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a b s t r a c t

Basic results for conditional means and variances, as well as distributional results, are used to clarify the
similarities and differences between various extensions of signal detection theory (SDT). It is shown that
a previously presented motivation for the unequal variance SDT model (varying strength) actually leads
to a related, yet distinct, model. The distinction has implications for other extensions of SDT, such as
models with criteria that vary over trials. It is shown that a mixture extension of SDT is also consistent
with unequal variances, but provides a different interpretation of the results; mixture SDT also offers a
way to unify results found across several types of studies.

© 2010 Elsevier Inc. All rights reserved.
Signal detection theory (SDT; Green & Swets, 1988; Macmillan
& Creelman, 2005; Wickens, 2002) views detection or discrimina-
tion tasks as consisting of two basic components — a perceptual
component, which has to do with the effect of presenting a sig-
nal on an observer’s perception, and a decision component, which
has to do with an observer’s use of response criteria. A useful as-
pect of SDT is that it separates these two components, whereas
they were often confounded in earlier research. Associated with
the perceptual component is ameasure d, which has an interpreta-
tion in terms of the distance between underlying perceptual distri-
butions for signal and noise, which reflects an observer’s ability to
discriminate. Associatedwith the decision component is ameasure
ck, which has an interpretation in terms of the locations of K−1 re-
sponse criteria, which reflect the ways in which an observer tends
to use the different response categories.
The basic SDT model, with equal variances for signal and noise,

predicts that receiver operating characteristic (ROC) curves on
inverse normal coordinates, that is, z-ROC curves, will have slopes
of unity (for the normal SDT model), because the z-ROC slope is
equal to the ratio of noise to signal standard deviations, σn/σs.
However, z-ROC curves with slopes other than unity have often
been found (see Macmillan & Creelman, 2005; Swets, 1986). To
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handle z-ROC curves with slopes other than unity, Green and
Swets (1988) introduced an unequal variance extension of SDT.
The unequal variance extension introduces a parameter that allows
the variances of the underlying distributions to differ across signal
and noise. As noted by Green and Swets, the unequal variance
SDT model was not theoretically motivated, but was an empirical
generalization, in that a parameter was introduced to simply
improve fit. As a result, although the unequal variance SDT model
has been widely used, questions remain as to the interpretation of
the variance parameter.
The present article examines two extensions of SDT that each

provide a basis for the unequal variance model. The first is a model
where d varies over trials, which will be referred to simply as
the varying strength model, in line with earlier ideas. It is shown
that, although the varying strength model has been suggested as
being equivalent to the unequal variance SDT model, it is formally
distinct from it. The distinction is shown tomake a differencewhen
models with criteria that randomly shift over trials are considered.
It is shown that, contrary to some claims, varying criteria do
not necessarily change the SDT model in any fundamental way,
depending onhow themodel is formalized. The second approach to
unequal variances is provided by a mixture extension of SDT. The
mixture approach offers a different interpretation of the results;
it also provides a way to unify results found across different
procedures, such as recognition and discrimination, in that it can
account for different types of non-normality.
It is shown that all of the models are concisely summarized

in terms of their implied conditional means, variances, and
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distributions. The results are illustrated with examples from
memory research, where SDT has been extensively applied;
however, the results are general and can be applied to any area
where SDT has been applied. The derivations provide a statistical
and theoretical foundation that clarifies the consequences of basic
extensions of SDT.

1. The equal variance SDT model

1.1. The statistical model

From a statistical perspective, the equal variance SDT model
is a model of cumulative response probabilities conditional on
observed variables; the use of cumulative probabilities is one
way to take the ordinal nature of the responses into account
(see Agresti, 2002). More specifically, let the response variable be
denoted by Y , which takes on discrete values kwith 1 ≤ k ≤ K , and
let X be a dichotomous variable with values x of 0 (for noise) or 1
(for signal). For normal underlying distributions, the equal variance
SDT model can be written as

p(Y ≤ k | x) = 8(ck − dx), (1)

where the first term is the cumulative probability of a response
of k or less for Y conditional on X , d is the distance between the
signal and noise distributions, ck are K − 1 response criteria for
the K response categories, and 8 is the cumulative distribution
function (CDF) for the normal distribution. Note that the model
can be formulated with distributions other than the normal by
replacing 8 in the above with other CDFs, which is easily done
via generalized linear models (GLMs; McCullagh & Nelder, 1989),
in that the inverse of the link function corresponds to a CDF
(see DeCarlo, 1998).

1.2. A latent variable formulation

Although Eq. (1) is written in terms of observed variables, the
model can also be written in terms of a latent variable, which is
how it ismotivated in SDT.More specifically, the decision is viewed
as being based on an underlying random variable, 9 , usually con-
ceptualized in psychology as the observer’s perception, but 9 can
be conceptualized in a variety of ways, depending on the partic-
ular research application. For example, in research on recognition
memory, 9 can be viewed as representing an underlying contin-
uum of familiarity. Note that SDT will be discussed here in terms
of recognition memory examples, but the results are general and
not tied to any particular application.
The perception on each trial is viewed as being a realization (i.e.,

9 = ψ) from a probability distribution, as shown in Fig. 1. The
figure shows that an observer chooses a response of ‘‘1’’ if his or
her perception is below the first response criterion, a response of
‘‘2’’ if it is between the first and second response criterion, and so
on. More explicitly, the decision rule is

Y = k if ck−1 < ψ ≤ ck, (2)

where c1 < c2 < · · · < ck−1 with c0 = −∞ and cK = ∞. Next,
the observer’s perception is related to a stimulus presentation as
follows:

9 = dx+ ε, (3)

where x = 0 or 1 for noise or signal, respectively, d is the distance
of the mean of the signal distribution from noise (scaled with
respect to the square root of V (ε); see below), and ε represents
random variation in the perception; ε has a mean of zero, E(ε) =
0, and variance V (ε), where E is the expectation operator and V
is the variance operator. From the perspective of psychometrics
Fig. 1. An illustration of signal detection theory.

(e.g. Bollen, 1989), Eq. (3) is a structural equation that relates the
latent construct9 to an observed variable X .
Eqs. (2) and (3) are the fundamental equations of SDT, with Eq.

