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Process Dissociation and Mixture Signal Detection Theory
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The process dissociation procedure was developed in an attempt to separate different processes involved
in memory tasks. The procedure naturally lends itself to a formulation within a class of mixture signal
detection models. The dual process model is shown to be a special case. The mixture signal detection
model is applied to data from a widely analyzed study. The results suggest that a process other than
recollection may be involved in the process dissociation procedure.
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Jacoby (1991) argued that memory tasks involve a blend of
processes, such as automatic and intentional processes, and offered
the process dissociation procedure as a means to tease the pro-
cesses apart. The logic of the procedure was to place the different
processes in opposition so that their separate effects could be
solved for. This was done by presenting participants with a test
consisting of two lists of words and then telling them to treat one
of the lists as old and the other as new. This procedure creates
opposition by requiring one of the studied lists to be treated as
new: The words on it were previously seen, which would tend to
make participants respond to them as old; however, the instruc-
tions are to respond to them as if they are new.

The crux of the process dissociation procedure clearly has do to
with whether a participant has information about the source of a
word (cf. Buchner, Erdfelder, Steffens, & Martensen, 1997), that
is, information about which list the word was on, because this is
necessary to perform the task. For example, if a participant has no
information about the source of a word, then his or her response will
depend solely on the familiarity of the word, and so he or she should
tend to respond “yes” to words from both lists when asked whether
the word has been seen before. However, if a participant has infor-
mation about which list the word was on, then he or she can say “no”
to words that are from the list that was designated as new.

Whether a participant has information about the source of a
word has typically been conceptualized in terms of recollection
(e.g., Jacoby, 1991; Yonelinas, 1994; Yonelinas & Jacoby, 1996);
that is, the view has been that participants respond “no” to a word
from the list designated as new if they recollect that the word was
from that list, whereas if they do not recollect the word’s source,
then their response depends solely on the word’s familiarity. Thus,
there are two processes assumed, familiarity and source recollec-
tion, giving a dual process model. The process dissociation pro-
cedure and the dual process model have been examined in many

studies; there has also been some controversy about assumptions
(e.g., Buchner, Erdfelder, & Vaterrodt-Plünnecke, 1995; Cowan &
Stadler, 1996; Curran & Hintzman, 1995, 1997; Dodson & Johnson,
1996; Erdfelder & Buchner, 1998; Jacoby, Begg, & Toth, 1997;
Jacoby & Shrout, 1997; Joordens & Merikle, 1993; Ratcliff, Van
Zandt, & McKoon, 1995; Yonelinas & Jacoby, 1996).

Here it is shown that the second process does not have to be
conceptualized as recollection, and, in fact, the evidence presented
below, as well as previous evidence (DeCarlo, 2007), suggests that the
second process is not simply recollection. A more general view
recognizes that the crucial aspect is simply whether a participant has
any information about the source of a word, regardless of whether he
or she recollects the source. This, in turn, is consistent with an
interpretation in terms of latent classes of words (i.e., there is source
information for some words, whereas there is only partial or no source
information for other words), which in turn is the idea underlying
mixture extensions of signal detection theory (SDT). Mixture SDT
(DeCarlo, 2000, 2002, 2003a, 2007) offers a general way to recognize
the role of different processes in memory tasks and has been applied
to recognition memory, source memory, and the mirror effect.

In the present article, I show that the process dissociation
procedure lends itself quite readily to a theoretical interpretation in
terms of mixture SDT, given that the basic idea underlying the
process dissociation procedure has to do with a mixture or blend-
ing of processes. A mixture SDT model for the process dissocia-
tion procedure is formally presented. The dual process model, as
presented by Yonelinas (1994), is shown to be a special case of the
mixture SDT model, which clarifies relations between the models
and shows how recollection can be viewed within the framework
of SDT. It is also shown that mixture SDT, as applied to the
process dissociation procedure, is consistent with receiver operat-
ing characteristic (ROC) curves that go below the diagonal. An
application of the mixture SDT model is illustrated using data from
a widely analyzed study (Yonelinas, 1994); the analysis reveals
some new and interesting results.

