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Abstract

Participants in source monitoring studies, in addition to determining whether an item is old or new, also discriminate the source of

the item, such as whether the item was presented in a male or female voice. This article shows how to apply multivariate signal

detection theory (SDT) to source monitoring. An interesting aspect of one version of the source monitoring procedure, from the

perspective of multivariate SDT, is that it involves a type of selection, in that a discrimination response is observed only if the

detection decision is that an item is old. If the selection is ignored, then the estimate of the discrimination parameter can be biased;

the nature and magnitude of the bias are illustrated. A bivariate signal detection model that recognizes selection is presented and its

application is illustrated. The approach to source monitoring via multivariate SDT provides new results that are informative about

underlying psychological processes.

r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Source monitoring studies have been widely used in
psychology to study memory, language, and other
psychological processes (for references, see Hilford,
Glanzer, Kim, & DeCarlo, 2002; Johnson, Hashtroudi,
& Lindsay, 1993). The source monitoring task adds
another component to item recognition in that, in
addition to determining whether an item (e.g., a word)
was presented earlier, participants must also determine
the source of the item (e.g., whether the item had been
presented by source A or source B). Thus, the task
consists of both detection of items and discrimination of
their source.1

One approach to source monitoring is through
multinomial models, following the presentation by
Batchelder and Riefer (1990) of a multinomial model
for source monitoring. Batchelder and Riefer (1999)
recently provided an extensive review of applications of

multinomial models to source monitoring and other
areas.

Another approach to source monitoring is through
multivariate signal detection theory2 (SDT; see Ashby,
1992; Macmillan & Creelman, 1991; Tanner, 1956;
Wickens, 1992). Although the possibility of applying
multivariate SDT to source monitoring has previously
been noted (e.g., Kinchla, 1994), the approach has not
been developed in any detail nor has it been empirically
investigated. This is somewhat unfortunate because a
number of recent studies have used a multivariate
procedure to investigate source monitoring, in that
participants gave both detection and discrimination
responses (e.g., Hilford et al., 2002; Mather, Johnson, &
De Leonardis, 1999; Slotnick, Klein, Dodson, &
Shimamura, 2000; Yonelinas, 1999), yet none of these
studies have used a multivariate SDT analysis, nor was
the multivariate nature of the data (i.e., two responses
were given on each trial) recognized in the analysis.

This article discusses source monitoring from the
perspective of multivariate SDT. It is shown that

$Programs for some of the examples presented here are available at

the authors website, http://www.columbia.edu/~1d208.
�Fax: 212-678-3837.

E-mail address: decarlo@exchange.tc.columbia.edu.
1 The term identification has also been used to describe the task; the

focus here is on situations where the participant simply discriminates

between two sources, A and B, and so the term discrimination is used.

2 Multivariate SDT refers to situations where the underlying stimuli

are multidimensional and two or more responses are given, typically

with at least one response for each dimension. Multidimensional SDT

involves multidimensional stimuli but not necessarily two or more

responses.

0022-2496/03/$ - see front matter r 2003 Elsevier Science (USA). All rights reserved.

doi:10.1016/S0022-2496(03)00005-1

&ast;http://www.columbia.edu/~1d208


previous studies have ignored information in the data by
in essence treating it in a univariate manner. An analysis
via multivariate SDT, on the other hand, is shown to offer
a concise summary of the data; it also provides new results
that are informative about underlying psychological
processes (e.g., estimates of the bivariate correlations of
the underlying distributions). The implications of multi-
variate SDT for the analysis of two basic versions of the
source monitoring procedure are discussed. Several
studies, for example, have used a procedure where
participants gave both a detection and discrimination
response on each trial; the application of multivariate
SDT in this case is straightforward and examples are
presented in the next section. In other studies, a
conditional source monitoring procedure was used, in that
participants gave a discrimination response only if the
detection response was ‘‘old’’. This version of the
procedure involves a kind of response-selection, in that
the discrimination response is not observed when the
detection response is ‘‘new’’. It is shown that, in order to
apply multivariate SDT to this situation, the effects of
selection must be taken into account. A formal multi-
variate SDT model that recognizes selection is presented.
An application of the model with selection to source
monitoring data shows that the results are consistent with
those obtained for the procedure that does not involve
selection. In addition, it is shown that ignoring the effects
of selection can give misleading results.

The remainder of the article is organized as follows.
First, a bivariate normal SDT model with rating
responses is presented and applied to data from several
source monitoring studies. Next, a bivariate SDT model
for the situation involving response selection is devel-
oped and applied to source monitoring data. It is shown
that ignoring the effects of selection can bias the
estimate of the discrimination parameter. The last
section discusses implications of multivariate SDT for
some commonly used univariate versions of the source
monitoring procedure.

2. Source monitoring and multivariate signal detection

theory

2.1. Bivariate SDT with rating responses

As noted above, several recent studies have required
participants to give separate detection and discrimina-
tion decisions, with rating responses used for each
decision (e.g., Slotnick et al., 2000; Yonelinas, 1999).3

The analyses in these articles, however, treated the data
in a univariate manner, in that a possible correlation
between the detection and discrimination responses was
not considered and discrimination was simply estimated
from the marginal frequencies, or marginal ROC
curves were examined. In the present approach, multi-
variate SDT is used and estimates of the detection,
discrimination, and criteria parameters and their stan-
dard errors are obtained, along with estimates of the
standard deviations and correlations of the underlying
distributions.

To start, note that from the perspective of multi-
variate SDT as applied to source monitoring, the effects
of a presentation of each item (new, A, or B) can be
represented by underlying bivariate probability distribu-
tions (i.e., three bivariate distributions for three items).
The bivariate distributions represent multidimensional
perceptions of the stimuli. That is, for source monitor-
ing, the stimuli differ not only on a dimension that is
used for the detection decision, but also on a dimension
that is used for the discrimination decision. The
detection decision is usually thought of as being based
on a dimension of familiarity whereas the discrimination
decision can be thought of as being based on a
dimension of features (that are used to discriminate
the stimuli). Note that the same approach has been used
in studies involving simultaneous detection and identi-
fication (see Ashby (1992), and the chapters therein;
Macmillan & Creelman, 1991; Tanner, 1956).