(2) representing the decision component and Eq. (3) representing
the perceptual component. It follows from Eqs. (2) and (3) that

p(Y ≤ k | x) = p(9 ≤ ck | x) = p(dx+ ε ≤ ck) = p(ε ≤ ck − dx).
If ε ∼ N(0, 1), then

p(ε ≤ ck − dx) = 8(ck − dx),

and so

p(Y ≤ k | x) = 8(ck − dx),

which is the equal variance normal SDT model, as shown in Eq.
(1). Note that any and all other possible extensions of SDT can be
expressed as generalizations ormodifications of either the decision
rule, Eq. (2), the perceptual component, Eq. (3), or both.

1.3. Conditional means and variances

Deeper insight into the various models discussed here can be
obtained by considering the conditional mean and variance of the
latent underlying variable, as well as its conditional distribution.
For example, it follows directly from Eq. (3) that the conditional
mean and variance for the equal variance SDT model are

E(9 | x = 0) = 0, V (9 | x = 0) = V (ε) (4)
E(9 | x = 1) = d, V (9 | x = 1) = V (ε),

which shows that the mean of the signal distribution is d, which
is the difference between the conditional means (for signal and
noise) scaled with respect to

√
V (ε), and the variance is V (ε),

which is constant across signal and noise. It also follows from
Eq. (3) and the assumption that ε is normal that the conditional
distribution of9 given X , that is9|X , is normal for both signal and
noise.
Note that there is an indeterminancy in the scale for models

with categorical dependent variables, and so V (ε) is typically set to
unity (for the normal model); for other models, the square root of
the variance is used, such as

√
(π2/3) for the logistic (see DeCarlo,

1998). The scaling affects d and ck, in that they are both scaledwith
respect to the square root of V (ε), and so d and ck in Eqs. (2), (3)
and (4) can be written more accurately as d/

√
V (ε) and ck/

√
V (ε).

However, V (ε) is set to unity for (most of) the models considered
here (and ε is assumed to be normal), and so the parameters are
writtenmore simply as d and ck, but effects of scaling will be noted
where appropriate (e.g., for the varying criteria model discussed
below). Also note that E(9|x = 0) is used as the zero point, which
defines ck; another approach is to use the intersection point of
the distributions as zero, which gives a different ck (see DeCarlo,
1998, p. 201).
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2. The unequal variance SDT model

2.1. The statistical model

The unequal variance normal SDT model can be written as

p(Y ≤ k | x) = 8[(ck − dx)/σ x], (5)

(e.g. DeCarlo, 1998, 2003b). The denominator on the right-hand
side of Eq. (5), σ x, allows the standard deviation (and thus the
variance) to differ across signal and noise, and is equal to unity
for x = 0 and σ for x = 1. In implementations of the model, it
is common to replace σ x with a term such as exp(bx), so that the
estimate of the standard deviation is strictly positive (see DeCarlo,
2003b). Note that Eq. (5) is not a GLM because it is non-linear
in the parameters (because of the term σ x in the denominator).
The model is generally known in statistics and econometrics as
a probit model with heteroscedastic error (see DeCarlo, 2003b;
Greene, 2003) and can be fit with standard software, such as SAS
or SPSS.

2.2. A latent variable formulation

The unequal variance SDT model can also be written as a latent
variable model, in the manner of Eq. (3). The model is

9 = dx+ σ xε, (6)

where σ > 0; σ is a scale parameter that allows the variance to
differ across signal and noise. The decision rule is the same as Eq.
(2), from which, with Eq. (6), it follows that

p(Y ≤ k | x) = p(9 ≤ ck | x)
= p(dx+ σ xε ≤ ck) = p[ε ≤ (ck − dx)/σ x].

If ε ∼ N(0, 1), then

p[ε ≤ (ck − dx)/σ x] = 8[(ck − dx)/σ x]

and so

p(Y ≤ k | x) = 8[(ck − dx)/σ x],

which is the unequal variance normal SDT model, as given by Eq.
(5).

2.3. Conditional means and variances

It follows from Eq. (6) that

E(9 | x = 0) = 0 V (9 | x = 0) = V (ε) (7)
E(9 | x = 1) = d V (9 | x = 1) = σ 2V (ε).

Eq. (7) shows that the mean for the signal distribution is d,
which is the distance scaled with respect to the standard deviation
of the noise distribution,

√
V (ε), which is set to unity; d in this case

is equivalent to the distance measure ∆m in the normal version
of SDT (see Green & Swets, 1988). There are some well-known
issues with respect to the scaling of d in the unequal variance SDT
model (that arise because the variance differs across signal and
noise); see, for example, Macmillan and Creelman (2005, p. 59).
With V (ε) = 1, Eq. (7) shows that σ 2 is simply the variance of the
signal distribution.
An important aspect of Eq. (7) is that it shows that the variance

for signal is proportional to that for noise by a factor of σ 2,
which reflects that σ is a multiplicative scale parameter. Thus, the
unequal variance SDTmodel is consistent with signal variance that
is greater than (if σ > 1), equal to (if σ = 1), or less than (if σ < 1)
the noise variance. It also follows from Eq. (6) and the assumption
of normal ε that the conditional distribution of9 given X is normal
for both signal and noise. Also note that the conditional means and
variances in Eq. (7) involve separate parameters, d and σ , and so
there is no necessary relation between the mean and variance in
the unequal variance normal SDT model. It has sometimes been
claimed, for example, that the signal variance must approach the
noise variance as d approaches zero, but there is nothing in the SDT
model itself that predicts or accounts for this (empirical) result (it
is noted below that a mixture SDT model provides an account of
this finding). Finally, it should be noted that a fit of the model (for
rating responses, or multiple session binary responses) provides
estimates of both d and σ , along with the response criteria ck.