The Process Dissociation Procedure

As noted by Yonelinas, Regehr, and Jacoby (1995), the process
dissociation procedure has been implemented in several ways;
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considered here is a version of it as used in the study of Yonelinas
(1994). Participants were first presented with two lists of words.
After the lists were presented, the participants’ task was to detect
words from one of the lists (e.g., the first or second list) and to treat
words from the other list as new. The list with words to be detected
is referred to as the inclusion list and the list with words to be
treated as new is referred to as the exclusion list, in line with
terminology used by Yonelinas (1994) and others. During the test,
words from both lists were presented, along with new words, and
participants used a 1 (sure no) to 6 (sure yes) rating scale to
indicate their confidence, with sure yes indicating that they were
sure that a word was from the inclusion list and sure no indicating
that they were sure that a word was new, that is, that it was either
from the exclusion list or was a new word.1

As noted above, the performance of participants on the task
clearly depends on whether they have information at the test
about the source of a word (i.e., which list the word was on).
This is consistent with the view that there are two or more latent
classes of words, corresponding to the level of processing of a
word’s source.2 Thus, for the application of mixture SDT pre-
sented here, the process dissociation procedure is conceptual-
ized as involving two latent classes, which can be viewed as
consisting of words with source information versus words with-
out source information.

Figure 1 illustrates an application of mixture SDT to the process
dissociation procedure. To simplify notation, I use A to denote
words from the inclusion list and B to denote words from the
exclusion list. The task is to detect inclusion (A) words, with
exclusion (B) words treated as new, and so with respect to the 1–4
responses shown in the figure, a response of 1 indicates sure no
(i.e., sure the word is not an inclusion word), 2 indicates slightly
sure no, 3 indicates slightly sure yes, and 4 indicates sure yes (i.e.,
sure the word is an inclusion word); c1, c2, and c3 in Figure 1,
shown as vertical lines, represent the response criteria used by a
participant to choose his or her responses.

First, suppose that a word’s source was not processed. In that
case, the participant bases his or her judgment on the familiarity of
the word, shown in Figure 1 as the solid distributions labeled A and
B (with no assumptions about their relative locations); the N
distribution represents new words. Note that the effect of studying
a word is to simply shift the distribution’s location (i.e., A and B
are to the right of N), and so an equal variance version of SDT is
used, as in other developments of mixture SDT (DeCarlo, 2000,

2002, 2003a, 2007): This reflects an important aspect of mixture
SDT, in that it accounts for results that appear to indicate unequal
variances in terms of a mixture of equal variance distributions (see
DeCarlo, 2007, for some graphical illustrations). In the equal
variance approach, an increase in memory strength is conceptual-
ized as a simple shift in the location of an underlying distribution
(i.e., it is a main effect), and so d has a simple interpretation,
whereas this is not the case for the unequal variance approach
(where there is both a change in location and a change in the
variance; see DeCarlo, 2002).

Second, suppose that a word’s source was processed or that
there is at least some information available about the word’s
source. In that case, it is assumed that the participant bases his or
her judgment on two different distributions, which are shown in
Figure 1 as dotted distributions labeled A� and B�; that is, it is
assumed that the presence of source information leads to a differ-
ent set of familiarity distributions. The A� distribution is for
source-processed inclusion words and is to the right of the new
item distribution; it is also to the right of the A distribution,
because if a participant has information about the source of a word
(i.e., he or she believes it is from the inclusion list), then he or she
can be fairly sure that the word is old, and so it seems reasonable
to assume that the A� distribution will be to the right of the A
distribution. Similarly, if the participant has information about the
source of a word being the exclusion list, then he or she can be
fairly sure to treat the word as new, and so the B� distribution
should be to the left of the B distribution and close to (or to the left
of) the new word distribution. These ideas are also consistent with
those underlying the dual process approach to the process disso-
ciation procedure, with similarities and differences noted below.

A Mixture Signal Detection Model for the Process
Dissociation Procedure

Figure 1 leads directly to a mixture SDT model. Let the K
response categories be denoted by k and the K � 1 response
criteria be denoted as ck. As shown earlier, an SDT model for
rating responses recognizes the underlying distributions and the
ordinal nature of the response by using cumulative response prob-

1 Another approach would be to ask for a separate response to each
component, that is, a confidence rating as to whether the word is old or new
(a familiarity response) and a confidence rating as to which list it was on
(a source response). In that case, a multivariate signal detection model can
be applied (DeCarlo, 2003b); this model allows one to study the separate
processes (familiarity and source recognition) and also allows one to
examine their interrelationship (e.g., there is some evidence that source
information strength is greater when recognition memory strength is
greater). Using separate responses is likely more informative about the
different processes than using one response, as in the process dissociation
procedure.

