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a b s t r a c t

Applications of signal detection theory (SDT) often involve presentations of different items on each trial,
such as slides in a medical imaging study or words in a memory study. If factors particular to the items
themselves, apart from being a signal or noise, affect observers’ responses, then ‘item effects’ are present.
One way to model these effects is to use a latent continuous variable as an item ‘factor’, such as item
‘difficulty’. Details of SDTmodelswith item effects are clarified via derivations of their implied conditional
means, variances, and covariances. Intra-item correlations are defined and suggested as measures of the
magnitude of item effects. The SDT-itemmodels are simple random coefficientmodels and can be fit with
standard software. More general models, such as itemmodels with mixing and/or with random observer
effects, are also considered.

© 2011 Elsevier Inc. All rights reserved.
1. Signal detection theory with item effects

Applications of signal detection theory (SDT; Green & Swets,
1966) often involve the presentation of different items over trials,
such as slides in a medical imaging study or words in a memory
study. It has long been recognized that factors particular to the
items themselves, other than being a signal or noise, might affect
observers’ responses (cf. Clark, 1973), and so ‘item effects’ might
be present. Examined here are simple extensions of SDT that allow
for item effects (also see Freeman, Heathcote, Chalmers, & Hockley,
2010,Morey, Pratte, & Rouder, 2008, Pratte, Rouder, &Morey, 2010,
Rouder & Lu, 2005 and Rouder et al., 2007).

One approach is to use a latent continuous variable (i.e., an item
factor) to represent an item effect. Exactly how the latent variable
is introduced into the SDT model, however, depends on the
conceptualization of the situation. For example, if the item effect
is thought of as item ‘difficulty’, then a latent ‘difficulty’ variable
that affects the discrimination parameter can be introduced; the
latent variable affects the discrimination parameter because more
difficult items are harder to discriminate. Thus, the latent variable
moderates the relation between the response and presentation of
a signal or noise. Basic SDT models that follow from these and
other considerations are derived. Important details of the models
are clarified via the derivation of conditional means, variances, and
covariances they imply. Measures of themagnitude of item effects,
intra-item correlations, are also proposed.

An example is a medical training study where observers
attempted to detect fractures in X-ray slides of ankles. The
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traditional SDT model gives estimates of the observers’ ability
to discriminate fractures from non-fractures and their use of
response criteria. In addition, an item-effect SDT model allows
the slides to differ with respect to difficulty. A model where only
fractures differ in difficulty is compared to a model where both
fractures and non-fractures differ in difficulty. The models are
simple random coefficient models and can be fit with maximum
likelihood estimation (MLE) using standard software.

The traditional unequal variance SDT model as applied to
multiple observers is first briefly reviewed. Next, models that
generalize the equal variance SDT model to allow for item effects
are introduced; the models include latent variables that represent
item ‘factors’. It is shown that the presence of item effects
leads to non-zero correlations across observers as well as larger
variance within observers. The SDT-item models are illustrated
with applications to data from a medical imaging study and word
recognition studies.

2. Signal detection theory with multiple observers

2.1. Unequal variance SDT

Abasic idea in SDT is that observers arrive at a response by using
response criteria along with their perceptions. The use of response
criteria is one component of SDT, which consists of a decision rule,
such as

Yj = k if cj,k−1 < 9j ≤ cjk, (1)

where Yj is a rating response for the jth observer with discrete
values k that range from 1 to Kj, where Kj is the number of response
categories (typically the same across observers), 9j is a latent
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continuous random variable that represents the jth observer’s
perception, and cjk is the kth criteria for the jth observer, which
are strictly ordered, cj1 < cj2 < · · · < cj,k−1, with cj0 = −∞

and cjK = ∞. Note that Yj and 9j are random variables for the jth
observer, where the variation is over items (i.e., trials; a subscript
i could also be used, but it is implicit here, which simplifies the
notation).

A second component of SDT is the perceptual, ormore generally,
the structural model, which is concernedwith the relation between
observers’ perceptions and observed (or unobserved) events that
give rise to them (DeCarlo, 2010). For example, the structural
model for the traditional unequal variance SDT model is,

9j = djx + σx
j εj, (2)

where x = 0 or 1 for noise or signal, respectively (i.e., the mean
of the noise distribution is used as the zero point; note that a
subscript j is not needed on x because the items are the same across
all observers, but see below), dj is the distance of the mean of
the signal distribution from the mean of noise distribution for the
jth observer (scaled with respect to the square root of the error
variance), σj is a scale parameter (that allows the signal variance
to differ from the noise variance), and εj is random variation in
the jth observer’s perception; εj is assumed to have a mean of
zero, E(εj) = 0, and variance V(εj), where E is the expectation
operator and V is the variance operator; it is also assumed that εj
is uncorrelated with x. For purposes of identification, V(εj) for the
normal model is set to unity for each observer.

The decision and perceptual models of Eqs. (1) and (2) together
give the unequal variance SDT model. In particular, it follows that
p(Yj ≤ k | X = x) = p(9j ≤ cjk | x) = p(djx + σx

j εj ≤ cjk)

= p[εj ≤ (cjk − djx)/σx
j ].

If εj ∼ N(0, 1) then
p[εj ≤ (cjk − djx)/σx

j ] = 8[(cjk − djx)/σx
j ]

and so
p(Yj ≤ k | x) = 8[(cjk − djx)/σx

j ],

which is the unequal variance SDT model (e.g., DeCarlo, 2003).
Basic aspects of SDT can be illustrated in terms of conditional

means and variances of the latent variable 9 . For example,
it follows from Eq. (2) that the conditional expectations and
variances (over items) for observer j are
E(9j | x = 0) = E(εj) = 0 V(9j | x = 0) = V(εj)

E(9j | x = 1) = dj V(9j | x = 1) = σ2
j V(εj),

where dj (and the criteria cjk) is scaled with respect to V(εj) and, as
noted above, V(εj) is set to unity for the normal model. The above
shows that, for a given observer j, the signal variance can be less
than, equal to, or greater than the noise variance if σj < 1, σj = 1,
or σj > 1, respectively. It also follows from Eq. (2) that, conditional
on x, 9 is a linear transformation of ε, and so normal ε implies
normal9 | x. A fit of the unequal variance SDTmodel to individual
observer’s data gives estimates of dj and σj, alongwith estimates of
the criteria locations cjk.