2.4. Empirical versus theoretical models

It is important to recognize that the unequal variance extension
of SDT is empirical, in that it simply introduces an additional
parameter, σ , to improve fit, and so σ does not have a specific
theoretical interpretation; it simply allows the variance to differ.
As noted by Green and Swets (1988),

‘‘The justification for the Gaussianmodelwith unequal variance
is, we believe, not to be made on theoretical but rather on
practical grounds. It is a simple, convenient way to summarize
the empirical data with the addition of a single parameter.’’
(p. 79)

Thus, the unequal variance model does not specify why the
signal distribution might have a different variance than the noise
distribution; it simply allows for it. Note that, as shown by Eq.
(4), the signal distribution has a variance of V (ε) in the equal
variance SDT model, and so the question raised by the unequal
variance model is why the variance, V (ε), is inflated or deflated
(by σ 2, as shown in Eq. (7)). Because of the lack of a theoretical
grounding for σ 2, many studies have in fact simply focused on
d and neglected the signal variance, which is often viewed as a
nuisance parameter. Note that, with respect to adding additional
parameters, a further (empirical) extension is to use distributions
with additional (shape) parameters, to allow for non-linearities
(e.g., skew and/or kurtosis) in empirical z-ROC curves (cf. DeCarlo,
1998, p. 198).
The theoretical void associated with the unequal variance

SDT model has been widely recognized, and so attempts have
been made to motivate the model. Two basic motivations for the
unequal variance model are considered here. The first allows for
the possibility that the SDT parameter d is not constant over trials,
but varies. It is shown that amodelwith varying d leads to a version
of the unequal variance SDT model. Further, allowing for varying
ck in this model is shown to not change the unequal variance SDT
model in any fundamentalway. The second approach considers the
influence of a second process (e.g., attention) in detection tasks;
the resulting model is a mixture extension of SDT. Similarities and
differences between the approaches are noted.

3. SDT models with random coefficients

This section shows that a model with a trial-varying d leads to a
modelwith unequal variances; however, themodel is distinct from
the traditional unequal variance SDT model. The following section
shows that the distinction makes a difference when one considers
a model with varying criteria.

3.1. SDT with varying d

3.1.1. Theoretical motivation
It is assumed in the basic SDT model that added strength, as

measured by d, is constant over trials. Here the possibility that d
varies over trials is considered. The idea can be illustrated in the
context of research on recognition memory, where words from a
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study list (old words) are presented along with new words in a
memory test (and the task, for example, is to rate one’s confidence
that a word is old or new). Wixted (2007) made an argument for
the unequal variance SDT model in this situation as follows:

‘‘The targets can be thought of as lures that have had memory
strength added to them by virtue of their appearance on the
study list. An equal-variance model would result if each item
on the list had the exact same amount of strength added during
study. However, if the amount of strength that is added differs
across items, which surely must be the case, then both strength
and variability would be added, and an unequal variance model
would apply.’’ (p. 154)

Put another way, in traditional SDT, the perception of each item
is viewed as being a realization froma probability distributionwith
a mean of d; that is, there is a distribution for each item, each with
a mean of d. Note that this implies that, even if the same item
was presented repeatedly (i.e., on different trials), the perception
would differ. In the varying strength version of the model, the
items are viewed as coming from distributions with different d;
that is, there is a distribution for each item with a different mean
(e.g., d + γ ), and so d differs across items (and trials, given that
a different item is presented on each trial), as suggested above by
Wixted (2007). Note that a simple motivation of the model in the
context of psychophysical research is that the sensitivity (d) of the
observer varies over trials.

3.1.2. A latent variable formulation
Eq. (3) with a d that varies over trials can be written as

9 = (d+ γ )x+ ε, (8)

where γ is a latent variable that reflects variation in d over trials;
it is assumed that γ ∼ N[0, V (γ )], ε ∼ N(0, 1), and γ and ε
are uncorrelated.1 The statistical model follows by using Eq. (8)
together with the decision rule of Eq. (2).

3.1.3. The statistical model
The statistical model is an extension of Eq. (1),

p(Y ≤ k | x, γ ) = 8[ck − (d+ γ )x]. (9)

Eq. (9) is a probit model with a slope, d + γ , that varies
over trials, and is an example of what is known as a random
coefficient model in statistics (e.g. Longford, 1993), because the
coefficient d+ γ is a random variable, rather than a fixed constant
d. More generally, the model is an example of a generalized
linear mixed model (GLMM; see Agresti, 2002; Breslow & Clayton,
1993); GLMMs extend generalized linear models by allowing for
random slopes and/or intercepts. Froma statistical perspective, the
model provides a possible reason for overdispersion (cf. Hinde &
Demétrio, 1998). An interesting aspect of Eq. (9) is that it shows
that the unequal variance SDT model can be implemented as a
multilevel model (for a single subject!), as shown in the Appendix,
which offers another perspective on the model.

1 A reviewer noted that the normal assumption could lead to a negative value of
d + γ , in which case the old words would be less familiar than the (average) new
word. The likelihood of this (and whether or not it is a problem) depends on the
relative magnitude of V (γ ) to V (ε) and the size of d. If V (γ ) is small relative to d,
for example, then negative valueswill rarely occur. Another possibility is to prevent
this by using a distribution such as a truncated normal.
3.1.4. Conditional means and variances
It follows from Eq. (8) that

E(9 | x = 0) = 0 V (9 | x = 0) = V (ε) (10)
E(9 | x = 1) = d V (9 | x = 1) = V (ε)+ V (γ ).

With the assumption of normal γ and ε, it follows that the
conditional distribution of 9 given X is normal for both signal
and noise, as for the normal unequal variance SDT model. Note
that there are separate parameters for the conditional means and
variances in Eq. (10), as in Eq. (7), and one can obtain estimates of
both d and V (γ ).
Two important clarifications follow from Eq. (10) and the

conditional distributions. First, Eq. (10) shows that, if the signal
variance is larger than that for noise, then the model of Eq. (9)
is indistinguishable, in terms of conditional means, variances, and
distributions, from the unequal variance SDTmodel of Eq. (5). Thus,
the varying d assumption provides a basis for the unequal variance
SDT model (with larger signal variance). Note that V (γ ) equals
the signal variance minus the noise variance, and so it represents
extra variation in the signal distribution compared to the noise
distribution, due to varying strength.
Second, Eq. (10) shows that the model also differs in a basic

way from the unequal variance SDT model, in that the conditional
variance of the signal distribution in Eq. (10) has an additive term,
V (γ ), and not a multiplicative term (σ 2) as in Eq. (7). Given that
V (γ ) ≥ 0, it follows that the signal variance can be equal to or
greater than the noise variance, but not less than it, whereas for
the unequal variance SDTmodel, the signal variance can be greater
than, equal to, or less than the noise variance. Thus, a clarification
is that the varying d assumption does not lead exactly to the
unequal variance SDT model, contrary to prior suggestions, but
rather to a closely related, yet distinct, model. Note, for example,
that the unequal variance SDT model can deal with z-ROC curves
with slopes greater than unity (which indicates that the signal
variance is smaller than the noise variance), as have sometimes
been found (see Swets, 1986; for examples in remember-know
memory studies, see Rotello, Macmillan, & Reeder, 2004), whereas
the varying strength model is not consistent with slopes greater
than unity (without the introduction of additional parameters,
such as a non-zero covariance).
In sum, the conditional means and variances shown above

clarify that a model with varying d provides a basis for the unequal
variance SDT model. However, the approach only allows for larger
signal variance (assuming that ε and γ are uncorrelated), not
smaller, whereas unequal variance SDT allows for larger or smaller
variance, and so the models are distinct. The next section shows
that the distinction has implications when generalizations that
allow for varying criteria are considered.