2 As shown here and earlier, two latent classes appear to suffice, which
is consistent with the view that the level of processing can be usefully
conceptualized as consisting of discrete classes, such as full versus partial
processing. By using more latent classes with the sizes restricted appro-
priately, one can also approximate a continuous distribution (if one wants
to think of the level of processing as being continuous), although the
discrete view is just as (if not more) plausible. Some arguments for viewing
variables that are often assumed to be continuous as instead being discrete
are given in DeCarlo (2005).

Mixture SDT for Process Dissociation

N A BB' A'

c1 c2 c3"1" "2" "3" "4"

Figure 1. Signal detection theory (SDT) with mixture distributions as
applied to the process dissociation procedure. A and B denote the inclusion
and exclusion familiarity distributions, respectively; N denotes new words;
A� and B� denote distributions for source-processed words; c1 to c3 are
response criteria.
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abilities, p(Y � k|X; see DeCarlo, 1998). The mixture SDT model
for the process dissociation procedure that follows from Figure 1
can be written as

p�Y � k|A� � �A���ck � dA�� � �1 � �A����ck � dA�

p�Y � k|B� � �B���ck � dB�� � �1 � �B����ck � dB�

p(Y � k|N) � ��ck�, (1)

for 1� k � K � 1, where p(Y � k|A) is the probability of a
response of k or less given that an A item was presented, with
similar meanings for B and N items; � is the cumulative distri-
bution function for the normal distribution; dA is the distance of
the A distribution from the new item distribution (the new item
distribution is used as zero); dA� is the distance of the A� distri-
bution from the new item distribution, with similar meanings for B
and B�, where the prime is used to indicate the distributions
associated with the second latent class (e.g., source information);
�A� and �B� are mixing parameters, which can be interpreted as the
proportion of words with source information.

Equation 1 shows that, for A and B words, the decision is based
either on a word’s familiarity, with probability 1 � � (for A or B),
or, in the presence of source information, on the second set of
familiarity distributions, with probability �, as shown in Figure 1.
The Appendix shows that, with respect to fitting Equation 1, the
three components can be written as a single probit regression
model with latent categorical variables (also see DeCarlo, 2002,
2003a, 2007). Further notes and details on fitting the model are
given in the Appendix.

Relation of the Dual Process Model to Mixture SDT

It has previously been shown that recollection can be thought of in
SDT simply as high familiarity (DeCarlo, 2007). This applies here as
well. In particular, note that if the source-attended distributions are far
to the right for A� and to the left for B�, then the sources are, in
essence, recollected, in that participants are quite sure that they have
seen the word (and so respond in the end categories). In particular,
note that for large values of dA�, �(ck � dA�) approaches 0, and for
large negative values of dB�, �(ck � dB�) approaches 1, and so
Equation 1 approaches

p�Y � k|A� � �1 � �A����ck � dA�

p�Y � k|B� � �B� � �1 � �B����ck � dB�

p�Y � k|N� � ��ck�, (2)

which is the dual process model. Thus, the mixture SDT model, in
essence, reduces to the dual process model if it is assumed that the
source-attended familiarity distributions are far from 0. In practice,
it appears that Equation 2 can be closely approximated by using
Equation 1 with values of d of about 8 or larger; for the current
data, the results were the same regardless of whether values of d of
10 or 100 were used.

To see the relation to the dual process model as commonly
written (where the probability of a “yes” response is modeled),
note that the above can be rewritten in terms of p(Y � k) as
follows:

p�Y � k|A� � �A� � �1 � �A���(�ck � dA)

p�Y � k|B� � �1 � �B���(�ck � dB)

p�Y � k|N� � �(�ck). (3)

Equation 3 is the dual process model as applied to the process
dissociation procedure, as given by Yonelinas (1994) and Yonelinas
and Jacoby (1996; in this case with equal criteria across the inclusion
and exclusion lists; see their Equations 7–10).3 This shows that
recollection can be conceptualized in a mixture signal detection
framework simply as high familiarity. The mixture SDT model and
dual process model are compared below for the data of Yonelinas
(1994).

Also considered is the unequal variance normal SDT model
(Green & Swets, 1966), which for the process dissociation proce-
dure can be written as

p�Y � k|A� � �	�ck � dA�/
A�

p�Y � k|B� � �	�ck � dB�/
B�

p�Y � k|N� � ��ck�,

where dA and dB are the distances of the A and B distributions
from the new item distribution (which are scaled differently from
d in the dual process or mixture model; see DeCarlo, 1998), and

A and 
B are the standard deviations of the A and B distributions
(see DeCarlo, 2003c, for some notes on fitting the model).