More formally, let the latent variables used for the
decisions be denoted as y�

jg; with j ¼ 1; 2 indicating the
two dimensions (e.g., familiarity and features, respec-
tively) and g ¼ N;A;B indicating the three items (where
N ¼ new). With respect to multivariate SDT, what is
referred to in structural equation modeling (SEM; e.g.,
Bollen, 1989) as the structural part of the model in this
case is simply a model for the means, variances, and
covariances of the three bivariate distributions asso-
ciated with new, A, and B items. Specifically, the
structural model is

y�
jg ¼ Cjg þ ejg; ð1Þ

where E is the expectation operator and EðejgÞ ¼ 0: It
follows that Eðy�

jgÞ ¼ Cjg; where Cjg are the means of
the underlying bivariate distributions on dimension j for
item g: The variances of the underlying distributions are
denoted here as VðejgÞ ¼ s2

jg and the bivariate correla-
tions as corrðe1g; e2gÞ ¼ rg:

A second basic assumption of multivariate SDT is
that observers use response criteria on each dimension
to divide the space into (confidence) decisions of new or
old, for detection, or A or B, for discrimination. Let the
observed response variable be denoted as Yjg and let
kjðkj ¼ 1; 2;y;Kj) indicate Kj ordered response cate-
gories for dimension j (the subscript j is used on Kj

because the number of response categories do not have

3 Banks (2000) also conducted an experiment where both detection

and discrimination responses were obtained, however the detection

responses were all given first followed by the discrimination responses,

so the procedure did not involve obtaining two responses on each trial.

Nevertheless, a multivariate SDT model could be applied to the data.
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to be the same across the two decisions). The decision
rule can then be written as

Yjg ¼ kj if cj;k�1oy�
jgpcjk; ð2Þ

where cj0 ¼ �N; cjK ¼ N; and cj1ocj2o?ocj;K�1

(note that the subscript j is not needed on k in cjk

because the dimension is clear; also the subscript g is not
needed on cjk because the criteria are assumed to have
the same location across the g items). Eq. (2) reflects an
assumption referred to as decision separability by Ashby
and Townsend (1986).

It follows directly from Eqs. (1) and (2) that

pðY1gpk1;Y2gpk2Þ ¼ pðy�
1gpc1k; y�

2gpc2kÞ
¼ pðe1gpc1k �C1g; e2gpc2k �C2gÞ:

If ðe1g; e2gÞ are bivariate normal with variances s2
jg and

bivariate correlations rg then

pðe1gpc1k �C1g; e2gpc2k �C2gÞ
¼ F2½ðc1k �C1gÞ=s1g; ðc2k �C2gÞ=s2g; rg�;

where F2 is the bivariate normal cumulative distribution
function (CDF). The result is a bivariate normal SDT
model for rating responses,

pðY1gpk1;Y2gpk2Þ
¼ F2½ðc1k �C1gÞ=s1g; ðc2k �C2gÞ=s2g; rg�; ð3Þ

for g ¼ new; A, and B.
The bivariate normal SDT model of Eq. (3) is

identified for a source monitoring study with two
sources, that is, a unique solution for the parameters
exists, if rating responses with at least three categories
are used in each component (the use of only two
response categories is discussed below). As in univariate
SDT, one of the distributions is used as a reference and
so its mean and standard deviation on each dimension
are set to zero and unity, respectively. The new item
distribution was used here as the reference, and so
CjN ¼ 0 and sjN ¼ 1 for j ¼ 1; 2: With this parameter-
ization, the means of the A and B distributions on each
dimension give the detection parameters dA ¼ C1A and
dB ¼ C1B and the discrimination parameter dAB ¼
C2B �C2A; which is simply the distance between the
means of distributions A and B on dimension 2. Fig. 1
illustrates the theory; the figure shows contours for three
bivariate normal distributions, corresponding to new, A,
and B items, and two response criteria on each
dimension, which delineate responses of 1–3.

Wickens (1992) provides details about full informa-
tion maximum likelihood (FIML) estimation for the
multivariate SDT model. The (log) likelihood function
to be maximized follows directly from Eq. (3), with the
probabilities for each response pattern obtained by
subtracting the bivariate cumulative probabilities. More
generally, Eq. (3) can be viewed as a multiple-group
bivariate probit model with ordinal indicators (with an

intercept-only model in each group); this type of model
has been widely studied in econometrics (see Greene,
2000; Muthén, 1983), psychometrics (e.g., Muthén,
1984), and biostatistics (e.g., Ashford & Sowden, 1970;
Bock & Gibbons, 1996). This places multivariate SDT
within a general statistical framework; a benefit is that
the models have been extensively studied in statistics and
so a sophisticated methodology is available (the model
can be fit using several software packages). For example,
the use of the package aML (Lillard & Panis, 2000),
which can be used to fit all of the models discussed here,
is noted in the appendix; some sample aML programs
are available at my website.

Multivariate SDT provides an explicit theory about
underlying psychological processes that lead to the
observed data. In the examples that follow, the focus is
on the parameter estimates, which have a specific
interpretation in terms of the theory. It is shown, for
example, that the signs of the bivariate correlations of
the underlying distributions have both practical and
theoretical implications.

2.2. Bivariate SDT and source monitoring: examples

The examples represent recent research on source
monitoring where the procedure described above was
used, that is, participants gave rating responses for both
detection and discrimination. In particular, the data for
Experiment 2 of Yonelinas (1999) and Experiments 2
and 3 of Slotnick et al. (2000) are analyzed. In both
studies, the sources used were whether a word had been
spoken by a woman or a man during the study period.
For the test, observers gave a rating response for
detection, indicating how confident they were that a
word was old or new, and a rating response for
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Fig. 1. Contours for new, A, and B items for a bivariate normal SDT

model applied to source monitoring. The familiarity dimension is y�1;
the feature dimension is y�2; c11 and c12 are response criteria on

dimension 1; c21 and c22 are response criteria on dimension 2.
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discrimination, indicating how confident they were that
the source was presented by A or B (i.e., in a female or
male voice, respectively). For Yonelinas’ study, 1–6
rating responses were used for detection and discrimina-
tion, whereas for the studies of Slotnick et al., 1–7 rating
responses were used. In both studies, for the discrimina-
tion response, higher numbers indicated greater con-
fidence that the source was a male voice (note that the
responses for Experiment 2 of Slotnick et al. were
reverse coded to be consistent with the others). In the
test phase for both studies, items were presented
visually.