3.2. SDT with varying criteria

Many researchers have considered the possibility that the
response criterion (or criteria) varies over trials (e.g. Baird &
Noma, 1978; Benjamin, Diaz, &Wee, 2009;Macmillan & Creelman,
2005; Mueller & Weidemann, 2008; Treisman & Williams,
1984; Wickelgreen, 1968). For example, in a well-known article,
Wickelgreen (1968) considered SDT models with a normally
distributed response criterion. Macmillan and Creelman (2005)
refer to this as inconsistency, ‘‘An inconsistent participant uses a
criterion, but changes the location of the cutoff from trial to trial.’’
(p. 46). This section shows that conditional means and variances
are again informative about this type of generalization, in that they
clarify (and modify) conclusions made in prior research about the
effects of varying criteria.
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3.2.1. The statistical model
A statistical model that allows the criteria to vary over trials, for

either yes/no or rating response tasks, is

p(Y ≤ k | x, α) = 8(ck + α − dx),

which generalizes Eq. (1) by including a random intercept, α. Thus,
for yes/no responses, the criterion varies randomly over trials, as
in Wickelgreen’s (1968) model, whereas for rating responses, the
criteria randomly shift up or down (together) over trials.

3.2.2. A latent variable formulation
Note that, for a simple binary response model, including a

random interceptmeans that the decision rule of Eq. (2) is changed
to

Y = 1 if −∞ < ψ ≤ c1 + α;

else Y = 2. The random variable α reflects the amount that the
criterion location varies over trials, withα ∼ N[0, V (α)]. Note that
the above can be rewritten to allow the underlying distributions to
shift, rather than the criterion:

Y = 1 if −∞ < ψ+ α ≤ c1;

else Y = 2. The above simply reflects the fact that a model where
the criterion varies is equivalent to a model where the means of
the distributions vary (together).
Note that, for ordinal responses, one should not simply allow

each criterion, ck, to be (independently) random, because the
assumption of strict ordering of the criteria can then be violated,
as has been recognized in statistics (e.g., see Fahrmeir & Tutz,
2001) and in psychology (e.g. Rosner & Kochanski, 2009). A simple
alternative is to allow the criteria to shift together by the same
amount, which can be done by generalizing Eq. (2) as

Y = k if ck−1 + α < ψ ≤ ck + α.

The statistical model shown above can then be derived by using
this assumption together with Eq. (3). To show the effects on the
conditionalmeans and variances; however, it is useful to recognize
that once again a model with shifting criteria is equivalent to
a model with shifting distributions, and so the above can be
rewritten as

Y = k if ck−1 < ψ+ α ≤ ck.

The structural model is

9 ′ = 9 + α = dx+ ε + α. (11)

It follows that

p(Y ≤ k | x, α) = 8(ck + α − dx),

which is the statistical model as given above (the derivation gives
a minus sign for α, which is irrelevant for symmetric distributions
such as the normal).

3.2.3. Conditional means and variances
It follows from Eq. (11) that

E(9 ′ | x = 0) = 0 V (9 ′ | x = 0) = V (ε)+ V (α) (12)
E(9 ′ | x = 1) = d V (9 ′ | x = 1) = V (ε)+ V (α),

which shows that the effect of variability in the location of
the criteria is simply to increase the noise and signal variance
additively by V (α). With the assumption that α ∼ N[0, V (α)],
it follows that the signal and noise distributions are normally
distributed, as in the equal variance normal SDT model. Eq. (12)
shows that the criteria variance, V (α), is confounded with the
perceptual variance, V (ε). More importantly, Eq. (12) shows that
allowing for randomly shifting criteria does not change the equal
variance SDT model in any fundamental way; it simply adds to
the signal and noise variance. Thus, the equal variance SDT model
is consistent with a model where the criteria shift randomly over
trials; the only practical consequence is that d is underestimated,
because the scaling sets V (ε)+V (α) = 1 instead of V (ε) = 1, and
so d/
√
[V (ε)+V (α)] is estimated, and not d/

√
V (ε); ck is similarly

affected. Underestimation of dmeans that the obtained estimate of
discrimination is conservative.

3.3. SDT with varying d and varying criteria

3.3.1. A random slope and intercept
Allowing for both varying d and shifting criteria gives a model

with a random slope and intercept,

p(Y ≤ k | x, α, γ ) = 8[ck + α − (d+ γ )x]. (13)

The conditional means and variances are

E(9 ′ | x = 0) = 0 V (9 ′ | x = 0) = V (ε)+ V (α) (14)
E(9 ′ | x = 1) = d V (9 ′ | x = 1) = V (ε)+ V (α)+ V (γ ).