An Application: Yonelinas (1994)

The data are from a widely cited study of Yonelinas (1994);4

the data have previously been analyzed in several articles (e.g.,
Erdfelder & Buchner, 1998; Macho, 2002; Ratcliff, Van Zandt, &
McKoon, 1995; Yonelinas & Jacoby, 1996). In Experiments 1 and
2, either short or long study lists were used and participants gave
confidence rating responses on a 1–6 scale; in Experiment 3,
words were presented for either 1 s or 3 s. For Experiment 1, the
short and long lists consisted of 10 and 30 words, respectively,
with a test of 10 inclusion words, 10 exclusion words, and 10 new
words. The procedure consisted of study–test blocks with two tests
per block. In one test, the first list was designated the inclusion list;
in the second test, the second list was designated the inclusion list
(with the order balanced across blocks).5 In Experiment 2, the
short and long lists consisted of 6 and 18 words, with a test of 6
inclusion words, 6 exclusion words, and 6 new words (the test was
divided into three sections of 2 inclusion words, 2 exclusion

3 Note the difference that Yonelinas and Jacoby (1996) parameterized
the model using effect coding, whereas dummy coding is used here (see
DeCarlo, 1998).

4 I thank A. Yonelinas for making the original data, in terms of response
frequencies, available.

5 Note that in both cases, the task is to detect inclusive words, only the
labeling of the response categories is changed (reversed). For example, for
a 1–4 response, a response of 1 indicates sure List 2 and 4 indicates sure
List 1 in one condition, whereas a response of 1 indicates sure List 1 and
4 indicates sure List 2 in the other condition. Pooling across the conditions,
as done by Yonelinas (1994), assumes a symmetry in the response criteria
locations; this assumption could be examined in future research.
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words, and 2 new words, and the instructions were varied across
the sections); Experiment 2 also differed in that it included recog-
nition trials (see Yonelinas, 1994). Because the short and long lists
were tested in different blocks in Experiments 1 and 2, it is
possible that the response criteria differed across the short and long
lists, which is allowed for in the analyses below. Experiment 3
consisted of study–test blocks of two lists that each consisted of
eight pairs of words, with half of the word pairs presented for 1 s
each (weak) and the other half presented for 3 s each (strong); the
test included the 32 studied words and 16 new words, where each
word was presented by itself. Because the strong and weak words
were each presented together during the test block, one set of
response criteria is assumed. As in all previous analyses of this
data, the data pooled across participants are analyzed, although it
would be of interest in future studies to examine individual data
(with more extensive testing of individual participants).

The mixture SDT model can be fit with several software pack-
ages. Used here were Lemwin (Vermunt, 1997), a prerelease
version of Latent Gold 5 (Vermunt & Magidson, 2007), and Mplus
Version 5 (Muthén & Muthén, 1998–2007). The results were
generally identical to at least two decimal places across the pack-
ages; the results from Latent Gold are reported here. With respect
to fitting the dual process model, the model can be approximated,
as shown above, by incorporating parameter restrictions in the
mixture SDT model; this was done using Latent Gold (and Mplus).
Links to the software, as well as sample programs, are available at
http://www.columbia.edu/�ld208.

Table 1 shows, for all three experiments, results for maximum
likelihood fits of the mixture SDT model (Equation 1), the dual

process model (approximated as in Equation 2), and the unequal
variance SDT model. A likelihood ratio (LR) goodness-of-fit sta-
tistic is shown, along with the degrees of freedom and probability
value; also shown are information criteria, namely Akaike’s infor-
mation criterion (AIC) and the Bayesian information criterion
(BIC). Information criteria can be used to compare the relative fit of
different models (such as the nonnested models considered here), with
smaller values indicating a preferred model, whereas the LR statistic
assesses the absolute fit of the model (see DeCarlo, 2003c).