2.2.1. Goodness-of-fit

Table 1 shows, for all three experiments, likelihood
ratio (LR) goodness-of-fit statistics for a fit of the
bivariate normal SDT model using FIML estimation in
aML; the appendix provides details about calculations
of the fit statistics and the degrees of freedom. A
goodness-of-fit statistic close in value to the df indicates
that the null hypothesis that the model fits is not
rejected, and so the significant statistics shown in the
table indicate that the model does not fit (exactly). It
should be recognized, however, that the tests have high
power because the sample sizes are quite large. A
recognition of this, along with a desire to assess
approximate fit in lieu of exact fit, has led to the
development of alternative fit indices in statistics. For
example, the root mean square error of approximation
(RMSEA; Steiger, 1990) is a measure of approximate fit
(see the appendix). Of course, what one considers to be
approximate fit is subjective, but based on experience
with empirical examples, Browne and Cudeck (1993)
suggested values of 0.05 or less of RMSEA as indicating
close fit, values from 0.05 to 0.08 as indicating
acceptable fit, and values greater than 0.10 as indicating
poor fit (also see Hu & Bentler, 1999); see the appendix
for the formula used to calculate the RMSEA and
further comments. The values of RMSEA shown in
Table 1 suggest poor fits for the data of Yonelinas
(1999) and Slotnick et al. (2000).

Note that the fit statistics are not trustworthy in
situations where there are many response patterns (i.e.,
cells in the multiway table) with expected frequencies

less than 5 (see Agresti (2002); having both small and
large expected frequencies creates problems as well).
This was also noted, in the context of multivariate SDT,
by Wickens (1992). Here I note that this problem was
present for the data of Slotnick et al. (2000), in that
many cells had small expected frequencies (inspection of
their published tables shows why, in that the tables are
very sparse, with many cells with small or no counts),
and was less of a problem for the experiment of
Yonelinas (1999).

To summarize, the results suggest that, with respect to
applying a bivariate normal SDT model to source
monitoring data, there is clearly room for improvement.
The marginal receiver operating characteristic (ROC)
curves presented by Yonelinas (1999) and Slotnick et al.
(2000) suggest a source of some of the lack of fit, in that,
for discrimination, the curves on inverse normal
coordinates (i.e., z-ROC curves) deviate from linearity,
and in particular they are slightly curved (which suggests
that some of the lack of fit might be due to violations of
distributional assumptions). The curvature could arise
for any one of a number of reasons; however, one
possibility is suggested by the observation that the
curvature is consistent with a mixture extension of SDT
for source discrimination (DeCarlo, 2000, in press; also
see DeCarlo, 2002), and so it might be worthwhile to
develop a multivariate extension of the univariate SDT
mixture model. This type of extension is within the
realm of SEM, but is outside the scope of the present
article; here I simply note that it suggests an interesting
direction for future research. Another possibility would
be to relax the assumption of decision separability, as in
general recognition theory (GRT; Ashby & Townsend,
1986), although this takes the model outside the realm of
those developed in SEM (and there are some complex-
ities associated with fitting the model). In future
research, a comparison of different types of general-
izations of multivariate SDT models, using information
criteria for example (Burnham & Anderson, 2002),
would be informative.

2.2.2. Parameter estimates

Table 2 presents parameter estimates for fits of the
bivariate SDT model with ordinal responses to the data
of Yonelinas (1999) and Slotnick et al. (2000). The table
shows FIML estimates obtained using aML (Lillard &
Panis, 2000); the estimates of the standard errors are
asymptotic and are referred to as BHHH standard
errors in the aML manual (which provides references);
aML also offers other estimators of the standard errors
(that might be useful for smaller sample sizes). Note that
the model as parameterized in aML gives direct
estimates of all the parameters shown in Table 2, with
the exception that the estimate of dAB is computed using
the estimates of C2B �C2A: Approximate standard
errors for dAB were computed by noting that, for

Table 1

Goodness-of-fit statistics for the bivariate normal SDT model for the

data of Yonelinas (1999) and Slotnick et al. (2000)

Study LR df p RMSEA

Yonelinas (Expt. 2, N ¼ 5760) 2415.41 84 o0:01 0.120

Slotnick (Expt. 3, N ¼ 5758) 3755.09 121 o0:01 0.125

Slotnick (Expt. 2, N ¼ 2584) 1579.71 121 o0:01 0.118

Note: Results from aML using FIML. LR is the likelihood ratio

goodness-of-fit statistic; and RMSEA the root mean square error of

approximation.
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random variables X and Y ; VðX � Y Þ ¼ VðX Þ þ
VðY Þ � 2CovðX ;Y Þ:

Table 2 shows an impressive consistency of results
across the three studies. For example, for all three
experiments, the detection of words did not differ across
female (A) or male (B) voices, that is, the estimates of
the detection parameters dA and dB are close in
magnitude (and within about a standard error of each
other). Second, in all three experiments, the estimates of
the standard deviations s1A and s1B (for the familiarity
dimension) are close in value across A and B and are
greater than unity. The finding that s1A and s1B are
larger than s1N (which is 1) means that the marginal
ROC curves for detection have slopes that are less than
unity on inverse normal coordinates, as is usually found.
Similarly, the estimates of the standard deviations s2A

and s2B on the feature dimension are close in value
across A and B and are greater than unity; also note that
s2A and s2B are larger than s1A and s1B: Thus, the
results for all three experiments suggest that dA ¼ dB;
s1A ¼ s1B; and s2A ¼ s2B; which suggests that neither
detection nor discrimination differed across the two
sources (i.e., a female or male voice). In addition, the
finding that s2A and s2B were larger than s1A and s1B

suggests that the representations had larger variability
on the dimension used for discrimination than on the
dimension used for detection.