For the situation examined here, there is a potential effect
of items that is common across observers, and so conditional
covariances must also be considered. For example, it follows from
Eq. (2) that the conditional covariance for observers’ j and j′ is, for
noise,
Cov(9j, 9j′ | x = 0) = Cov(εj, εj′) = 0,
where Cov(εj, εj′) = 0 follows from the assumption of indepen-
dence across observers. Similarly, for signal,
Cov(9j, 9j′ | x = 1) = Cov(dj + σjεj, dj′ + σj′εj′)

= σjσj′Cov(εj, εj′) = 0,
given that dj, dj′ , σj, and σj′ are constants (over items) for a given
observer. The above shows that, conditional on the presence or
absence of a signal, perceptions (and responses) are not correlated
across observers in the traditional unequal variance SDT model;
note that the above represents error covariance, that is, covariance
across observers that is not accounted for by the presentation of
signal or noise. The possible presence of item effects means that
the assumption of zero covariance might be violated.

3. SDT models with item effects

Two simple extensions of the equal variance version of SDT
are presented, one that includes an item effect for signal alone,
and one that includes item effects for both signal and noise. It is
shown, using the algebra of variances and covariances, that item
effects lead to non-zero correlations across observers and to larger
variance within observers.

3.1. Item effects for signals

An item effect means that itemshave one ormore characteristics
that have a common effect across observers, over and above being a
signal or noise. The result is a residual correlation across observers,
which is what the SDT extensions considered here attempt to
account for. For example, in the study analyzed below, observers
attempted to detect fractures in X-ray slides of ankles. It seems
reasonable to assume that it might be more difficult to detect
a fracture in some slides as compared to other slides because
of characteristics of the slides besides the simple presence of a
fracture (e.g., the type of fracture, the location of the fracture,
noise in the slides such as shades, streaks, etc.). One approach
is to model the overall effect of these characteristics via a latent
continuous variable, such as a ‘difficulty’ variable. This allows
for heterogeneity among the slides, that is, fractures in some
slides might be more difficult to detect than others. Note that
discrimination will be lower for more difficult slides and higher
for easier slides, and so the latent variable affects discrimination.
Thus, the latent variablemoderatesthe relation between a response
(i.e., perception) and the presence or absence of a fracture, rather
than directly affecting the response (for an example of the latter
approach, see Qu & Hadgu, 1998). Because of the common effect
of the latent variable, perceptions are correlated across observers,
and so the independence assumption made in the traditional SDT
model is no longer appropriate.

Consider the situation where an item effect is present for
signals (e.g., slides with a fracture). If the effect is basically one
of ‘difficulty’, then a latent continuous variable that represents
item difficulty, say ϕ (which varies over items), can be introduced.
Because of the interpretation in terms of difficulty, the latent
variable affects discrimination, and so, for an equal variance
normal SDT model, the extended structural model is

9j = (dj − ϕ)x + εj, (3)

with ϕ ∼ N[0,V(ϕ)], Cov(ϕ, εj) = 0, Cov(εj, εj′) = 0, and
Cov(εj, x) = 0. It follows from Eq. (3) that, for larger values of ϕ
(i.e., more difficult items), discrimination is lower.

From Eq. (3), the conditional variances for observer j are

V(9j | x = 0) = V(εj) V(9j | x = 1) = V(ϕ) + V(εj).

With the assumption V(εj) = 1, the conditional variances for the
(normal) model are 1 for noise and V(ϕ) + 1 for signal. Thus, if
there is an item effect for signals, the signal variance will be larger
than the noise variance (for each observer). The above shows that
the presence of an item effect in an equal variance SDT model
provides a possible theoretical reason as towhy the signal variance
is larger than the noise variance within observers—because of an
item effect.
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The presence of an item effect also means that perceptions
(and responses) are correlated across observers. In particular, the
conditional covariances of 9j for observers’ j and j′ are,

Cov(9j, 9j′ | x = 0) = Cov(εj, εj′) = 0,

for noise and

Cov(9j, 9j′ | x = 1) = Cov(dj − ϕ + εj, dj′ − ϕ + εj′) = V(ϕ),

for signal. It follows that, if V(ϕ) is greater than zero, perceptions
are correlated across observers.

A conditional intra-item correlation (IIC), in this case for signal,
can be defined as

Corr(9j,9j′ |x = 1) =
Cov(9j,9j′ |x = 1)

V(9j|x = 1)V(9j′ |x = 1)

=
V(ϕ)

V(ϕ) + V(εj)
(4)

where the second line follows from the conditional variances
and covariances derived above. The intra-item correlation is the
correlation of perceptions for two observers judging the same
item (for signal in this case); it is suggested here as a measure of
the magnitude of item effects. Eq. (4) shows that the intra-item
correlation also has an interpretation as the proportion of signal
variance for observer j,V(ϕ) + V(εj), that is due to the item effect,
V(ϕ).

With the decision rule of Eq. (1), the resulting SDT model is

p(Yj ≤ k | x, ϕ) = 8[cjk − (dj − ϕ)x], (5)

which is a random coefficient model, in that the coefficient of x is
not a constant (dj) for each observer, but rather includes a random
component, the item effect ϕ, that varies over items (trials). The
model is a random coefficient model, as discussed in DeCarlo
(2010, Eq. (9)), but differs in that, for itemmodels, a common latent
variable (ϕ) is assumed to have an effect across observers, whereas
a different latent variable would appear for each observer in
Eq. (9) of DeCarlo as applied tomultiple observers (i.e., the random
coefficient would be γj for observer j).

Eq. (5) is a probit model with a random slope (when written
using an inverse link, see DeCarlo, 1998) and can be fit, using
maximum likelihood estimation (MLE), with software for latent
class modeling, such as Latent Gold (Vermunt & Magidson, 2007).
Themodel is illustratedwith data fromX-ray andword recognition
studies.

3.2. Item effects for signal and noise

Eq. (5) introduces an item effect for signals, such as slides
that show a fracture. It is also possible, however, that there are
item effects for noise. For example, for the X-ray study considered
below, it might bemore difficult to determine if an ankle is normal
(no fracture) in some slides as compared to others, because of
various characteristics of the slides, such as subtle variations in
light, shade, angle, and other ‘‘noise’’.

A model that allows for item effects for both signal and noise
extends the structural model of Eq. (3) as follows,

9j = (dj − ϕs)x + ϕn(1 − x) + εj, (6)

where ϕs ∼ N[0,V(ϕs)], ϕn ∼ N[0,V(ϕn)], Cov(ϕs, εj) = 0,
Cov(ϕn, εj) = 0, Cov(ϕs, ϕn) = 0, Cov(εj, εj′) = 0, and Cov(εj, x)
= 0.1 It follows from Eq. (6) that the perceptual distribution is at

1 One could also use a single random variable ϕ in place of ϕs and ϕn to allow for
a single common item effect. For the data considered here, both BIC and AIC were
smaller for the two factor model as compared to the single factor model in all cases
(i.e., the two factor model had relatively better fit), and so the focus is on the two
factor model.
dj − ϕs when x = 1 (signal) and is at ϕn when x = 0 (noise); note
that higher values of ϕn indicate more difficult normal items, in
that shifting 9j to the right (for noise) results in lower confidence
that an item is normal (noise).