Table 1 shows that the fit of the mixture SDT model is accept-
able for all three experiments, in that the LR statistics are not
significant (at the .05 level), whereas the unequal variance SDT
model and the dual process model are rejected by the LR test, and
so they show some lack of fit, with the exception of the unequal
variance SDT model in Experiment 3. Thus, the mixture SDT
model adequately describes the data in all cases, whereas the
unequal variance SDT model and the dual process model do not.
With respect to relative fit, note that the mixture SDT model has
more parameters than do the other two models, which is shown in
Table 1 by the fact that the LR statistic has fewer degrees of
freedom. This should be taken into account when comparing the
relative fit of the models; information criteria do this by including
a penalty term for additional parameters (the penalty is heavier for
BIC than for AIC). Table 1 shows that AIC favors the mixture
SDT model over the dual process model and the unequal variance
SDT model for both conditions of Experiments 1 and 2; for
Experiment 3, AIC favors the mixture and unequal variance SDT
models (which have about the same value of AIC) over the dual
process model. BIC favors the mixture SDT model over the dual

Table 1
Goodness-of-Fit Statistics and Information Criteria for Experiments 1, 2, and 3 of
Yonelinas (1994)

Model LR df p AIC BIC

Experiment 1
Short list (N � 4,320)

Mixture SDT 3.84 4 .43 12265 12335
Dual process 52.62 6 .01 12309 12367
Unequal variance SDT 15.28 6 .02 12272 12329

Long list (N � 4,320)
Mixture SDT 6.89 4 .14 13638 13708
Dual process 27.51 6 .01 13654 13712
Unequal variance SDT 57.13 6 .01 13684 13741

Experiment 2
Short list (N � 3,456)

Mixture SDT 0.36 4 .99 9153 9221
Dual process 72.06 6 .01 9221 9276
Unequal variance SDT 17.18 6 .01 9166 9221

Long list (N � 3,456)
Mixture SDT 7.13 4 .13 10690 10758
Dual process 40.09 6 .01 10719 10775
Unequal variance SDT 28.94 6 .01 10708 10764

Experiment 3
1 s and 3 s (N � 7,040)

Mixture SDT 7.07 8 .53 23712 23828
Dual process 36.49 12 .01 23733 23822
Unequal variance SDT 15.34 12 .22 23711 23801

Note. LR � likelihood ratio goodness-of-fit test; AIC � Akaike’s information criterion; BIC � Bayesian informa-
tion criterion; SDT � signal detection theory.
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process model in the long list conditions of Experiment 1 and 2
and favors the unequal variance SDT model in Experiment 3 and
the short list condition of Experiment 1.

ROC plots provide a useful supplement to the fit statistics.
Figure 2 shows, on inverse normal coordinates, the data for all of
the experiments and conditions, along with fitted z-ROC curves
from the mixture SDT model of Equation 1. Figure 2 shows that the
z-ROC curves from the mixture SDT model are consistent with the
data, as expected in light of the fit statistics. The figure also clearly
shows why the unequal variance SDT model generally does not fit, in
that the data are not well described by straight lines but rather show

some curvilinearity. The figure shows that the dual process model
fails to fit because it predicts upward curvature in the z-ROC curves
(i.e., a U shape; see Yonelinas, 1994), whereas the data instead
suggest more of a kinked or reversed S shape (particularly in Exper-
iments 1 and 2), which is a characteristic (for recognition memory
experiments) of z-ROC curves for mixture SDT (see DeCarlo, 2002).

Model fit is, of course, of interest, but of greater importance are
the parameter estimates and their behavior across experimental
manipulations. Table 2 shows the parameter estimates and standard
errors for maximum likelihood fits of the mixture SDT model to the
data from the three experiments. A consistent and important finding
across all three experiments is that the estimates of the proportion of
source-processed words (�A� and �B�) are larger for the short and
strong lists than for the long and weak lists (.70 and .66 for short vs.
.46 and .47 for long in Experiment 1, .86 and .49 for short vs. .65 and
.40 for long in Experiment 2, .67 and .46 for strong vs. .27 and .26 for
weak in Experiment 3). The interpretation is that source information
was available for a greater proportion of words when the lists were
shorter or the words were presented for a longer time. Thus, the
mixture parameter appears to vary in a systematic way in response to
experimental manipulations, as has also been found in other studies
(DeCarlo, 2002, 2003a, 2007). With respect to a comparison across
inclusion and exclusion words, �A� and �B� are about equal in mag-
nitude for both conditions of Experiments 1 and 3. However, �A�

tends to be larger than �B� in Experiment 2; this could be due to the
differences in the procedure in Experiment 2.