It should also be noted that Slotnick et al. (2000) used
a longer study list in Experiment 3 in order to ‘‘reduce
the level of performance’’ (p.1512) and Table 2 shows
that the estimates of the detection parameters dA and dB

and the discrimination parameter dAB are in fact smaller
for the longer study list of Experiment 3, as compared to
Experiment 2. This provides important experimental
evidence in favor of the model, in that it shows that the
SDT parameters behave as expected in response to an
increase in length of the study list. Note that, although
the fits of the multivariate SDT model were poor, the
parameter estimates are still informative.

With respect to the bivariate correlations, Table 2
shows that the estimates of rN for the new item
distribution are close to zero for all three experiments

and are not significant in any case (as can be seen by the
size of the standard error), whereas the estimates of rA

and rB are large, significant, and opposite in sign. The
finding of non-zero values for the estimates of rA and rB

means that the detection and discrimination responses
were correlated when an old item (A or B) was
presented, but not when a new item was presented.
The opposite signs arise because high confidence on the
discrimination scale involves using response categories
that are towards opposite extremes (i.e., 1 ¼ sure A and
6 ¼ sure B). As a result, on a trial where a participant is
sure that the item is old, for example, high confidence
with respect to discrimination is indicated by high
categories (e.g., 5, 6) for B items (and so rB is positive)
and low categories (1, 2) for A items (and so rA is
negative). It is also interesting to note that, across all
three experiments, the absolute magnitude of rA is close
to that of rB (and the estimates are well within 2
standard errors).

The finding of non-zero and opposite-signed bivariate
correlations for the A and B distributions is a new and
interesting result; it also has important implications for
situations that involve response selection, as discussed
below. It suggests that, when the level of familiarity of
an old item was higher, the level of information about
features was also higher, perhaps because the item was
overall processed at a deeper level. Thus, the results
show that information across the two dimensions was
correlated. Note that the finding that rN was close to
zero in all three studies is consistent with this
interpretation, in that a high or low level of familiarity
for a new item should not be associated with a higher or
lower level of feature information, because new items do
not provide information about the source (there is no
source associated with new items).

In summary, the results show that the bivariate SDT
model of Eq. (3) concisely summarizes major aspects of
the data from several source monitoring studies. The
results are shown to be consistent across several
experiments and the analysis provides new information.
Estimates of the parameters of the multivariate SDT
model are obtained, as well as estimates of the standard

Table 2

Parameter estimates for the bivariate normal SDT model for the data of Yonelinas (1999) and Slotnick et al. (2000)

dA dB s1A s1B dAB s2A s2B rN rA rB

Yonelinas (Expt. 2) 1.38 1.31 1.47 1.45 1.46 1.85 1.78 �0.02 �0.44 0.48

(0.06) (0.06) (0.06) (0.06) (0.08) (0.07) (0.06) (0.02) (0.03) (0.03)

Slotnick (Expt. 3) 1.92 1.94 1.42 1.41 2.82 2.80 2.83 �0.06 �0.50 0.51

(0.07) (0.07) (0.06) (0.06) (0.15) (0.10) (0.11) (0.04) (0.04) (0.04)

Slotnick (Expt. 2) 2.74 2.84 1.90 2.02 4.71 3.32 3.46 0.01 �0.50 0.60

(0.16) (0.17) (0.15) (0.16) (0.25) (0.19) (0.20) (0.06) (0.06) (0.06)

Note: the table shows FIML estimates obtained using aML. Source A is a female voice, source B is a male voice. The terms in parentheses are the

estimated standard errors. The estimate of dAB was obtained as CAN �CBN and the standard error was computed as noted in the text.
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errors; the standard errors are important but have
tended to be neglected in prior research (issues of model
identification are also important; the use of eigenvalues
of the estimated information matrix to help assess
identification is noted in the appendix). As discussed
above, the parameter estimates have interpretations in
terms of detection, discrimination, and response criteria,
and the bivariate correlations have implications about
underlying processes. Applications of multivariate SDT
in future research on source monitoring should be
informative.

2.3. Bivariate SDT with rating responses and selection

As noted above, some studies have used a conditional
source monitoring procedure, in that a discrimination
response was made only if the detection decision was
‘‘old’’. This section shows how to apply multivariate
SDT to situations where a conditional source monitor-
ing procedure is used. The most general case where
rating responses are given for both detection and
discrimination is considered; some sub-models are
discussed later in the article. For example, participants
might first give a 1–4 detection response and then a 1–4
discrimination response only if the detection response
was 3 or 4, as in the example analyzed below.

The bivariate normal SDT model with selection
introduced here is an example of what is known more
generally in econometrics and statistics as an ordinal-
response bivariate probit model with sample selection
(e.g., see Greene, 2000; Maddala, 1983). The model
presented here extends the usual model in two basic
ways: a rating response is used for the selection model
(i.e., the detection component) and the model is a
multiple group extension of the usual model.

Let k1 ¼ ð1;y; s;y;K1Þ indicate K1 ordered re-
sponse categories for detection, and k2 ¼ ð1;y;K2Þ
indicate K2 ordered response categories for discrimina-
tion. In the conditional procedure, a discrimination
response is given if and only if k14s; and so s is the
detection category above which a discrimination re-
sponse is observed. In this case, the decision rule is

Yjg ¼ kj if cj;k�1oy�
jgpcjk for j ¼ 1; 2;

Y2g ¼ k2 if and only if Y1g4s ð4Þ

for g ¼ N; A, B, and as before, cj0 ¼ �N; cjK ¼ N; and
cj1ocj2o?ocj;K�1: The structural model is again
Eq. (1) and, with Eq. (4), the resulting model can be
written as

pðY1gpk1Þ ¼ F½ðc1k �C1gÞ=s1g�;

pðY1gXk1;Y2gpk2Þ
¼ F2½ð�c1;k�1 þC1gÞ=s1g;

ðc2k �C2gÞ=s2g;�rgÞ� ð5Þ

for k1 ¼ 1;y; s for the first equation and k1 ¼ s þ
1;y;K1 and k2 ¼ 1;y;K2 for the second equation.
Eq. (5) shows that the model consists of two basic
components, one for trials where only a detection
response is observed and one for trials on which both
detection and discrimination responses are observed. In
this case, the log likelihood function to be maximized
consists of two parts, one for trials where only Y1g is
observed and the other for trials where both Y1g and Y2g

are observed; the likelihood function follows directly
from Eq. (5), again taking differences between the
bivariate cumulative probabilities in order to get the
probabilities for each response pattern. Thus, the model
is easily fit by maximizing the two components of the log
likelihood function. Details on fitting bivariate probit
models with sample selection can be found in econo-
metrics texts (e.g., see Greene, 1998, 2000). The model
was fit here using FIML estimation with the software
aML; a sample aML program for bivariate SDT with
selection is available at the author’s website.