It follows from Eq. (6) that,

V(9j | x = 0) = V(ϕn) + V(εj) V(9j | x = 1) = V(ϕs) + V(εj)

Cov(9j, 9j′ | x = 0) = V(ϕn) Cov(9j, 9j′ | x = 1) = V(ϕs).

(7)

In this case, the covariance can be non-zero for either signal or
noise, and so one can obtain intra-item correlations (Eq. (4)) both
for signal (IICs) and for noise (IICn). Eq. (7) also shows that, within
observers, the signal variance can be greater than, equal to, or less
than that of noise, depending on the relative magnitudes of V(ϕs)
and V(ϕn). It is also important to note that the model places a
constraint on the conditional variances and covariances, in that
a larger covariance between observers implies that the variance
within observers is also larger.

Using the decision rule of Eq. (1) together with Eq. (6) gives,

p(Yj ≤ k | x, ϕs, ϕn) = 8[cjk − (dj − ϕs)x − ϕn(1 − x)]

= 8[cjk − ϕn − (dj − ϕs − ϕn)x], (8)

where the latter form shows that the model (written with an
inverse link) has a random intercept and slope. A fit of Eq. (8)
provides estimates of dj, cjk,V(ϕs), and V(ϕn). Eqs. (5) and (8) will
together be referred to as SDT-item models. Note that the model
with item effects for both signal and noise is closely related to that
used by Pratte et al. (2010; also see Morey et al. 2008), except that
Pratte et al.’s model is parameterized slightly differently and also
includes random observer effects, whereas observer-specific fixed
effects are used here (i.e., the usual dj for each observer), and so
no distributional assumptions are made about dj across observers,
as in traditional SDT. Some comments on models with random
observer effects are made below.

3.3. An empirical extension

A simple yet useful model-based way to obtain information
about the variances and covariances (with constraints) is to
generalize Eq. (8) as follows,

p(Yj ≤ k | x, ϕs, ϕn) = 8[cjk − (dj − ajϕs)x − bjϕn(1 − x)] (9)

with ϕs ∼ N(0, 1) and ϕn ∼ N(0, 1). Note that the coefficients
aj and bj can be positive or negative, and so ϕs and ϕn might no
longer have simple interpretations as common item effects (i.e.,
the effects can be in different directions for different observers).
It follows from the structural model associated with Eq. (9) that,
for observers’ j and j′,

V(9j | x = 0) = b2j + 1 V(9j | x = 1) = a2j + 1,

Cov(9j, 9j′ | x = 0) = bjbj′ Cov(9j, 9j′ | x = 1) = ajaj′ . (10)

Eq. (10) shows that the coefficients aj and bj are scale parameters
that allow the variances and covariances to differ across the J
observers; the coefficients also allow for positive or negative
covariances, depending on the signs of aj and bj; these aspects are
what make the model useful for exploratory purposes.

Eq. (9) is offered here as a useful empiricalmodel, in that if all or
nearly all of the estimates of aj or bj have the same sign (and similar
magnitudes),2 then it follows fromEq. (10) that the covariances are

2 One should be aware that, over repeated runs, the signs of the coefficients can
reverse from positive to negative because of ‘label-switching’ (see DeCarlo, 2008).
All that matters in the exploratory analysis suggested here is whether or not the
J estimates of aj (or bj), generally have the same sign across observers (i.e., either
positive or negative).
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positive, and so a model with item effects might be useful, given
that the model predicts a positive covariance across observers. On
the other hand, if there is a mix of positive and negative estimates
(with some large values), then a simple item-effect model will
likely not suffice because items no longer have a simple common
effect across observers. Thus, Eq. (9) provides useful information
about the structure of the data.

The next section illustrates the use of the above models in a
situation where it was expected that there might be non-trivial
item effects: the detection of fractures in X-ray slides of ankles.
Item effects were expected because it seems likely that fractures
might be more difficult to detect in some slides as compared to
others, because of the type of fracture and characteristics of the
particular image. In addition, slides without fractures (normals)
might also differ with respect to how difficult it is to detect a
normal ankle. Thus, models with item effects for both signal and
noise are considered. The models are compared to the traditional
equal and unequal variance SDT models.

4. Detecting fractures in ankle X-rays

The study consisted of 48 observers who examined 234 X-
rays of ankles that were presented on a computer screen (with
three different views). Of the 234 slides, 88 showed ankles with a
fracture. For each slide, an observer made a decision as to whether
a fracturewas present or absent on a four point scale, 1= definitely
normal, 2 = probably normal, 3 = probably abnormal, and
4 = definitely abnormal. Further details can be found in Boutis,
Pecaric, Seeto, and Pusic (2010).

4.1. Results

Although each slidewas presented in a different (random) order
for each observer, the data should be sorted, for the analysis, so that
the observers’ responses arematchedwith respect to thepresented
item (i.e., for the data in multivariate form, with observers as
columns and items as rows). It is useful to start with Eq. (9) to
explore the data. For the X-ray data, the estimates of bj (normal
slides) ranged from 0.19 to 1.07 with a mean of 0.63 and standard
deviation of 0.22, whereas aj (fracture slides) ranged from 0.38 to
1.15 with a mean of 0.81 and standard deviation of 0.20. Thus, all
of the coefficients were positive (and significant), which suggests
the presence of item effects for both signal (fracture) and noise
(normal). Note that the mean magnitudes of aj(0.81) and bj(0.63)
also suggest that the correlation is larger (on average) for fractures
than for normals.

4.2. Relative fit

The upper part of Table 1 shows relative fit statistics, BIC and
AIC, for the equal variance SDT model, the unequal variance SDT
model, and the two item-effect models (Eqs. (5) and (8)). The table
shows that the relative fit of the item-effect models is better than
either the equal or unequal variance SDT models, in that both BIC
and AIC are considerably smaller, and in particular, BIC and AIC
are smallest for the SDT model with item effects for both signal
and noise (Eq. (8)). The results indicate that the item models,
which account for non-zero covariances across observers, offer an
improvement over simply fitting the equal or unequal variance SDT
model to the data of each observer.

4.3. Parameter estimates

Unequal variance SDT model. The left panel of Fig. 1 presents a
plot of estimates of dj for a fit of the unequal variance SDT model
Table 1
Information criteria for traditional SDT and item-effect SDT models.