It also follows that the conditional distribution is normal for
both signal and noise. Thus, the conditional means, variances, and
distributions show that the varying d/varying criteria SDTmodel is
not distinguishable from the unequal variance normal SDT model
(if the signal variance is larger than the noise variance). Put another
way, the traditional unequal variance SDTmodel is consistent with
a model where the response criteria and discrimination strength
vary randomly over trials.
Note that the scale is set by setting the conditional variance of

the noise distribution to unity, and so V (ε) + V (α) = 1 (and so
d is again underestimated). It follows that the signal variance is
1+V (γ ), and so the slope of the z-ROC curve, which is the ratio of
the noise to signal standard deviations, is

1
√
1+ V (γ )

. (15)

Eq. (15) shows that the slope of the z-ROC curve depends solely
on V (γ ); it follows that the z-ROC slope provides an estimate of
V (γ ), just as it provides an estimate of σ 2 in the unequal variance
SDT model (given that V (γ ) = σ 2 − 1).2
The above conclusion differs somewhat from that reached in

other research (e.g. Benjamin et al., 2009; Wickelgreen, 1968).
For example, Wickelgreen (1968) noted that ‘‘Notice that when
criterion variance is considered, it is clear that the slope of the
operating characteristic does not provide a measure of the ratio
of the standard deviations of the two s-distributions, as has
previously been assumed.’’ (p. 107). Here it is shown that this
conclusion occurred because the empirical unequal variance SDT
model was generalized; it does not hold for the model of Eq. (13).
In particular, if a random criterion (or shifted criteria, as above)

is included in the empirical unequal variance SDT model, then it
follows that the conditional means and variances of Eq. (7) become

E(9 ′ | x = 0) = 0 V (9 ′ | x = 0) = V (ε)+ V (α) (16)
E(9 ′ | x = 1) = d V (9 ′ | x = 1) = σ 2V (ε)+ V (α);

(compare Eq. (16) to Eq. (14)). It follows that the slope of the z-ROC
curve is the square root of the ratio of V (ε) + V (α) to σ 2V (ε) +
V (α), as also shown, for example, by Eq. (5) of Wickelgreen (1968)
and by Eq. (2) of Benjamin et al. (2009). As before, the variance of
the noise distribution is set to unity, and so V (ε) + V (α) = 1.

2 It can be shown that this will be the case even if the response criteria have a
correlated structure, such as first-order autocorrelation, αt = ραt−1 + υt .
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Noting that V (ε) = 1 − V (α), it follows from Eq. (16) that the
slope of the z-ROC curve is

1√
σ 2 + (1− σ 2)V (α)

. (17)

Eq. (17) shows that there is a relation between the slope of the
z-ROC curve and variability in the criteria, V (α). Specifically, Eq.
(17) shows that an increase in V (α) gives an increase in the slope
if σ 2 > 1 and a decrease in the slope if σ 2 < 1, as was also noted
by Benjamin et al. (2009). Eq. (17) also illustrates Wickelgreen’s
point that the slope of the z-ROC curve no longer simply provides
an estimate of the variance, σ 2, because it also depends on V (α),
in contrast to Eq. (15).
In sum, the conditional expectations and variances again

provide important clarifications. In particular, they show that,
if the response criteria vary over trials, and/or if discrimination
d varies over trials, then the traditional unequal variance SDT
model does not necessarily change in any fundamental way
(i.e., apart fromunderestimation of d). Apparent changes discussed
in other articles, such as a relation between the z-ROC slope
and criterion variability, arose because the (empirical) unequal
variance extension of SDT was generalized; the relation does not
appear if the varying strength SDT model is instead generalized
(this is also the case if random criteria are included in the mixture
SDTmodel discussed below). Thus, the theory and formalization of
the model are crucial and can heavily influence the conclusions.
The above derivations provide a framework within which to
examine the implications and utility of further extensions of the
models that might be considered.

4. The mixture SDT model

Another approach to the unequal variance SDT model is
to consider the possibility that the ‘‘unequal variances’’ might
result from a mixture process involving distributions with equal
variances. This section shows the formal relation of the mixture
SDT model to the unequal variance SDT model, which clarifies
similarities and differences between the models.

4.1. Theoretical motivation

The mixture SDT model is motivated by considering additional
processes that might operate in signal detection experiments.
For example, many researchers have recognized that attention
likely has an effect on perception, as was noted by Macmillan and
Creelman (2005):

An inattentive observer dozes off, or at least drifts into reverie,
on some proportion of trials; because failing to respond is
usually discouraged, this leads to an unknownnumber of d′ = 0
trials, ones on which the observer responds despite not having
paid attention, mixed in with the others (p. 46)

This is exactly the idea that underlies the mixture SDT model,
as discussed in DeCarlo (2000, 2002); also see DeCarlo (2003a,
2007, 2008). The basic idea is that, on some proportion of trials,
the observer does not attend to the signal, and so the distribution
is not shifted (as noted below and in the Appendix, a more general
version of the model allows for partial attention).

4.2. The statistical model

From a statistical perspective, the model is a mixture of
cumulative probit models (or more generally, a mixture of GLMs),

p(Y ≤ k | x) = λ8(ck − dx)+ (1− λ)8(ck − d∗x) (18)

where λ is a mixing parameter. From the perspective of SDT, the
above is a mixture of equal variance SDT models, where λ can
be interpreted as reflecting the effects of attention (e.g., the
proportion of items that were attended to) and d∗ is the location
of a partially attended distribution. Some notes on this version of
the model are given in the Appendix. Considered here is a simple
yet useful version where d∗ is restricted to be zero,

p(Y ≤ k | x) = λ8(ck − dx)+ (1− λ)8(ck). (19)

Eq. (19) has a simple interpretation in terms of each item either
being attended to or not attended to, exactly as in Macmillan and
Creelman’s description; it has previously been shown that the
restricted model is useful for recognition memory data (DeCarlo,
2002). Note that mixture SDT maintains the assumption that a
stimulus presentation shifts the location of a normal underlying
distribution by a constant d with no effect on the variance, and
so d has a simple interpretation (in terms of memory strength, for
example) and scaling problems do not arise (because the unmixed
distributions all have equal variances).Mixture SDT also introduces
a mixing parameter, λ, which can be interpreted as a measure of
attention (there are of course other possible interpretations).

4.3. A latent variable formulation

The mixture SDT model of Eq. (19) follows directly from the
theory as described above, as shown earlier (DeCarlo, 2002).
Another (statistical) perspective on the model, given here, is that
it is a type of random coefficient model (with a discrete random
slope). Expressing the model in this way allows one to derive basic
results for the conditional means and variances, as done for the
other models presented above; it also shows how the model can
be implemented in software for latent class analysis, as shown in
the Appendix.
In particular, a structural equation for mixture SDT is

9 = (δd)x+ ε, (20)

where δ is a latent binary variable, and in particular, δ is a Bernoulli
variable that takes on values of 0 and 1, with the probability
of 1 given by λ; that is, δ ∼ B(λ), and so E(δ) = λ and
V (δ) = λ(1−λ). The latent binary variable δ can be interpreted as
reflecting whether or not a signal was attended to. Eq. (20) shows
that attention in the mixture SDT model is viewed as having a
moderating effect on perception, as reflected by the multiplicative
interaction of δ and d.
It follows from Eq. (20), along with the decision rule of Eq. (2),

that

p(Y ≤ k | x, δ) = p(9 ≤ ck | x, δ)
= p(δdx+ ε ≤ ck) = p(ε ≤ ck − δdx).