2.4. Bivariate SDT with selection: a source monitoring

example

The example is an unpublished pilot source monitor-
ing study conducted by the author. The stimuli consisted
of 50 pictures selected from those given by Snodgrass
and Vanderwart (1980). Of the 50 pictures, 25 were
presented as pictures whereas the other 25 were
presented as words. Thus, the two sources were whether
the item had been presented as a picture or as a word.
For the study period, each picture or word was
presented for about 3 s: For the test, participants were
tested with either all words or all pictures; in particular,
8 participants were shown 100 words, of which 25 had
been shown as words, 25 had been shown as pictures,
and 50 were new; whereas 8 other participants were
shown 100 pictures, of which 25 had been shown as
pictures, 25 had been shown as words, and 50 were new.
Although it would be of interest to analyze the data for
the two testing conditions separately (i.e., whether
participants were tested with pictures or words), the
small sample size precludes this and the data pooled
across both conditions are analyzed here. Participants
gave a 1–6 rating response for detection, followed by a
1–6 rating response for discrimination only if the
detection response was greater than 3. For the analysis
presented here, categories 2 and 3 (somewhat sure,
slightly sure) were combined, as were categories 3 and 4
(because of small counts), resulting in a 4 category scale.
Specifically, for detection, the category labels were 1 ¼
sure new, 2 ¼ somewhat or slightly sure new, 3 =some-
what or slightly sure old, and 4 ¼ sure old, whereas for
discrimination the labels were 1 ¼ sure word, 2 ¼
somewhat or slightly sure word, 3 ¼ somewhat or
slightly sure picture, 4 ¼ sure picture. Note that, in this
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case, a discrimination response was observed only if the
detection response was 3 or 4, and so s ¼ 2 in Eqs. (4)
and (5).

An LR goodness-of-fit statistic was computed by
substituting the parameter estimates in Eq. (5) and
computing the expected frequencies for each response
pattern, as noted in the appendix, which gave LR ¼
73:52ðN ¼ 1600; df ¼ 10; po0:01Þ; and so the null
hypothesis of exact fit is rejected. The value of RMSEA
is 0.109, which suggests a poor to mediocre fit, at best.
As before, some of the lack of fit appears to be due to
curvature in the marginal ROC curves (which could
possibly be handled by a mixture generalization of
multivariate SDT).

Table 3 presents the parameter estimates, obtained
using FIML in aML. The table shows that the estimate
of the detection parameter for pictures (dB; the estimate
is 5.27) is considerably larger than that for words (2.16),
which suggests a picture superiority effect (see Johnson
et al., 1993). The estimate of the discrimination
parameter dAB is 5.4, which indicates good discrimina-
tion between the sources. The estimates of the standard
deviations s1A and s1B for the familiarity dimension are
both greater than unity and are about equal in value;
similarly, the estimates of the standard deviations s2A

and s2B for the feature dimension are both greater than
unity and are about equal in magnitude. The estimates
of s2A and s2B are also larger than the estimates of s1A;
s1B; as was found for the experiments discussed above,
which again suggests a difference between recognition
memory and source memory. Thus, the general pattern
of results for the standard deviations is very similar to
that found for the experiments discussed above.

With respect to the bivariate correlations, the estimate
of rN is small and positive, and is smaller in magnitude
than the estimate of its standard error, and so the null
hypothesis that rN is zero is not rejected, which is
consistent with the results found for the three experi-
ments discussed above. The estimates of rA and rB are
large in magnitude, significant, and opposite in sign; the
fact that opposite signs are found across procedures
with and without selection is important. Overall, the
finding of bivariate correlations that are opposite in sign
for A and B and near zero for N are again consistent
with the view that information used for detection is
correlated with information used for discrimination.
Finally, it is interesting to note that the estimates of rA

and rB are larger in magnitude than those obtained for
the three experiments discussed above (see Table 2),
which might reflect an aspect of using pictures versus
words as sources in lieu of words spoken in different
voices; this and the other interesting findings noted
above merit further research.

In summary, the analysis shows that results for a
source monitoring study that used rating responses and
a conditional procedure were consistent with those
obtained for studies that did not use a conditional
procedure, in that the estimates of the bivariate
correlations for A and B items were large and opposite
in sign (and about equal in absolute magnitude) whereas
that for new items was not significantly different than
zero. Thus, the bivariate normal SDT model with
selection offers an informative summary of the data
and again reveals new and interesting results. Although
both conditional and unconditional versions of the
source monitoring procedure are widely used, the
present article is the only one I know of that has
compared results across the two procedures; additional
research on this is needed.