The next two rows of Table 2 show the detection parameters for the
source-processed words, dA� and dB�. For all three experiments, the
estimates (taking into account their standard errors) are about equal in
magnitude across the short–long and strong–weak conditions (and
95% confidence intervals clearly overlap). Thus, the experimental
manipulations did not appear to affect the memory strength of source-
processed words. Table 2 also shows that the estimates for exclusion
words are to the left of the new item distribution, that is, dB� is less
than zero for all three experiments. This indicates that participants
have greater certainty that exclusion words are “new” as compared
with new words, which is a sensible finding because (source-
processed) exclusion words contain information about source that is
not available for new words (i.e., if one believes a word is from the
exclusion list, then one can reject the word, whereas additional infor-
mation of this sort is not available for new words).

The fifth and sixth rows of Table 2 show results for the distri-
butions without source information. For each experiment, there are
no apparent differences in either dA or dB across the short–long
and strong–weak conditions (and 95% confidence intervals over-
lap). Thus, the list length manipulation did not appear to affect
memory strength for words without source information, as also
found above for words with source information. With respect to a
comparison across inclusion and exclusion words, it is interesting
to note that dA tends to be smaller than dB, which could reflect a
difference in familiarity for inclusion versus exclusion words
without source processing. More evidence on this is needed, but it
could reflect an effect of processes activated during the test, a
limitation of the process dissociation procedure, a limitation of the
mixture model, or a combination of these.

Another result in Table 2 is that the response criteria differ
across the short and long lists in Experiments 1 and 2, in that the
criteria for the long list are to the left of those for the short list. This
means that for the long lists, participants were more likely to judge
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Figure 2. Data and fitted mixture signal detection theory receiver oper-
ating characteristic curves on inverse normal coordinates for all three
experiments of Yonelinas (1994).
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that a word was from the inclusion list than from the exclusion list
(and they were less confident that a word was from the exclusion
list). To my knowledge, this is the first time differences in the
response criteria across the short and long lists have been noted for
the data of Yonelinas (1994).

In sum, the results suggest that the experimental manipulations
had a consistent effect on the source memory proportions (�A� and
�B�), in that they were smaller for long lists and short presentation
times in all three experiments, but did not affect memory strength,
either for source-processed words (dA� and dB�) or non-source-
processed words (dA and dB). Thus, the experimental manipulations
appear to have affected only source processing and not memory
strength. Note that these results are consistent with those found by
Yonelinas (1994), in that Yonelinas found an effect of list length on
the recollection parameter of the dual process model (similar to the
effect on �A� and �B� found for the mixture SDT model) but did not
find an effect on the memory strength parameters (Yonelinas claimed
a difference in Experiment 3, but the standard deviations shown in his
Table 5 do not support that claim). In terms of mixture SDT, the
results suggest that less source information is available for words from
longer lists or with shorter presentation times, whereas familiarity is
about the same across short–long lists and weak–strong words. It was
also found that the unmixed solution gave an exclusion distri-
bution for source-processed words that was clearly to the left of
the other distributions; this result suggests that the mixture SDT
model captures the opposition that is a basic part of the process
dissociation procedure.

Conclusions

The present article provides a theoretical model, based on a
mixture extension of SDT, for the process dissociation procedure.
The mixture SDT model attempts to separate different processes
and provides a detailed picture of process dissociation data. The
results for an analysis of Yonelinas’s data (1994) show that the
mixture SDT model accounts for curvilinearity that appears in
z-ROC curves for the process dissociation procedure. The results
also show that mixture SDT is consistent with exclusion ROC
curves that go below the diagonal, which provides an answer to a
recent question of Yonelinas and Parks (2007) about how the

mixture SDT model would account for “negative-going exclusion
ROCs” (p. 828). More important, the theoretical reason for this
result is quite clear: As shown in Figure 1, the exclusion z-ROC
curves go below the diagonal because the distribution for source-
processed words (B�) is to the left of the new word distribution
(N, which is used as the zero point); for another example of
negative ROC curves, see DeCarlo (2007). It was also found that
the mixture parameter, which can be interpreted as indicating the
proportion of words with source processing, varied as expected in
response to experimental manipulations.

It was also shown that the dual process model does not fit the
data of Yonelinas (1994). Because of problems of this sort, several
authors have introduced generalizations of the dual process model.
For example, Sherman, Atri, Hasselmo, Stern, and Howard (2003)
introduced a generalization that allows for “variable recollection”;
the model has also recently been noted by Yonelinas and Parks
(2007) and is referred to here as the var DP model. Recollection in
the var DP model is represented by a probability distribution on the
familiarity dimension, with a free location and variance, in which
case the model simply becomes a mixture SDT model, with a
different interpretation (note that the present results show that
assuming unequal variances is not necessary, because the equal
variance mixture model fit quite well).