Model Ankle X-rays (48 observers)
#par BIC AIC

Equal variance SDTa 191 23030.6 22367.2
Unequal variance SDT 239 23150.8 22321.5
SDT-item (Eq. (5)) 192 21491.9 20828.4
SDT-item (Eq. (8)) 193 20167.2 19500.4

Model Word recognition (21 observers)
#par BIC AIC

Equal variance SDT 105 6800.2 6507.5
Unequal variance SDT 126 6883.0 6481.8
SDT-item (Eq. (5)) 106 6777.8 6482.4
SDT-item (Eq. (8)) 107 6690.0 6391.7

Model Word recognition (97 observers)
#par BIC AIC

Equal variance SDT 579 139148.8 136732.2
Unequal variance SDT 676 138447.9 135831.7
SDT-item (Eq. (5)) 580 137855.2 135434.4
SDT-item (Eq. (8)) 581 135951.3 133526.3
SDT-item (Eq. (8), correlated ϕ) 582 135937.0 133507.9
a Note: One observer used only 3 of the 4 response categories.

to the data of each of the 48 observers. The estimates range from
0.49 to 2.63 with a mean of 1.45 (standard deviation of 0.46) and
are approximately normally distributed. The lower panel shows
estimates of the signal standard deviation, σj, which range from
0.62 to 1.62, with a mean of 1.08, and so the ratio of fracture to
normal standard deviations is 1.08 (on average), which indicates
(slightly) larger variance for the signal distribution (fractures) than
noise (normals).

SDT-item model. The right panel of Fig. 1 presents a plot of
estimates of dj for a fit of Eq. (8). The estimates range from 0.38
to 2.76 with a mean of 1.61, a standard deviation of 0.64, and
are approximately normally distributed. Estimates of V(ϕs) for
fractures (signal) and V(ϕn) for normals (noise) are 0.60 (standard
error of 0.04) and 0.38 (0.04), respectively. It follows from Eq.
(7) that the (predicted) ratio of fracture to normal standard
deviations is

√
(0.60 + 1)/

√
(0.38 + 1) = 1.08, which is the

same as the average estimate of σj found for fits of the unequal
variance SDT model above. Thus, with respect to the variance,
the unequal variance and item SDT models both lead to the
same conclusion—for each observer, the perceptual distribution
for fractures has larger variance than that for normals; of course,
the SDT-item model also accounts for the correlation between
observers, whereas the unequal variance SDT model does not.

Estimates of the intra-item correlations (Eq. (4)), from the
variance estimates, are 0.38/(0.38+ 1) = 0.275 for normal slides
and 0.60/(0.60 + 1) = 0.375 for fractures. Thus, fairly large
correlations are found, which indicate the presence of item effects,
as expected. In addition, the intra-item correlation for slides with
fractures is larger than that for slides without fractures, and so
the item effects appear to be larger for fractures. In this case, the
item effects are consistent with both non-zero correlations across
observers and larger variance (for fractures) within observers.

Note that one can also obtain ‘estimates’ of ϕs and ϕn (they
are more accurately described as ‘predictions’), just as one can get
factor scores in latent variable modeling (e.g., Skrondal & Rabe-
Hesketh, 2004); these are provided, for example, by Latent Gold
(i.e., empirical Bayes estimates) and other software packages. For
the X-ray study, one goal was to examine the utility of the item
scores (i.e., the item difficulties) in future training studies with the
same items (by, for example, using the factor score estimates to
select difficult or easy slides); this can provide additional evidence
for or against the validity of the item model and the utility of the
scores, which is an important next step.
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Fig. 1. The left panel shows, for the unequal variance SDT model, the distribution of estimates of dj obtained for 48 observers in a medical imaging study. The lower panel
shows the distribution of estimates of σj for the same observers. The right panel shows, for the SDT-item model, the distribution of estimates of dj .
5. Word recognition

This section applies the SDT-item models to recognition
memory studies withwords. In the typical word recognition study,
a list ofwords is presented to observers for a study period, followed
by a test where observers rate their confidence as to whether
a presented word is old (on the study list) or new (not on the
study list). Somewordsmight have characteristics thatmake them
more difficult (or easier) to remember, and so there might be item
effects forwords. This can again bemodeled by introducing a latent
‘difficulty’ variable that affects discrimination, as done above. New
words might also differ in difficulty, which leads to an SDT-item
modelwith effects for both signal and noise. Given thatwords used
inword recognition studies are typically selected so as to have little
variation on other dimensions (e.g., word length, word frequency,
etc.), it was expected that item effects might be smaller than those
found for the medical imaging study, and so the word studies offer
an interesting comparison.

In the first word recognition study, the list of study words was
the same across all observers, which is directly analogous to the
medical imaging study (i.e., particular slides cannot be fractures
for some observers and normal for others). In the second study,
whether a word was old or new differed across observers, that is,
a particular word was old for some observers and new for others;
consequences of this are discussed below.

5.1. Word recognition: same study words across observers

The experiment was conducted as part of a laboratory course
(DeCarlo, 1997). Twenty one undergraduate students were run
individually. The participants were first shown 60 words in a
study condition where all 60 words were presented together on
a computer screen (10 rows of 6 words each) for 2 min. A test
followed immediately with the 60 study words presented one at
a time in a random order along with 60 new words; participants
rated their confidence that a word was old or new on a five point
scale. The Appendix gives a Latent Gold program to fit the SDT-item
model of Eq. (8); the data are available at the author’s website.

5.2. Results

It is again useful to begin with Eq. (9) to obtain some basic
information. For new words, the estimates of bj ranged from 0.04
to 0.78 with a mean of 0.46 and standard deviation of 0.22. Thus,
all the estimates are positive, which suggests positive correlations,
and so item effects might be present for newwords. For old words,
the estimates of aj ranged from −0.72 to 0.73 (with significant
positive and negative values) with a mean of 0.08 and standard
deviation of 0.35. Thus, the presence of simple item effects for old
words is not apparent (given that the mean effect is near zero); in
fact, the large positive and negative estimates of aj for old words
suggests, from Eq. (10), that the mean covariance (of which there
are positive and negative values) might be near zero, whereas the
variance, a2j + 1, can be large, which is predictive of results found
below.

5.3. Relative fit

The middle panel of Table 1 shows information criteria for fits
of the equal variance SDT model, the unequal variance SDT model,
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Fig. 2. The left panel shows, for the unequal variance SDT model, the distribution of estimates of d obtained for 21 observers in a word recognition study. The lower panel
shows the distribution of estimates of σj for the same observers. The right panel shows, for the SDT-item model, the distribution of estimates of dj .
and the item-effect models. Both BIC and AIC indicate that the
item-effect SDTmodel of Eq. (8) provides the best relative fit,which
again suggests the need to account for non-zero covariances across
observers.