3. On some implications of multivariate SDT for source

monitoring

3.1. Conditional source monitoring and bias

It is important to recognize that, from the perspective
of multivariate SDT, there is a potentially serious
problem associated with the conditional source mon-
itoring procedure. In particular, if the bivariate correla-
tions of the underlying distributions are not zero, then
estimates of the discrimination parameter obtained from
an analysis that assumes zero correlations might be
biased. The bias occurs because of effects of response
selection combined with non-zero correlations. In
particular, the problem arises because one does not
obtain estimates of unconditional means on the feature
dimension (dimension 2) with the conditional source
monitoring procedure, but rather one obtains estimates
of conditional means, because information about y�

2A

and y�
2B is available only when the realizations of y�

1A

and y�
1B are greater than the detection criterion c1 (i.e.,

Y2A and Y2B are observed only when the detection
decision is old). For example, for the simple case where

Table 3

Parameter estimates for the bivariate normal SDT model with selection, conditional source monitoring data

dA dB s1A s1B dAB s2A s2B rN rA rB

2.16 5.27 1.99 2.06 5.40 2.58 2.42 0.27 �0.90 0.85

(0.16) (0.79) (0.20) (0.46) (1.17) (0.62) (0.74) (0.37) (0.04) (0.10)

Note: the table shows FIML estimates obtained using aML. N ¼ 1600: Source A is word, source B is picture. The terms in parentheses are the

estimated standard errors. The estimate of dAB was obtained as CAN �CBN and the standard error was computed as noted in the text.
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an old/new decision is made for detection, it can be
shown that the conditional means for discrimination are
affected by selection as follows:

Eðy�
2gjy�

1g4c1Þ

¼ C2g þ rgs2g

f½ðc1 �C1gÞ=s1g�
1 � F½ðc1 �C1gÞ=s1g�

� �
; ð6Þ

where f is the normal probability density function and
the rest of the terms are as defined above. Eq. (6) gives
the conditional mean of an incidentally truncated
bivariate normal distribution, which was derived many
years ago (e.g., see Greene, 2000; Kotz, Balakrishnan, &
Johnson, 2000). The important aspect of Eq. (6) is that
it shows that the mean of the distribution on dimension
2 will be biased in the direction of the correlation
(if rga0), which in turn will affect the estimate of
the discrimination parameter. For example, whereas
the discrimination parameter from the univariate model
should be dAB ¼ C2B �C2A (to simplify notation, it is
assumed that the subtraction is done so as to give a
positive value for dAB), Eq. (6) shows that in the
presence of selection the difference in means will
instead be

db
AB ¼ dAB þ rBs2B

f½ðc1 �C1BÞ=s1B�
1 � F½ðc1 �C1BÞ=s1B�

� �

� rAs2A
f½ðc1 �C1AÞ=s1A�

1 � F½ðc1 �C1AÞ=s1A�

� �
; ð7Þ

where db
AB is the biased value of dAB: Eq. (7) shows that,

unless rg ¼ 0; the discrimination parameter will be
biased if the selection is ignored. The nature of the bias
depends on the signs and magnitudes of rA and rB; for
example, if rA is negative and rB is positive, as found
here, then db

AB will be inflated. Note that Eq. (7) only
considers the effect of truncation on estimation of the
mean of a continuous (observed) variable; there might
also be additional problems that arise from using
categorical observed responses to estimate the mean of
the latent variable y�

jg:
Fig. 2 visually illustrates the problem. The figure

shows, for new, A, and B items, contours for bivariate
normal distributions. The bivariate correlation for the
new item distribution is zero, whereas the A and B
distributions have non-zero bivariate correlations that
are opposite in sign, as found in the experiments
analyzed above. A possible location of the criterion on
the familiarity dimension is shown (c1), as well as a
possible location of the criterion on the feature
dimension (c2). A conservative detection criterion is
shown (i.e., c1 is far to the right) to help illustrate the
point.

Inspection of Fig. 1 should help to show that, for
presentations of an A or B item, discrimination will
appear to be better when c1 is far to the right (as in the
figure). This occurs because, for a higher criterion, the

portions of the A and B distributions that are sampled
tend to be farther apart on the feature dimension
(because conditional means are being estimated), and so
it will appear as if the A and B distributions are farther
apart. Note that if the bivariate correlations for the A
and B distributions were zero, then the discrimination
estimate would not be biased by selection, as shown by
Eq. (7) (the bias might also be minimal if the correla-
tions have the same sign, because the terms in Eq. (7)
might largely cancel out, depending on the standard
deviations). However, as shown by the analyses
presented above, this was not the case for the source
monitoring studies examined here, in that the correla-
tions clearly differed from zero and, more importantly,
were opposite in sign. As a result, and as shown above
by Eq. (7), if one ignores the effects of selection by
estimating discrimination in a univariate manner (e.g.,
by using marginal frequencies or marginal ROC curves),
as is commonly done, then the estimates might be biased
upwards, which would result in discrimination being
over-estimated.

To obtain an idea as to the possible magnitude of the
bias, Eq. (7) was used with parameter values that were
similar to the estimates obtained in Yonelinas’ study (see
Table 2). Specifically, the values used were rA ¼ �0:45;
rB ¼ 0:45; dAB ¼ 1:5; dA ¼ dB ¼ 1:35; s1A ¼ s1B ¼
1:45; and s2A ¼ s2B ¼ 1:8: Using these values in
Eq. (7), c1 was varied to obtain an idea as to how
different locations of the criterion might affect the
magnitude of the bias. For example, for c1 ¼ �1; db

AB

was about 1.7, reflecting a small bias of 0.2 (i.e.,
1:7 � 1:5), whereas for c1 ¼ 1; db

AB was over 2.5, which
reflects a quite large bias of 1.0 (note that, for constant
dAB; the bias is larger when the criterion is further from
the new item distribution, as can be seen in Fig. 1). This

c1

"B"

 N
c 2

  B

 A

y*

y*

2

1

"A" 

“Old”“New”

Fig. 2. A figure used to illustrate the effects of response selection.

Contours for new, A, and B items for a bivariate SDT model with a

yes/no detection decision and an A/B discrimination decision. The

familiarity dimension is y�1; the feature dimension is y�
2; c1 and c2 are

response criteria on dimensions 1 and 2.
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shows that the effects of ignoring response selection and
simply performing a univariate analysis (which assumes
zero bivariate correlations), as is commonly done, can
be large enough to be of some concern.