Here it is noted that the var DP model raises some issues
because, in contrast to the original DP model, recollection is no
longer necessarily viewed as a (high) threshold process. More
specifically, as shown here and elsewhere (DeCarlo, 2007), recol-
lection within the SDT framework can be viewed as a probability
distribution with a large value of d. By relaxing this assumption, as
in the var DP model, the interpretation in terms of recollection is
potentially lost (e.g., if the recollection distribution is close to or to
the left of the familiarity distribution).6 That is, if one recollects
the source of a word, then one should say “sure yes”: That is the
basic idea of the original formulation of the DP model as a
threshold model, and so, by relaxing this assumption, the var DP

6 One could place constraints on the mean in the var DP model, but
difficulties then arise with respect to rationalizing a particular value for the
constraint.

Table 2
Parameter Estimates for the Mixture Signal Detection Model for Experiments 1, 2, and 3 of Yonelinas (1994)

Experiment 1 Experiment 2 Experiment 3

Parameter Short Long Short Long Strong Weak

�A� .70 (0.04) .46 (0.05) .86 (0.03) .65 (0.06) .67 (0.10) .27 (0.12)
�B� .66 (0.04) .47 (0.05) .49 (0.07) .40 (0.06) .46 (0.11) .26 (0.17)
dA� 3.23 (0.17) 3.16 (0.21) 2.97 (0.13) 2.56 (0.17) 1.64 (0.16) 1.99 (0.45)
dB� �0.69 (0.11) �1.02 (0.16) �1.47 (0.58) �1.06 (0.24) �0.54 (0.26) �0.63 (0.61)
dA 0.93 (0.13) 0.87 (0.09) 0.35 (0.20) 0.60 (0.16) �0.04 (0.27) 0.38 (0.13)
dB 1.54 (0.16) 1.10 (0.12) 1.28 (0.17) 1.15 (0.14) 1.17 (0.18) 0.74 (0.16)
c1 �0.22 (0.03) �0.66 (0.03) �0.15 (0.04) �0.62 (0.04) �0.31 (0.02) �0.31 (0.02)
c2 0.66 (0.03) 0.31 (0.03) 1.13 (0.05) 0.61 (0.04) 0.27 (0.02) 0.27 (0.02)
c3 1.32 (0.04) 0.99 (0.04) 1.71 (0.06) 1.20 (0.05) 0.71 (0.03) 0.71 (0.03)
c4 2.02 (0.07) 1.68 (0.05) 2.12 (0.08) 1.84 (0.06) 1.11 (0.03) 1.11 (0.03)
c5 2.74 (0.10) 2.61 (0.08) 2.74 (0.10) 2.65 (0.09) 1.72 (0.04) 1.72 (0.04)

Note. A represents inclusion words, B represents exclusion words. Standard errors are shown in parentheses.
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model changes the conceptualization in a major way. Why one
would use less than sure response categories (as also done in other
extensions of the DP model, such as in Macho, 2002) if the source
of a word is recollected remains to be explained.

Another problem is that the var DP model is basically an ad hoc
empirical generalization and is not theoretically motivated. This was,
in fact, recognized by Sherman et al. (2003): “An assumption of the
Yonelinas High Threshold model is that recollection always results in
a high-confidence ‘yes’ response. Perhaps by relaxing this assump-
tion, we can accommodate the broadened recollective peak apparent
in the scopolamine subjects’ old-item distribution” (p. 532). This is
clearly an empirical motivation and not a theoretical one, just as Green
and Swets (1966) noted that the unequal variance SDT model is
simply an empirical generalization of the equal variance SDT model
(see DeCarlo, 2002). This is also true of other generalizations of the
dual process model, such as simply allowing the familiarity distribu-
tions to have unequal variances (e.g., Healy, Light, & Chung, 2005),
which again is an empirical generalization and not theoretical.