5.4. Parameter estimates

Unequal variance SDT. The left panel of Fig. 2 shows a plot of
estimates of dj obtained for a fit of the unequal variance SDTmodel
to the data of each observer. The estimates range from 0.26 to 3.37
with a mean of 1.59 and standard deviation of 1.03. The number
of observers is fairly small (21), however the plot suggests two
clusters, observers with lower values of d (around 0.75) and those
with higher values (1.9 and higher), perhaps reflecting motivated
and non-motivated observers; note that the fixed effects approach
does not make any distributional assumptions about dj across
observers. The lower panel of Fig. 2 shows a plot of estimates of σj,
which range from 0.52 to 1.96 with a mean of 1.28, which reflects
the usual finding of larger variance (on average) for signal (old
words) than noise (new words).

SDT-item model. The right panel of Fig. 2 shows a plot of
estimates of dj obtained for a fit of the item model of Eq. (8).
The estimates range from 0.29 to 3.20 with a mean of 1.42 and
standard deviation of 0.83. The figure suggests two distributions
of estimates, for lower and higher d, as also found for fits of the
unequal variance SDT model (although there appears to be some
slight smoothing).

Estimates of the variances (and standard errors) of ϕs and ϕn
are 0.02 (0.02) and 0.19 (0.05) for old and newwords, respectively.
Note that this implies that the ratio of signal to noise standard
deviations is
√

(0.02 + 1)/
√

(0.19 + 1) = 0.93 (from Eq. (7)),
and so the results differ from those found for the unequal variance
SDTmodel in that the item-effect model suggests that the variance
for signal is slightly smaller than that for noise (ratio of standard
deviations of 0.93), whereas the unequal variance SDT model gave
larger variance for signal (average ratio of 1.28). This suggests the
influence of other factors, as discussed below.

The estimate of the intra-item correlations are 0.19/(0.19 +

1) = 0.16 for new words and 0.02/(0.02 + 1) = 0.02 for old
words. Thus, for new words, there appears to be an item effect,
but the magnitude of the effect, 0.16, is considerably smaller than
that found in the medical imaging study above. For old words, the
near zero intra-item correlation suggests the absence of a simple
itemeffect (as also suggested by the exploratory analysis presented
above).

The consistency of the results for word recognition is next
examined using data from another (published) word recognition
study. It is also shown that the particular experimental design that
is used determines whether or not item-effect correlations can be
estimated.

5.5. Word recognition: different study words across observers

The example is a word recognition study by Pratte et al. (2010),
details of which can be found in their article. 240 studywordswere
presented to 97 observers. The test consisted of the 240 studied
words and 240 new words. An interesting aspect of the study is
that, unlike the medical imaging or word recognition examples
presented above, the list of old words differed across observers, in
that the 240 studywordswere randomly selected for each observer
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Fig. 3. The left panel shows, for the unequal variance SDT model, the distribution of estimates of d obtained for 97 observers in a word recognition study. The lower panel
shows the distribution of estimates of σj for the same observers. The right panel shows, for the SDT-item model, the distribution of estimates of dj .
from the pool of 480 words. Thus, whether a particular word was
old or new word differed across the observers (i.e., each word was
old for some observers and new for others), in contrast to the
above examples.3 In this case, there is information about a possible
correlation between item effects.

The design requires that a subscript j be added to x because
whether a particular item was old or new can now differ across
the J observers. The conditional covariances are

Cov(9j, 9j′ | xj = 0, x′

j = 0) = V(ϕn)

Cov(9j, 9j′ | xj = 1, xj′ = 0) = Cov(ϕs, ϕn)

Cov(9j, 9j′ | xj = 1, xj′ = 1) = V(ϕs)

Cov(9j, 9j′ | xj = 0, xj′ = 1) = Cov(ϕn, ϕs).

Note thatwhen the items are bothnew for a givenpair of observers,
xj = 0 and xj′ = 0, or old, xj = 1 and xj′ = 1, then the
covariances are the same as in Eq. (7), that is, V(ϕn) and V(ϕs).
However,when the item types (newor oldword) differ across pairs
of observers (which does not happen in the earlier examples), then
the conditional covariances of 9 depend on Cov(ϕs, ϕn), as shown
above, and so there is information about item-effect covariances.

5.6. Results

It is again useful to start with Eq. (9) to explore the data. For
new words, estimates of bj ranged from 0.06 to 0.71 with a mean

3 Note that the design is more complex; for example, it differs from the design
where the set of old and new items is the same across all observers in that different
subsets of observers (rather than all observers) judge each item as old or new.
of 0.38 and standard deviation of 0.14. The positive values suggest
the presence of a common itemeffect for newwords. For oldwords,
estimates of aj range from −0.04 to 0.65 with a mean of 0.34 and
a standard deviation of 0.16; there were only two negative values,
neither of whichwas significant. The results indicate that there are
positive correlations across observers and suggest the presence of
item effects for both old and new words.

5.7. Relative fit

The bottom section of Table 1 shows information criteria for fits
of the equal variance SDT model, the unequal variance SDT model,
and the two item-effect SDTmodels. The table shows that the SDT-
itemmodels again provide better relative fits than either the equal
or unequal variance SDT models. BIC and AIC are both smallest
for the SDT-item model of Eq. (8), which has item effects for both
signal and noise.

5.8. Parameter estimates

Unequal variance SDT. The left panel of Fig. 3 presents a plot
of estimates of dj for the 97 observers for the unequal variance
SDT model. The range is from 0.07 to 3.79 with a mean of 1.30
and standard deviation of 0.59; the distribution is approximately
normal, except for one extreme value of 3.79. The lower panel of
Fig. 3 shows a plot of estimates of σj for the 97 observers; the
estimates range from 0.81 to 3.61 with a mean of 1.36, and so the
signal variance is larger than the noise variance (note that Pratte
et al., 2010, obtained an estimate of σ of 1.36 for a fit of theirmodel,
see their Fig. 2). Note that the observer with the largest estimate of
dj (3.79) also had the largest estimate of σj (3.61).
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SDT-item model. The right panel of Fig. 3 shows a plot of
estimates of dj for the item model of Eq. (8). The estimates of
dj range from −0.01 to 2.12 with a mean of 1.18 and standard
deviation of 0.43; the distribution is approximately normal. In this
case, the observer who appeared above to be an ‘outlier’ for the
unequal variance SDTmodel now has an estimate of dj of 2.12 (and
so the estimates are smoothed by the item model). The estimate
of the variance of ϕn (new words) is 0.16 (0.01) whereas that
for ϕs (old words) is 0.10 (0.01); it follows that the ratio of old
to new word standard deviations is predicted to be

√
(0.10 +

1)/
√

(0.16 + 1) = 0.97. Thus, as for the word study examined
above, the SDT-item model suggests that old words have equal or
smaller variance than new words, whereas the unequal variance
SDT model suggests that old words have larger variance.