An important implication of Eq. (7) is that it shows
that comparisons of discrimination across different
groups or conditions, for example, can be distorted by
bias if a univariate analysis is used. This has implica-
tions for experiments where the conditional source
monitoring procedure was used. For example, the
conditional procedure was used by Mather et al.
(1999) to compare elderly participants to young
participants in different conditions (self-focus versus
other-focus), where different participants were in
different conditions. The procedure was conditional in
that participants gave a rating discrimination response
only if their (old/new) detection decision was old. In this
case, comparisons across the groups based on univariate
analyses, such as estimates of the discrimination
parameter obtained from the marginal frequencies or a
comparison of marginal ROC curves (e.g., see Qin,
Raye, Johnson, & Mitchell, 2001) could be misleading if
the criterion used for detection differed across the
groups, in that what appears to be a difference in
discrimination could result from different amounts of
bias in the estimates of discrimination. Thus, it is
important when making comparisons across groups or
conditions based on a univariate analysis to check if the
criterion on the detection dimension differs substantially
across the groups. If it does not, then although the
estimates of the discrimination parameter are still
biased, they might not be biased to a different degree
across the groups, and so it is possible that comparisons
of dAB across groups or conditions are valid (e.g., if the
bivariate correlations are similar across groups). If, on
the other hand, the criterion locations differ across the
groups (or if the bivariate correlations differ substan-
tially), then bias might distort the conclusions.

Of course, if one fits the multivariate model given by
Eq. (5) (and allows for non-zero bivariate correlations),
then the estimate of dAB is not biased. Note, however,
that for the version of the procedure used by Mather
et al. (1999) and Hilford et al. (2002), Eq. (5) is not
identified. In these studies, participants first decided if
an item was old or new and then, only if the decision was
old, made a rating response as to how sure they were
that the item was presented by source A or source B (the
goal was to obtain ROC curves for discrimination). In
this case, although a necessary (but not sufficient)
condition for identification is satisfied (i.e., there are
fewer parameters than observations), the full bivariate
SDT model with selection (Eq. (5)) is not identified,
because only a binary response was used for detection.
The basic problem is that there is no covariation
between the detection response and the discrimination
response, since the detection response is a constant (i.e.,

‘‘old’’) whenever the discrimination response is ob-
served, and so bivariate correlations cannot be esti-
mated. Note that this problem does not arise if (a) a
rating response is used for detection and (b) the
discrimination response is observed for at least two
different values of the rating response, as in the
experiment discussed above.

In summary, for the conditional source monitoring
procedure, the estimate of the discrimination parameter
from a univariate analysis might be biased if the
bivariate correlations are not zero, because of the effects
of response selection. This raises the possibility that, for
a univariate analysis (e.g., comparing marginal discri-
mination ROC curves across conditions), one cannot be
sure that a participant’s discrimination differed across
the conditions, for example, or if a difference arose
because of differential bias across the conditions. This is
a potentially serious limitation of using a univariate
analysis (or a standard ROC analysis) with data from a
conditional source monitoring procedure. Note that the
problem of bias does not arise if a univariate analysis is
used with data from an unconditional procedure,
because there is then no selection. This is an argument
in favor of the unconditional procedure over the
conditional procedure.

3.2. Dichotomous responses and identifiability

This section considers situations where only dichot-
omous responses (e.g., yes or no, A or B) are used, as in
many source monitoring studies. Once again, there are
two basic versions of the procedure, corresponding to
the two versions discussed above. In one version,
participants first give an old or new response, and then
give an A or B response, regardless of their first
response. In the second procedure, participants only
give an A or B response when the first response is old.

For the first situation, which does not involve
response selection, the appropriate model is simply
Eq. (3) with dichotomous responses. It is important to
recognize, however, that the full model is not identified
because a necessary condition for identification, which is
that the number of parameters is less than or equal to
the number of observations, is not satisfied. In
particular, there are a total of 9 observations: there are
4 possible response patterns for each item (i.e., new and
A, new and B, old and A, old and B) and, because the
number of presentations of each item is fixed by design,
the frequencies for only 3 of the 4 response patterns are
free to vary. Thus, for 3 items (new, A, B), there are a
total of 3 
 3 ¼ 9 free frequencies. The multivariate
SDT model, however, has 13 parameters (i.e., two
response criteria, one on each dimension, and dA; dB;
C2A; C2B; s1A; s1B; s2A; s2B; rN; rA; rB). Thus, the full
model is not identified, because there are 13 parameters
but only 9 observations. Note that a sub-model where
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the standard deviations are set to unity is identified (the
model then has 9 parameters and so is exactly
identified), and so one can still estimate the bivariate
correlations in this case, but only with the assumption
that the standard deviations are unity (or possibly by
imposing another parameter restriction).

The situation is even worse when dichotomous
responses are used with the conditional source monitor-
ing procedure. The appropriate model in this case is
Eq. (5), which has 13 parameters. With respect to the
number of observations, there are now only 3 possible
response patterns for each item (new, old and A, old and
B). The total number of presentations for each item is
again fixed by design, and so the frequencies for only 2
of the 3 patterns are free to vary. For 3 items, this gives a
total of 3 
 2 ¼ 6 free frequencies. Thus, the model is
not identified, in that there are 13 parameters but only 6
observations. In this case, a sub-model with standard
deviations of unity and zero bivariate correlations is
identified; the sub-model is equivalent to simply fitting
separate equal-variance univariate SDT models to the
marginal frequencies. Of course, if the bivariate
correlations are not zero, then the estimate of the
discrimination parameter might be biased, as discussed
above.

Note that the conditional procedure with dichoto-
mous responses is similar to a univariate version of the
source monitoring procedure where participants simply
give one response on each trial, namely ‘‘new’’, ‘‘A’’, or
‘‘B’’; Macmillan and Creelman (1991) made a similar
observation with respect to a version of simultaneous
detection and identification (see p.239). Thus, an
important implication of multivariate SDT for the
univariate-version of the source monitoring procedure
is that if one simply uses the A and B responses to
estimate discrimination (e.g., from the bivariate fre-
quency table for A and B responses), then the estimate
might be biased because of effects of selection.

Finally, it should be emphasized that the problems
with identifiability noted above that arise when dichot-
omous responses are used are easily avoided by using
rating responses. The use of rating responses allows one
to fit the full models of Eq. (3) or (5), and therefore one
does not have to make (possibly false) assumptions
about the bivariate correlations (i.e., that they are zero)
or the standard deviations (i.e., that they are unity). This
is an important take-home message for researchers
interested in source monitoring.