In contrast, the mixture SDT model does not simply introduce
parameters to improve fit; an important aspect of the approach is
that all of the parameters are theoretically grounded, in that they
represent either memory strength (for inclusion and exclusion
words) or the proportion of words with source information. Of
course, one could generalize the mixture SDT model by introduc-
ing additional parameters, such as by allowing the variances of the
distributions to vary, but that would defeat a basic purpose of
mixture SDT, which is to uncover a simple shift in strength (with
constant variance), and would also be an empirical generalization,
not a theoretical one.7 In short, the mixture SDT model does not
introduce parameters in an ad hoc fashion to improve fit; all of the
parameters have specific theoretical interpretations, which is not
the case for recent generalizations of the DP model.

In the current article, I show that the process dissociation procedure
is similar to other recognition memory procedures in that it involves
a mixture of processes. The article also raises questions as to whether
the process dissociation procedure really helps to separate different
processes or instead complicates the situation (given that mixture
SDT shows that the processes can be separated in simple recognition
experiments). A mixture SDT model for process dissociation is of-
fered as a starting point for further development and study.

7 It also raises estimation issues, in that there is a partial confounding of
effects of mixing and the variance.
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Appendix

Some Notes on Fitting the Model

The model can be implemented in different ways, depending on
the software used. Here, the approach used for Lemwin (Vermunt,
1997) and Latent Gold (Vermunt & Magidson, 2007) is shown.

First, note that it is convenient to rewrite the equation for new
items in Equation 1 as

p�Y � k|N� � �N��ck� � �1 � �N���ck�, (A1)

which reduces to �(ck) for a given value of �N (e.g., it can be set
to any value when fitting the model). Next, let X be a (dummy)
variable that takes on a value of x � 1 when an A item is presented
and 0 otherwise, Z be a variable that takes on a value of z � 1 when
a B item is presented and 0 otherwise (and so X � 0 and Z � 0
indicates a new item), V be a latent variable with values of 0 and
1, and W be a latent variable with values of 0 and 1. Equation 1 is
then part of a restricted latent class model; the signal detection part
of the model is

p�Y � k|X, Z, XV, ZW� � ��ck. � dAx � dBz

� dA�Axv � dB�Bzw�, (A2)

where dA�A is the distance of the A� distribution (the source-
processed familiarity distribution) from the A distribution (the
non-source-processed familiarity distribution) and dB�B is the dis-
tance of the B� distribution from the B distribution; note that the
interaction terms allow the source-processed distributions to have
different locations from the non-source-processed distributions.

Next, Equation A2 is incorporated into a restricted latent class
model, which models the cumulative response probabilities for the
observed variables,

p�Y � k|X, Z� � �V �W p�V�p�W�p�Y � k|X, Z, XV, ZW�, (A3)

where the summation is over the possible values of V and W (each
coded as 0 or 1) and the second term on the right is given by
Equation A2. Multinomial (binomial in this case) models are used
for the source probabilities of Equation A3,

p�V � 1� � exp�a�/	1 � exp�a��

p�W � 1� � exp�b�/	1 � exp�b��,

where exp is the exponential function.
For the model as parameterized in Equation A2, the parameters dA�

and dB� are obtained by addition, specifically, dA� � dA�A � dA and
dB� � dB�B � dB, where dA�A is the distance of the A� distribution
from the A distribution and dB�B is the distance of the B� distribution
from the B distribution. The standard errors of the parameters can be
obtained by using the estimated covariance matrix of the parameters
(which can be printed out in Lemwin [Vermunt, 1997] by using the
command wse) and the relation var(dA�) � var(dA�A) � var(dA) �
2cov(dA�A, dA); var(dB�) may be derived similarly.

Note that for the fitted model, two equivalent solutions can be
obtained, because it is arbitrary whether, for example, V � 1 indicates
Class A or Class A� or W � 1 indicates B or B� (see DeCarlo, 2002).
The log likelihood (and fit) is identical across the labelings and the
estimates for one solution can be obtained from the other, because one
solution is simply a reparameterization of the other; the different
solutions will usually appear over repeated runs of Latent Gold or
LEM. This comes under a more general issue referred to as label
switching in mixture models in statistics (e.g., McLachlan & Peel,
2000); the use of starting values in Latent Gold allows one to gain
some control over which solution is obtained. For the application to
process dissociation, there are four solutions, given by the possible
combinations of values of V and W, that is, 00, 01, 10, or 11 (which
creates some complexities in the analysis). Note that it was assumed
here that the distributions that were the furthest to the right or left were
for words with source information.

As noted earlier (e.g., DeCarlo, 2002), it is also important to run
the analysis repeatedly using different starting values because local
maxima are often encountered.
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