If ε ∼ N(0, 1), then

p(ε ≤ ck − δdx) = 8(ck − δdx),

and so

p(Y ≤ k | x, δ) = 8(ck − δdx). (21)

Eq. (21) shows the form in which the model can be fit with
software for latent class analysis, such as LEM (Vermunt, 1997) or
Latent Gold (Vermunt & Magidson, 2007); sample programs are
given in the Appendix.
Note that Eq. (21) is conditional on both X and δ, whereas Eq.

(19) is conditional on X alone. Taking the expectation over δ gives
a model conditional on X ,

p(Y ≤ k | x) = Eδ[p(Y ≤ k | x, δ)] = Eδ[8(ck − δdx)]
= Σδ[8(ck − δdx)]p(δ)
= λ8(ck − dx)+ (1− λ)8(ck),

given that δ ∼ B(λ), and so p(δ = 1) = λ. The above gives the
model as shown in Eq. (19).
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Table 1
Parameter estimates for manipulation of repetitions and attention at study, Dunn
(2009).

Unequal variance SDT
Focused attention Divided attention

Repetitions d σ 2 d σ 2

1 1.36 1.58 1.02 1.72
2 1.82 1.59 1.36 1.38
4 2.38 1.90 1.72 1.45

Mixture SDT
Focused attention Divided attention

Repetitions d λ d λ

1 1.60 .81 1.58 .62
2 1.91 .90 1.52 .87
4 2.31 .93 1.80 .91

4.4. Conditional means and variances

It follows from Eq. (20) and the assumption that δ ∼ B(λ)with
E(δ) = λ and V (δ) = λ(1− λ) that

E(9 | x = 0) = 0 V (9 | x = 0) = V (ε) (22)
E(9 | x = 1) = λd V (9 | x = 1) = V (ε)+ d2λ(1− λ).

Eq. (22) shows that, for signal presentations, the conditional
mean depends on the proportion of trials on which the signal was
attended to. For example, if the signal was attended to 60% of
the time, then the mixed distribution has a location of .6d, which
simply reflects the fact that it is located at d 60% of the time and at
zero 40% of the time.
It also follows fromEq. (22) that, as d approaches zero, the signal

variance will approach the noise variance, because d2λ(1 − λ)
approaches zero. Thus, the mixture SDT model is consistent with
the finding of z-ROC curves that approach unity as d approaches
zero. Also note that Eq. (22) shows that the signal variance reflects
changes in both d and/or λ, because of the term d2λ(1 − λ). That
is, although separate estimates of d and λ are provided by fits
of the mixture model, Eq. (22) shows that they are confounded
in the variance estimates, σ 2 and V (γ ), in the unequal variance
and varying strength models, and so the variance estimates are
not necessarily informative. This can be illustrated by putting
numerical values into Eq. (22), but real data that nicely illustrate
the point are available.

4.5. An example: Does repetition increase or decrease the variance?

Table 1 shows parameter estimates obtained for fits of the
unequal variance and mixture SDT models to data from an
experiment by Dunn (2009).3 The experimentmanipulated, within
subjects, the number of times each word was presented during
study (once, twice, or four times) and whether the word received
focused or divided attention. For focused attention, each word was
presented for 2 s by itself, whereas, for divided attention, each
word was flanked by a digit on each side (for the first 200 ms; the
digits differed in value and in physical size) and, after the 2 s word
presentation was completed, the participant had to indicate which
side the digit with a larger numerical value was on, or which side
the physically larger digit was on.
With respect to fit, both the unequal variance and mixture SDT

models describe the data; the goodness of fit likelihood ratio (LR)
statistic for the mixture SDT model is 13.09 with 18 degrees of
freedom (df ) and p = .79 whereas for the unequal variance model

3 The author thanks John Dunn for making his data available.
the LR is 15.03 with 18 df and p = .66. Of interest here are the
parameter estimates, which illustrate aspects of Eq. (22).
The top part of Table 1 shows results for the unequal variance

SDT model. It is apparent that d increases with the number of
repetitions, both for full and divided attentionwords.With respect
to the variance, the variance for full attention words tends to
increase with the number of repetitions, whereas the variance for
divided attention words tends to decrease. This raises questions as
towhy the variance increaseswith repetitions for full attention but
decreases for divided attention. Note that this also raises questions
for the varying strength model, given that the only difference is
that V (γ ) = σ 2 − 1. Table 1 also shows that, for one repetition,
the variance is larger for divided attention than for full attention,
but the opposite is true for two and four repetitions. Thus, results
for both the unequal variance and varying strength SDT models
show a complex pattern, in terms of changes in the variance across
repetitions and across full/divided attention conditions.
The lower portion of Table 1 shows results for fits of themixture

SDTmodel. Once again, d increases with the number of repetitions
for both full and divided attention words. Of particular interest is
that the estimates of λ increase with the number of repetitions for
both full and divided attention. This is consistent with a simple
interpretation of λ in terms of attention — the proportion of
attended words increases when words are presented more than
once. Second, note that, for each repetition number, λ is smaller in
the divided attention condition than in the full attention condition,
and so using a task that divides attention at study yields smaller
values of λ, which again supports the view of λ as a measure of
attention. Thus, estimates of λ are ordered in a consistent and
simple manner across both the rows and columns of Table 1,
whereas estimates of σ 2 and V (γ ) are not. The mixture model
unifies the results and offers a simple summary: repetition, for
both full and dividedwords, increased the proportion ofwords that
were attended to, as reflected by λ, and the full/divided attention
manipulation indeed affected attention, in that λ was smaller for
divided attention words.
The example illustrates that results for the mixture SDT model

can differ considerably from those obtained for the unequal
variance or varying strength SDT models. In this case, the mixture
model results suggest that the apparent differences arose because
λ was closer to .5 in the divided attention condition, and so an
increase in λ with repetitions (from .62 to .91) gives a fairly large
decrease in λ(1 − λ), which makes the variance appear to be
smaller for a fit of the unequal variance SDT model (even with
an increase in d; see Eq. (22)). On the other hand, this did not
happen in the focused attention condition because λ was larger
and so an increase in λ with repetitions (from .81 to .93) gives a
smaller decrease in λ(1−λ) that is not sufficient to counteract the
effect of an increase in d, and so the variance appears to be larger.
This shows that it is informative to fit the mixture SDT model, in
addition to the traditional unequal variance model.

