case is still slightly curved, which is consistent with the
curvature found in the other conditions; however, the curve does
not show any apparent deviations from symmetry, and whether this
is an anomalous result remains to be determined.

The results discussed above were for the data pooled across
participants. Equation 4 was also fit to the individual data of the 48
participants. The main limitation associated with analysis of indi-
vidual data is the small sample size for each participant (120
trials), which can lead to estimation problems. For example, the
LEM program (Vermunt, 1997) did not converge on a solution
for 3 of the 48 participants, and in some other cases, the ratio of
largest to smallest eigenvalues was very large (e.g., �1,000),
which indicates weak identification, meaning basically that the
standard errors of the parameter estimates were large or could not
be estimated. For examples of these problems in the context of
SDT with latent classes, see DeCarlo (2002a). With respect to the
estimates of �, the problem of weak identification occurred for
only 2 participants (in that the estimates of the standard errors of
� were greater than 1.0, whereas they were generally less than 0.2
in all other cases). Thus, 5 cases were dropped for the individual
analysis (3 because of failure of convergence and another 2 be-
cause of weak identification). For the remaining 43 participants,
the mean estimates of � computed from the individual estimates
were .30 for the 1-s left, 1-s right condition and .45 for the 3-s left,
3-s right condition (for 11 and 10 participants, respectively), which
is consistent with the estimates obtained for the pooled data (as
shown in Figure 5): .27 and .41, respectively. So, for both indi-
vidual and pooled data analysis, the estimate of � was clearly
larger for the 3-s condition. For the 3-s left, 1-s right condition, the
mean estimates were �A � .26 and �B � .51 (with 11 participants
in each condition, for Equation 3 with dA � dB), which are similar
to the estimates of .21 and .42 obtained for the pooled data. For the
1-s left, 3-s right condition, the mean estimate of � (for Equation 4,
with 11 participants) was .49 for the individual analysis, which is
close to the estimate of .51 obtained for the pooled analysis. Thus,
with respect to �, the results for the individual analysis lead to the
same conclusions as do those for the pooled analysis, as was also

Figure 6. Data and fitted mixture receiver operating characteristic curves on inverse normal coordinates for the
two asymmetric conditions of the current experiment.
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found by Yonelinas (1999), Hilford et al. (2002), and DeCarlo
(2002b).

Discussion

The extension of SDT through finite mixtures of the underlying
distributions yields a general class of signal detection models. The
mixtures are viewed in mixture SDT as arising from the action of
a second process, which gives rise to latent classes of items, with
the mixing parameter � indicating the proportion of each type of
item, such as attended or nonattended items. For detection, it is
assumed in mixture SDT that there is mixing only on signal
(old-item) trials, and the result is that z-ROC curves have slopes
less than unity. For source discrimination, it is assumed in mixture
SDT that there is mixing on both A- and B-item trials, with the
result that z-ROC curves tend to be curved upward. Thus, the
mixture approach to SDT provides a unified account of detection
and discrimination by showing that the same process (e.g., atten-
tion) can lead to the rather different results that are found across
the two situations—that is, nearly linear curves with nonunit slopes
for detection and nonlinear curves with upward curvature for
discrimination. This account represents an important unification of
two seemingly disparate results.

Equation 4 offers a simple model that is clearly useful for the
analysis of source discrimination data; in a recent comparison of
this model with other models of source memory, Hilford et al.
(2002) arrived at a similar conclusion. The more general model of
Equation 3 introduced here offers two basic ways to relax assump-
tions of Equation 4: It allows for unequal source memory strength
across the two sources—conceptualized in mixture SDT as un-
equal distances from a nonattended distribution (i.e., dA and dB)—
and it allows for unequal levels of attention across the sources (i.e.,
�A and �B). This article examines situations in which Equation 4
should suffice (sources treated symmetrically) and situations in
which the more general model of Equation 3 might be needed
(sources treated asymmetrically).

For experiments that used a procedure in which the sources were
treated symmetrically, the simple source discrimination mixture
model of Equation 4 was apparently sufficient, as reflected by the
finding of symmetric (and curved) z-ROC curves for the experi-
ments of Hilford et al. (2002), Yonelinas (1999), and the current
study. For experiments in which the sources were treated asym-
metrically, z-ROC curves were curved upward in all cases, which
is consistent with the results found for the other experiments.
Deviations of the curves from symmetry ranged from absent to
large. For example, Experiment 4 of Yonelinas, with a 5-day delay
between the study lists, provided clear evidence of a differential
effect of delay on memory for source and, most important, this
effect was reflected by the parameters of the general model of
Equation 3. This is evidence in favor of the mixture model, in that
it shows that the parameters behave as expected in response to a
strong experimental manipulation. The delay between lists was
much smaller for the other two experiments of Yonelinas, in that
one list was simply presented after the other in the same session,
and a differential effect on the parameters of Equation 3 was not as
apparent; the point estimates of dA and dB suggested, at most, a
small effect. Overall, the results suggest that source memory
strength, as measured by dA and dB, can be affected by using a
delay between presentation of a source and test.