4. Conclusions

Source monitoring studies, and similar designs, are
widely used in psychology, and there is clearly a need for
theoretically motivated models to help organize, sum-
marize, and interpret the data. The present article shows

that multivariate SDT provides a useful framework for
source monitoring. In particular, applications of rating
response bivariate SDT models with and without
selection to recent studies are shown to provide
interesting and informative results. It is emphasized
that it is important to pay attention to the particular
design that is used and the type of responses that are
given. The application of bivariate SDT to source
monitoring also helps to clarify limitations of univariate
analyses and the conditions under which they can
validly be used.

The approach to source monitoring through multi-
variate SDT also suggests directions for future research.
For example, it would be interesting to experimentally
manipulate, in a rating response experiment, item and
source similarity, as in a study of Bayen, Murnane, and
Erdfelder (1996); (where a univariate procedure was
used). In addition to seeing if the detection and
discrimination parameter estimates behaved appropri-
ately, this would allow one to see if the bivariate
correlations of the A and B distributions are affected by
experimental manipulations of item or source similarity
(note that the results for Experiments 2 and 3 of Slotnick
et al. shown above suggest that detection and discrimi-
nation can be increased without affecting the bivariate
correlations). It would also be of interest to conduct
additional studies that compare results across proce-
dures with and without selection. Overall, the approach
to source monitoring via multivariate SDT is informa-
tive with respect to both design of the study and analysis
of the data. The ability to fit the models with widely
available software should also help to encourage
researchers to use them.

Appendix

Some notes on using the software aML (Lillard &
Panis, 2000) and on the computation of the goodness-of-
fit statistics and their df are given here. aML can be used
to fit both the bivariate SDT model given by Eq. (3) and
the bivariate SDT model with selection given by Eq. (5),
using full information maximum likelihood (FIML)
estimation. Sample aML programs for some of the
examples discussed here are available at the author’s
website.

The software aML (Lillard & Panis, 2000) is a
package for fitting multilevel multiprocess models. It
can be used to fit multivariate ordinal-response models,
using FIML, for up to three indicators (for more than
three indicators it uses marginal maximum likelihood).
There are actually several statistics (e.g., Stata; Stata-
Corp., 1999) and econometrics (e.g., LIMDEP; Greene,
1998) packages available that allow one to fit bivariate
probit models with and without selection, however some
programming is required to extend the models to
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multiple groups. This is quite easily accomplished with
aML, since it is designed specifically for multilevel
multiprocess models.

When using aML, the use of good starting values is
important; a good strategy is to start with a simple
version of the model and to then build up to more
complex models. For example, one can first fit
univariate probit models separately to the marginal
detection and discrimination responses in order to
obtain starting values for the bivariate model. The
bivariate model can then be fit with unit variances and
zero bivariate correlations; next, the variances can be
freed (except for the reference distribution) and the
estimates obtained can be used as starting values for a fit
of the full model with free bivariate correlations.

It is also important to check information about
identification, which can be done using the eigenvalues
of the estimated information matrix; the five smallest
eigenvalues are given in the aML output. Zero or near
zero values for the eigenvalues indicate that the model is
not identified. This was checked for all of the models
presented here and was not a problem in any case.

Goodness-of-fit statistics are not reported by aML,
but they can be calculated using the parameter estimates
given in the output. In particular, substituting maximum
likelihood estimates of cjk;Cjg; sjg; and rg into the terms
on the right-hand side of Eq. (3) or (5) gives expected
cumulative probabilities; the probabilities for each
response pattern and item can then be obtained by
subtracting the appropriate cumulative probabilities.
Multiplying the expected probabilities by the sample size
for each item gives the expected frequencies. The
expected and observed frequencies for each response
pattern and item can then be used to compute the LR
(or chi-square) goodness-of-fit statistic in the usual
manner. For example, the LR statistic is computed as

LR X 2 ¼ 2
X

O lnðO=ÊÞ;

where the summation is over all the response patterns, ln
is the natural logarithm, O represents the observed
frequencies, and E-hat are the estimated expected
frequencies.

With respect to calculating the df for goodness-of-fit
statistics with FIML, the number of response patterns
determine the number of observations. For example, for
the experiment of Yonelinas (1999) with two 1–6 rating
responses, there are 35 free frequencies in the 6 
 6 joint
table of responses for each item (one frequency is not
free because the table total for each item is fixed by
design). For 3 items, this gives a total of 105 free joint
frequencies (observations), and so the df are obtained
by subtracting the number of model parameters from
105. For the bivariate SDT model, there are 21
parameters (5 criteria on each of 2 dimensions, 4 free
means, for A and B, 4 standard deviations, again for A

and B, and 3 bivariate correlations) which gives 105 �
21 ¼ 84 df ; as shown in Table 1.

For the example involving response-selection with
two 1–4 rating responses, there are 2 response patterns
where only Y1g is observed (i.e., responses of 1 or 2 for
detection) and 8 response patterns where both Y1g and
Y2g are observed (i.e., responses of 3 or 4 for detection
combined with responses from 1–4 for discrimination),
which gives a total of 10 response patterns for each item.
Frequencies for 9 of the 10 patterns are free (the number
of item presentations is fixed by design), and so for 3
items there are 3 
 9 ¼ 27 observations. For the
bivariate probit model with sample selection, there are
17 parameters (3 criteria on 2 dimensions, 4 means, 4
standard deviations, and 3 bivariate correlations), and
so the df are 27 � 17 ¼ 10; as reported in the text.

As noted in the text, bivariate normal SDT is basically
a multiple group bivariate probit model, with the groups
being the different items. Thus, a multiple group version
of RMSEA was used for the results reported in the text
(see Steiger, 1998),

RMSEA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

X 2

N df
� 1

N
; 0

� �s

 ffiffiffi

g
p

;

where X 2 is the value of the chi-square goodness-of-fit
statistic, N is the total sample size, df are the degrees of
freedom for the fitted model, and g is the number of
groups, which is 3 for source monitoring with 2 sources.
Note that RMSEA was developed in the context of
models with continuous indicators; research on its use
with models with categorical indicators is needed. One
can also obtain a confidence interval for RMSEA, at
least for continuous data (this also needs to be
investigated for categorical data).
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