4.6. Conditional distributions

Another basic way in which the mixture model differs from the
unequal variance and varying strength models is that the signal
distribution is not necessarily normal, but rather is a mixture of
normals (for 0 > λ < 1). A number of studies have provided
evidence of non-normality, which appear as non-linearities in z-
ROC curves, that is consistent with simple mixing.
Recognition memory. Shimamura and Wickens (2009) recently
presented an informative example of non-normality in recognition
memory (data for young subjects from Experiment 5 of Glanzer,
Hilford, & Kim, 2004). Table 2 presents a table similar to
Shimamura andWickens’ Table 1. The table shows likelihood ratio
(LR) goodness of fit statistics (denoted as G2 in Shimamura and
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Table 2
Fit statistics for item recognition, Experiment 5, young subjects, Glanzer et al.
(2004).

Model LR df p AIC BIC

Unequal variance SDT 13.859 3 .003 12,084 12,128
Dual process 21.010 3 <.001 12,091 12,135
Restricted mixture SDT 20.680 3 <.001 12,091 12,135
Ex-Gaussian SDT 9.280 2 .010 12,081 12,132
Mixture SDT 5.343 2 .069 12,077 12,127

Note: the results are identical to those shown in Table 1 of Shimamura andWickens
(2009), with the correction that the LR statistic for the Dual Process model is 21.010
(and not 21.610), and versions of the information criteria based on the log likelihood
are used.

Fig. 2. Data for young subjects, Experiment 5, Glanzer et al. (2004), recognition
condition. The solid line is a z-ROC curve obtained from a fit of mixture SDT.

Wickens’ table) and values of the information criteria BIC and AIC
(versions based on the log-likelihood, as used in previous studies,
are shown here; Shimamura and Wickens used versions based on
G2; which version is used does not make any difference; also note
that the value of AIC for the Dual Process Model in Shimamura and
Wickens’ Table 1 should be 35.01, and not 25.01). The models (and
results) shown in the table are the same as those considered by
Shimamura and Wickens, except that a mixture SDT model with
non-zero values of d∗ (Eq. (18)) is included at the bottom of the
table.
With respect to absolute fit (the LR statistic), the table shows

that all of the models are rejected (at the 0.05 level), except for
the mixture model of Eq. (18). With respect to relative fit, the
information criteria BIC and AIC are both smallest for the mixture
SDT model compared to any of the other models. A plot of the z-
ROC curve helps to clarify why this is so. As shown in Fig. 2, the
data show some non-linearity, and in particular the z-ROC curve
has a slight ‘‘kink’’, in that it bends down and then up, which
is a characteristic of z-ROC curves for mixture SDT, as shown in
Figure 3 of DeCarlo (2002). Thus, the unequal variance SDT model
is rejected in Table 2 by the LR test because it is inconsistent
with the non-linearity shown in Fig. 2. Similarly, the ex-Gaussian
model is rejected because it cannot account for the reverse bend
shown in the figure (the model gives a z-ROC curve that bends
upwards). The mixture SDT model, on the other hand, describes
the data, as shown in Fig. 2 and Table 2. This shows that mixture
SDT can account for distributions with more complex shapes than
simply skew (see themirror effect and process dissociation section
below). Note that the underlying distributions in mixture SDT are
all normal; the apparent non-normality arises from mixing over
trials.
Source discrimination. Another example of non-normality comes
from source discrimination studies, which have consistently found
z-ROC curves that bend upwards and so have a U-shape (see
DeCarlo, 2003a; also see Slotnick & Dodson, 2005). The curvature
is not consistent with the unequal variance and varying strength
SDT models, because they predict linear z-ROC curves. Mixture
SDT, on the other hand, accounts for the non-linearity by using
the samemechanism as used in simple recognition, namelymixing
caused by a lack of attention, in this case to the different sources
(for details, see DeCarlo, 2003a). Thus, the mixture approach can
account for different types of non-linearity in z-ROC curves, such
as a reverse bend for recognition (Fig. 2) versus upwards curvature
for discrimination.
Mirror effect and process dissociation. Non-linearities in z-ROC
curves have also been found in studies of the mirror effect and the
process dissociation procedure (DeCarlo, 2007, 2008), in the form
of a reverse bend, as in Fig. 2. The unequal variance and varying
strength SDT models, in their current forms, are not consistent
with these results. Mixture SDT again provides a mechanism for
the non-normality, namely mixing due to a lack of attention,
and so the approach unifies results found across recognition,
source discrimination, the mirror effect, and process dissociation
experiments, all with the same simple mechanism.

4.7. Similarities and differences

As shown above, the varying strength and mixture SDT models
are similar, statistically, in that they are both types of random co-
efficient models. Note, however, that d+ γ in the varying strength
model has a continuous distribution (normal), whereas δd in the
mixture model has a discrete distribution (Bernoulli). Note that
one can also formulate a non-parametric version of the varying
strength model by replacing the continuous additive random vari-
able (γ ) with a discrete additive random variable (with more than
two classes), as done in non-parametric generalizations of random
coefficient models (e.g., see Vermunt & van Dijk, 2001).
Here it is noted that the mixture and varying strength models

also differ mathematically and conceptually, over and above the
discrete/continuous distinction. For example, the mixture model
uses a multiplicative term, and not an additive term, which re-
flects the conceptualization in terms of a moderating effect of at-
tention (and so addingmore latent classes does not simply turn the
mixture model into the varying strengthmodel; note that prior re-
search has also shown that two classes appear to be sufficient). A
basic difference is that, in the mixture model, a lack of attention
(or partial attention) can only reduce d, whereas, in the varying
strength model, γ can increase or decrease d. Another difference
is that, in the mixture model, when strength is added, a constant
amount d is added, as in traditional equal variance SDT, whereas
this is not the case in the varying strength model (where a random
amount is added). In short, the models are related (and could both
be embedded in a larger model) but are also distinct, conceptually
and mathematically; as shown here, the devil is in the detail.