The estimate of the intra-item correlations (using Eq. (4)) are
0.16/(0.16+1) = 0.14 for newwords and 0.10/(0.10+1) = 0.09
for old words. Thus, the correlation for new words is larger than
that for old words, as was also found in the first word study. The
intra-item correlations are again small, 0.14 or less. Finally, the
estimate of the covariance of ϕs and ϕn is −0.03 (0.01) which,
togetherwith the variance estimates ofϕs andϕn, gives an estimate
of −0.03 for the correlation of new and old item effects.

Note that the finding of larger variance forϕn thanϕs foundhere
is consistent with results reported by Pratte et al. (2010), in that
their estimates of the item-effect standard deviations, σβ,n and σβ,s
in their notation,were larger for newwords than for oldwords (see
their Fig. 3(C)) and similar in value to those found here. Freeman
et al. (2010) also recently presented results where the item-effect
variancewas larger for newwords than for oldwords (see their Fig.
5, bottom row). Thus, using an SDT model with random observer
and item effects (and estimation via Markov chain Monte Carlo
methodology), as in Pratte et al.’s and Freeman et al.’s approach,
gives the same results as the item models presented here, in that
the intra-item correlations are larger for new words than for old
words.

6. Discussion

The SDT-item models presented here are simple extensions of
the conventional equal variance SDT model that allow for item
effects. The models offer an improvement in relative fit over the
unequal variance SDT model (fit to the data of each observer) and
account for correlations between observers over and above that
due to signal or noise (i.e., residual correlations). A fit of themodels
allows one to estimate intra-item correlations, which were fairly
large in the medical imaging study, in the range of 0.28–0.38, and
were smaller in theword recognition studies, 0.16 or less. This was
expected to some extent because words in recognition memory
studies are usually selected so as to not vary too much in terms
of various characteristics, such as word length, word frequency,
and so on. Thus, the intra-item correlations are informative about
the presence and magnitude of item effects. A next step in future
research is to attempt to gain some experimental control over
the item effects, by for example manipulating a variable that
might increase the effects and examining the resulting intra-item
correlations.

An interesting finding for the word recognition studies is that
the intra-item correlation appears to be larger for new words
than old words. This result has not been noted before, to my
knowledge, although it appears in other recent studies: the item
variances (and so the covariances) were larger for new items
than old items in both the studies of Freeman et al. (2010) and
Pratte et al. (2010), even though (slightly) different models and
estimation methods were used. Thus, this result appears across
bothmixed and randomversions of themodels and across different
estimation methods; whether or not this is generally the case
requires further investigation. Of course, one has to use themodels
to discover their advantages and limitations; the ability to easily fit
the basic SDT-itemmodelswith standard software andMLE should
motivate researchers to use them in their research, in addition
to the traditional unequal variance SDT model. In any case, the
larger intra-item correlation for new words is noted here as a
result of theoretical interest for researchers concerned with word
recognition and item effects.

It is shown that the conditional variances and covariances
associated with a particular model clarify important details. For
example, a fairly strong constraint that follows from the item
models is that larger covariance (between observers) should be
accompanied by larger variance (within observers, see Eq. (7)).
Put simply, item effects not only lead to correlations between
observers, but also add to the variance within observers. The
results for the medical imaging study were consistent with
this relation, in that fractures showed both larger intra-item
correlations and larger variance. However, the results for the
word recognition studies were not, in that new words showed
larger intra-item correlations, and so they should also have larger
variance, yet the unequal variance model suggested smaller or
equal variance for newwords. This suggests that, although the item
models are useful, they are not completely satisfactory, at least for
word recognition. Potential extensions are noted next.

7. Extended itemmodels

The results for word recognition suggest that an SDT-item
model that frees the relation (shown in Eq. (7)) between the
conditional variances and covariances might be needed in some
cases. Different ways in which this can be done are noted here,
as are other extensions, such as models with random observer
effects.

7.1. Larger signal variance

To start, note that the model used by Pratte et al. (2010) frees
the relation between the conditional variances and covariances by
including a variance parameter, that is, by extending the unequal
variance SDT model rather than the equal variance model. An
unequal variance extension of the structural model of Eq. (6) is,

9j = (dj − ϕs)x + ϕn(1 − x) +σx εj.

It follows that the conditional variances and covariances are

V(9j | x = 0) = V(ϕn) + V(εj)

V(9j | x = 1) = V(ϕs) +σ2 V(εj)

Cov(9j, 9j′ | x = 0) = V(ϕn) Cov(9j, 9j′ | x = 1) = V(ϕs).

The term σ2V(εj) in the above shows that the signal variance can be
inflated or deflated by σ2. This means that, even if V(ϕs) < V(ϕn),
as in the word recognition studies above, the signal variance can
still be larger than noise if σ2 > 1. Note that, using Pratte et al.’s
notation, V(ϕs) = σ2

β,s and V(ϕn) = σ2
β,n, estimates of which are

about 0.402
= 0.16 for old words and 0.452

= 0.20 for new
words (from their Fig. 3(C)). Using the conditional variances and
covariances shown above, estimates of the intra-item correlations
are approximately 0.20/(1 + 0.20) = 0.17 for new words and,
using Pratte et al.’s estimate of σ of 1.36, 0.16/(0.16 + 1.362) =

0.08 for old words. Thus, for the unequal variance version of the
item model, the intra-item correlation is again larger for new
words than old words (and the estimates of 0.17 and 0.08 are
similar to those found above, 0.14 and 0.09), and so this result
appears to be consistent.
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A related way to extend the model is to include an additional
random coefficient γ as follows,

9j = (dj − ϕs + γ )x + ϕn(1 − x) + εj,

where ϕs ∼ N[0,V(ϕs)], ϕn ∼ N[0,V(ϕn)], γ ∼ N[0,V(γ )], Cov
(γ , ϕs) = 0, Cov(γ , ϕn) = 0, and εj is independent of the other
terms. A convenient aspect of the resultingmodel is that it is simple
to implement in standard software (i.e., it is a random coefficient
probit model); for details of the relation of this approach to the
unequal variance extension, see DeCarlo (2010). It follows from the
above structural model that

V(9j | x = 0) = V(ϕn) + 1
V(9j | x = 1) = V(ϕs) + V(γ ) + 1,
Cov(9j, 9j′ | x = 0) = V(ϕn) Cov(9j, 9j′ | x = 1) = V(ϕs).