The experiment presented here differs from earlier ones in that
it represents an attempt to manipulate another parameter of the
model, namely the mixture parameter �. In certain ways, it is easier
to manipulate discrimination strength in source discrimination
experiments, because one can use a long delay between the
lists—as done by Yonelinas (1999), for example—which appears
to have a large effect on parameter estimates and z-ROC curves.
The situation is more difficult with respect to attention, in that it is
harder to gain control over attention. As shown here and in earlier
studies, manipulating the presentation time appears to have an
effect, though the effect is clearly not as large as that seen with a
5-day delay. One could try to increase the size of the effect by
using longer presentation times, but longer times might not nec-
essarily mean greater attention—participants could become bored
and actually end up paying less attention; note that the relatively
small estimate of � (.18) found in Experiment 3 of Yonelinas
suggests a case in which this may have happened, in that the results
for the mixture model indicate that attention was low (18%) in a
condition in which a list was presented twice. In any case, for the
current experiment, the estimate of � was larger in a symmetric
condition in which both sources were presented for 3 s than it was
in a condition in which the sources were presented for 1 s, which
is consistent with results found for presentation time in detection
studies (DeCarlo, 2002b). The results for the asymmetric condi-
tions were mixed, in that different estimates of �A and �B were
found in one condition but not in the other. Additional research
that attempts to manipulate attention in source discrimination
experiments is needed.

It is assumed, in this study, that the source of each word is either
attended to or not. The present results show that this assumption
appears to be adequate, in that the mixture model clearly described
the data. Here I note that one can, however, extend the model to
include a greater number of discrete levels of attention, as long as
the number of parameters is less than or equal to the number of
observations (so that the model is identified). It is also possible to
include additional latent classes by relaxing the assumption that
nonattended A and B words have the same location. The simple
two-level model (i.e., with attended and nonattended sources) fit
quite well for all of the studies analyzed here, however, so there is
little motivation for adding additional parameters (which does little
or nothing in terms of improving fit, and the information criteria
include a penalty for the introduction of additional parameters). In
my view, conceptualizing the source of the items as being either
attended to or not, as done here, is both theoretically plausible and
empirically defensible.

In conclusion, the mixture extension of SDT unifies results
obtained across both detection and discrimination studies. The
mixture approach offers a new lens through which to view and
interpret source discrimination data; it offers a framework that,
ideally, will help researchers to develop and refine further exper-
imental tests of the model, to compare the model with other models
(which need to be formally developed and tested, as done here),
and to delineate the advantages and limitations of the mixture
approach as compared with other approaches.
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Appendix

Notes on Fitting the Mixture SDT Model

The mixture SDT model can be fit using software packages that offer
latent class analysis. For example, maximum-likelihood estimates of the
model’s parameters were obtained here using the software LEM (Vermunt,
1997), which is freely available on the Internet (http://www.uvt.nl/
faculteiten/fsw/organisatie/departementen/mto/software2.html). The gen-
eral model shown by Equation 3 can be implemented in LEM by rewriting
the model with the use of a latent dummy-coded variable W (i.e., which
indicates attention). Specifically, the general model of Equation 3 can be
written as

p�Y � k�X � x� � �w
p�W � w�X � x�p�Y � k�W, XW�,

where p(W�X) gives the (conditional) mixing parameters (�A and �B in
Equation 3), and the second term can be written as a cumulative probit
model,

p�Y � k�W � w, XW � xw� � ��ck � dBw � dABxw�.

Note that this parameterization gives direct estimates of the discrimination
parameter dAB and the location of one distribution (B) with respect to the
location of the nonattended distribution (given by the parameter dB). The
model is specified in LEM by the terms p(W�X) and p(Y�XW), with a
cumulative probit model specified for p(Y�XW). To fit the model with the
restriction �A � �B, the term p(W�X) is replaced by p(W); to fit the model
with the restriction of �dA� � �dB�, only the term XW is included in the
second equation, with the term W dropped and the coding for X changed
from dummy coding to effect coding (�1, 1). An LEM program for the
data of Experiment 1 of Yonelinas (1999) is available at http://www
.columbia.edu/�ld208.
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