5. Conclusions

An understanding of the conditional means, variances, and
distributions associated with an SDT model is essential in order
to fully understand the model and its implications. The approach
helps to clarify what the unequal variance SDT model does and
does not do, for example, and what various generalizations do. It
is shown that framing the models in terms of the decision model
of Eq. (2) and perceptualmodel of Eq. (3) clarifies important details,
both conceptual and statistical. The basic results provided here can
be built upon for other extensions of SDT that have been, or will be,
proposed.
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Appendix

A.1. A general mixture SDT model

In the version of themixturemodel presented in DeCarlo (2002,
Equation 1), the unattended distribution does not necessarily have
the same location as the noise distribution, but rather the model
allows for a partially attended distribution that has a location other
than zero (i.e., d∗ 6= 0). Some basic results for this version of
the model are derived here; results for the restricted version with
d∗ = 0 are presented in the text.
The statisticalmodel is given by Eq. (18). The decision rule is the

same as Eq. (2), whereas the structural equation is

9 = [δ(d− d∗)+ d∗]x+ ε,

and so the signal distribution is located at d∗ for δ = 0 and at d for
δ = 1. It follows that

E(9 | x = 0) = 0
E(9 | x = 1) = λ(d− d∗)+ d∗ = λd+ (1− λ)d∗,

which reduces to Eq. (22) when d∗ = 0. The above shows that
allowing for partial attention, d∗ > 0, results in the mixed
distribution having a mean that is larger than λd by (1− λ)d∗.
With respect to the conditional variance, it follows that

V (9 | x = 0) = V (ε)
V (9 | x = 1) = V (ε)+ (d− d∗)2λ(1− λ),

which shows that the variance depends on the value of d∗, and in
particular, the variance is smallerwhen d∗ > 0.Note that the above
reduces to Eq. (22) when d∗ = 0.
The statistical model follows directly from the decision rule and

the structural equation given above. Note that the model can be
written as

p(Y ≤ k | x, δ) = 8[ck − d∗x− (d− d∗)δx],

which shows that the model can be fit by simply including x and
the interaction δx as predictors, with δ specified as zero/one.

A.2. A latent gold program for the mixture SDT model

Themixture model of Eq. (21) can be specified in Latent Gold as
follows.
model
title ‘‘Swets, Tanner, Birdsall 1961 data - mixture SDT
model’’;
options
bayes
categorical= 0 variances= 0 latent= 0 poisson= 0 ;
standarderrors= standard;

output parameters profile bvr identification;
variables
dependent y probit;
independent x;
latent
delta ordinal 2 score= (0 1);

equations
delta <- 1 ;
y <- 1+ x delta;

end model

Note that delta is declared as ‘‘ordinal’’ (it could also be declared
as nominal) so that one can control how scores are assigned to it.
To fit the more general mixture SDT model with non-zero d∗, as
discussed above, the model syntax simply becomes y <- 1+ x+ x
delta (see the last equation given above). An LEM program for
mixture SDT is available at the author’s website.
A.3. Fitting the varying strength SDT model as a GLMM

The unequal variance SDT model can be fit with widely avail-
able software such as SPSS or SAS; however, the varying strength
model suggests other interesting ways to implement the model.
For example, it follows from Eq. (9) that the model can be fit as a
multilevel model with a random slope, using software for multi-
level modeling. The results will be equivalent to those obtained for
a fit of the unequal variance SDT model, when the signal variance
is larger than that of noise.
Note that themodels discussed here are for the analysis of indi-

vidual data, with coefficients that are random over trials, whereas
in the more typical multilevel application the coefficients are ran-
dom over subjects. Thus, rather than treating trials as Level 1 and
subjects as Level 2, as in the usual multilevel approach (for re-
peated response data), the trials are treated here as Level 2 and
the response as Level 1, with Level 1 consisting of one observa-
tion (e.g., there is only one response per trial, though there could
bemultiple responses per trial). In other words, the trial is the ‘‘be-
tween’’ component and the single response per trial is the ‘‘within’’
component, and so V (γ ) is the ‘‘between’’ variance (i.e., the vari-
ance of d over trials) andV (ε) is the ‘‘within’’ variance (i.e., the vari-
ance of the perception on each trial). Note that, even with only one
response at Level 1 (the within component), the model is identi-
fied for a categorical response variable, because the within vari-
ance, V (ε), is set to unity (for the normal model). The variance of
the signal distribution, σ 2, is then equal to V (γ )+1 for the random
slope model.
It follows that the random slope SDT model of Eq. (9) can be

fit using software for multilevel models. An example using Mplus
(see Muthén & Muthén, 1998–2007) is as follows.

TITLE: Swets, Tanner, Birdsall 1961 data - unequal variance
model via multilevel;
DATA: FILE IS C:\Documents and Settings\My Documents\
swets.dat;
VARIABLE: NAMES ARE trial x y;
CATEGORICAL= y;
WITHIN= x;
CLUSTER= trial;

ANALYSIS: type= twolevel random; link= probit;
estimator=ml;
MODEL:
%within%
s|y ON x;
%between%
s ON ;
y@0;

OUTPUT: tech1;

where the CATEGORICAL statement identifies y as an ordinal re-
sponse variable; the WITHIN statement identifies x as a within in-
dependent variable (coded as 0, 1); CLUSTER is used to declare
‘‘trial’’ (which is simply the trial number) as a betweenvariable. The
MODEL statement specifies a probit model in the ‘‘%within%’’ com-
ponent of y ON x, with a random slope s. The ‘‘%between%’’ compo-
nent specifies a regression of the slope s ON an intercept (included
by default); the following line restricts the variance of y to zero, so
that an estimate of V (γ ) is obtained (see the technical appendix of
the Mplus manual). The results are identical to those obtained for
a fit of the unequal variance SDT model.
A Latent Gold program to fit the varying strength model (and

so the unequal variance SDT model), using a slightly different
approach that is again suggested by Eq. (9), is as follows.
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model
title ‘Swets, Tanner, Birdsall 1961 data - unequal
variance SDT model via LG’;
options
bayes
categorical= 0 variances= 0 latent= 0 poisson= 0;
standarderrors= standard;
output parameters profile bvr classification;

variables
dependent y probit;
independent x;
latent
gamma continuous;

equations
gamma ;
y <- 1+ x+ (1)gamma x;

end model
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