The above shows that the termV(γ ) in the conditional variance for
signal frees up the relation between the covariance and variance,
as in Pratte et al.’s (2010) model, and so the random coefficient
extension offers a closely related model (with additive instead of
multiplicative effects).

A theoretical model. The above offer potentially useful empirical
models that can capture additional aspects of the data (i.e., smaller
covariance yet larger variance). Empirical models, however, do not
provide a reason as towhy the variance is larger, they simply allow
for it. A mixture SDT model (DeCarlo, 2002), on the other hand,
offers a theoretical motivation for the larger variance. The basic
idea is that observers do not attend to some of the study words,
and so oldwords consist of amixture of attended andnon-attended
words, which is what leads to the apparent larger variance for old
words (seeDeCarlo, 2010). Some steps towards combiningmixture
SDT models with item models are noted here.

When formulating a mixture SDT-item model, it is important
to pay attention to the underlying conceptualization. In particular,
if some of the old items are not attended to, then it seems that
the item effect for those items should be the same as for new
items, that is, the item effect for unattended old items should be
ϕn (and not ϕs). The structural model of Eq. (6) can be extended,
recognizing this restriction, as follows

9j = [δj(dj − ϕs) + (1 − δj)ϕn]x + ϕn(1 − x) + εj, (11)

where δj is a latent dichotomous (zero/one) variable that indicates,
for observer j, attention (δj = 1) or a lack of attention (δj = 0) on a
given trial (see DeCarlo, 2010). Note that the model for new items
is the same as in Eq. (6), however for old items, the distribution is
located at (dj − ϕs) for attended old items (as in Eq. (6)), but is at
ϕn for non-attended old items. The resulting model is

p(Yj ≤ k | x, ϕs, ϕn)

= 8{cjk − [δj(dj − ϕs) + (1 − δj)ϕn]x − ϕn(1 − x)}
= 8[cjk − ϕn − δj(dj − ϕs − ϕn)x],

which is a simple extension of the item model of Eq. (8).
With the assumptions that ϕs ∼ N[0,V(ϕs)], ϕn ∼ N[0,V

(ϕn)], δj ∼ Bernoulli(λj), and δj and εj are independent of each
other and the other terms, it follows from Eq. (11) that the
conditional covariance for noise is the same as in Eq. (7),

Cov(9j, 9j′ | x = 0) = V(ϕn),

whereas (for uncorrelated item effects)

Cov(9j, 9j′ | x = 1) = λjλj′V(ϕs) + (1 − λj)(1 − λj′)V(ϕn).

The variance for noise is also the same as in Eq. (7),

V(9j | x = 0) = V(ϕn) + V(εj).

The variance for signal, however, is a bit trickier. Conditional on
both x and δ (i.e., x = 1, δ = 1), the signal variance is simply
the same as in Eq. (7), that is, V(ϕs) + V(εj), but this is not the
case conditional on x alone. Note that simply taking the conditional
variance of 9j as given by Eq. (11) gives a complex expression for
V(9j | x). A simpler approach is to use the followingdecomposition
of the variance: for two variables Y and X with a joint distribution,

V(Y ) = EX [V(Y | X)] + VX [E(Y | X)].

In the current context, one can use the above by conditioning on δ
as follows (ignoring the conditioning on x for a moment),

V(9) = Eδ[V(9 | δ)] + Vδ[E(9 | δ)].

Using the above, it can be shown that the conditional variance for
the mixture SDT-item model is, for signal,

V(9j | x = 1) = d2j λj(1 − λj) + λjV(ϕs) + (1 − λj)V(ϕn) + V(εj).

The above shows that the mixture SDT-item model leads to
additional terms in the signal variance (cf. DeCarlo, 2010) and so
it frees up (with restrictions) the relation between the variance
and covariance shown in Eq. (7), as in the empirical extensions. The
model in essence attributes the apparent larger signal variance to
mixing that occurs because of lapses in attention to the signal.

An example. To obtain some information about how the results
for a fit of a mixture SDT-item model compare to those for
the simple SDT-item model, the model was fit to the data of
the first word recognition study discussed above. More complex
models of this sort can be fit using software for a Bayesian
approach, in which case the model is as given above, with the
difference that priors are specified for the model parameters;
specifically, normal priors were used for dj and cjk (i.e., the first
criterion was normal with the remaining criteria obtained as zero-
truncated normal increments, to maintain the ordering), normal
priors were used for ϕ1 and ϕ2, and a uniform prior was used
for λj. Markov chain Monte Carlo (MCMC) estimation was used
with the software OpenBugs (Thomas, O’Hara, Ligges, & Sturtz,
2006). 10,000 burn-ins were used, followed by 20,000 iterations
for posterior inference; this gave Monte Carlo errors that were
less than 5% of the sample standard deviations, which suggests an
adequate number of iterations (see Spiegelhalter, Thomas, Best, &
Lunn, 2003).

For the mixture SDT-item model, the posterior means for dj
ranged from 0.50 to 4.7with amean of 2.48 and standard deviation
of 1.10; note that dj tends to be larger for the mixture model than
for the simple item model because, from the mixture perspective,
the item model provides an estimate of λjdj and not simply dj (see
DeCarlo, 2010). The posteriormeans forλj ranged from0.11 to 0.96
with amean of 0.64 and standard deviation of 0.23, which suggests
that, on average, about 64% of the items were attended to.

Of particular interest are the item variances. For the SDT-item
model, the posterior means (and standard deviations) were 0.20
(0.05) and 0.02 (0.02) for V(ϕn) and V(ϕs), respectively, which
are virtually identical to the MLE estimates found above (0.19
and 0.02). For the mixture SDT-item model, the posterior means
for V(ϕn) and V(ϕs) were 0.24 (0.05) and 0.04 (0.04). Thus, the
mixture-item model, compared to the simple item model, gives a
small increase in the variance for new words (from 0.20 to 0.24)
and also possibly for old words (0.02–0.04). Most important, the
results lead to the same conclusion, in that the IIC is again larger
for new items than for old items, and so this result appears to be
consistent across the different models.

7.2. Random observer effects

The design considered here is mixed, in that the item effects,
ϕs and ϕn, are random whereas the observer effects, cjk and dj, are
fixed (i.e., they are observer-specific fixed effects, as in traditional
SDT). Here it is noted that one can also introduce random
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observer effects; this would be of interest, for example, if the goal
was determine whether or not observers are exchangeable. This
touches upon issues that go beyond the scope of the current article,
however some basic results for versions of SDT-item models with
random observer effects are given.

The structural model of Eq. (6) can be extended to allow for
random observer effects as follows,

9j = αj + (dj − ϕs)x + ϕn(1 − x) + εj, (12)

where dj is now random, specifically dj ∼ N(µd, σ
2
d) with µd =

EjE(9j | x = 1) = Ej(dj), and αj ∼ N(0, σ2
α), where Ej indicates

expectation over the J observers (whereas E is expectation over
the items). The parameter αj is a random intercept; this basically
allows the response criteria to vary across observers (i.e., shifted
up or down; see DeCarlo, 2010); a restriction on the criteria across
observers is also necessary in order for the model to be identified
(for example, Pratte et al. set the middle criterion to zero). Note
that it is now assumed that, for each item, there is a perceptual
distribution across observers, with populationmeansµd = EjE(9j |

x = 1) and µα = EjE(9j | x = 0) = 0, whereas this assumption is
not made in the mixed model (i.e., perceptions are random within
observers in the mixed model, with no distributional assumptions
about perceptions across observers). The above model is closely
related to that of Pratte et al. (2010),4 also see Rouder and Lu (2005)
and Rouder et al. (2007).

Note that the IIC of Eq. (4) can be used for models with random
observer effects, in that it is defined for given observers (i.e.,
it is conditional on the observers), and so it does not include
observer variance in the denominator. In particular, the conditional
covariances for the structural model of Eq. (12) are the same as
those given for Eq. (7), that is, V(ϕs) and V(ϕn), because Cov(dj, dj′)
and Cov(αj, αj′) are zero, given the assumption that dj and αj are
independently and identically distributed (and are constants for
observers j and j′). The conditional variances within observers are
also the same as in Eq. (7), because, for a given observer, V(dj |

x = 1) = 0 and similarly for αj (i.e., dj and αj are random across
observers but constant within observers). It follows that the intra-
item correlation of Eq. (4) is the same for models with fixed or
random observer effects; the IIC measures howmuch of the signal
or noise variance within an observer is due to item effects.

One can also develop versions of the IIC that use a ‘total’ or
‘unconditional’ variance in the denominator, that is, a variance over
both items i and observers j,Vj = EjE[9j − EjE(9j)]

2, where the
subscript j on Vj is used to indicate that the variance is across
observers (whereas V is variance within observers). For a model
with random observer effects, as given above, it follows from
Eq. (12) that the ‘total’ variances are

Vj(9j | xj = 0) = σ2
α + V(ϕn) + V(εj)

Vj(9j | xj = 1) = σ2
α + σ2

d + V(ϕs) + V(εj).

The above shows that the total variance includes variance due to
observers, σ2

α = Vj(αj) and σ2
d = Vj(dj); this approach applies to a

population of observers.
Intra-item correlations based on the total variance can be

defined for noise and signal, respectively. In particular, it follows
from Eq. (12) that,

IIC2n =
V(ϕn)

σ2
α + V(ϕn) + V(εj)

IIC2s =
V(ϕs)

σ2
α + σ2

d + V(ϕs) + V(εj)
.

(13)

4 Note that, for the current model, as well as for Pratte et al.’s (2010) model, the
‘random’ observer effects are not fully random, in that, apart from the random slope
(dj) and intercept (αj), the spacing between the criteria are fixed effects.
Eq. (13) presents versions of the intra-itemcorrelation that give the
covariance between observers relative to the total variance across
and within observers (for a model with uncorrelated random
observer and item effects). The main consequence is that the IIC2
of Eq. (13) will tend to be smaller than the IIC of Eq. (4), because of
the additional terms in the denominator (i.e., observer variance);
note that IIC2 is also now dependent on observer characteristics
(i.e., the variation in dj and αj across observers). The IIC2 for signal
also has an extra term in the denominator, which follows from the
conceptualization in terms of shifting criteria (and so the signal
and noise distributions both shift together); the extra term could
account for a smaller signal IIC, however it did not for the word
studies examined above (i.e., the signal IICwas still smallerwithout
it). The important aspect to note is that the finding above of a
larger IIC for new words than old words still holds for IIC2. Note
that one can also define intra-observer correlations (i.e., using
the covariance across items) as well as other types of intra-item
correlations, which require additional theoretical and empirical
study.

In Pratte et al.’s (2010) parameterization of the model, the
signal and noise distribution locations are random (rather than the
response criteria, and so the distributions shift separately rather
than together) and it can be shown that the resulting intra-item
correlations are

IIC′

2n =
V(ϕn)

σ2
αn

+ V(ϕn) + V(εj)

IIC′

2s =
V(ϕs)

σ2
αs

+ V(ϕs) + σ2V(εj)

(14)

where the term σ2 is included because the unequal variancemodel
is generalized, as noted in the previous section. For Pratte et al.’s
data, estimates of V(ϕn) and V(ϕs) are 0.20 and 0.16, as noted
above, whereas estimates of σ2

αn
and σ2

αs
are, from their Fig. 3(C),

0.432
= 0.18 for both signal and noise. Using these estimates,

together with Pratte et al.’s estimate of σ of 1.36 (see their Fig. 2)
give values of IIC′

2n and IIC′

2s of 0.14 and 0.07, respectively (which
are slightly smaller than the values of 0.17 and 0.08 found above
for IIC, as expected), and so once again the intra-item correlation is
larger for new words than for old words.

The difference between IIC2 and IIC is analogous to the
difference between ‘reliability’ (agreement) versions of the intra-
class correlation (ICC), where the ‘total’ variance includes rater
(observer) variance, versus ‘consistency’ versions of the ICC, which
do not include rater variance (e.g., see McGraw & Wong, 1996 and
Shrout & Fleiss, 1979); note that consistency versions of the ICC(2)
and ICC(3) given by Shrout and Fleiss (i.e., random and mixed
versions of the ICC, respectively), give the same results, just as the
IIC of Eq. (4) gives the same results for random and mixed models.
Similarly, in classical test theory, two measures of measurement
precision are defined (conditional and unconditional, that is, for
a given subject or for a population of subjects; see Mellenbergh,
1996); also see the generalizability coefficient and index of
dependability used in generalizability theory (see Brennan, 2001).
Of course, the intra-item correlations examined here apply to
residual correlation across observers, that is, correlation not due
to the item being a signal or noise, and not true score variance,
and so they are not measures of reliability, but rather measure the
proportion of excess signal or noise variance that is due to an item
effect. Nevertheless, earlier discussions about issues related to the
choice between the different types of measures are relevant. The
choice ofmeasure depends on the purpose and design of the study;
for studies of item effects and factors that affect them, for example,
the IIC of Eq. (4) is likely to be adequate.

Further research on SDT-item models and extensions should
include derivations of the conditional variances and covariances,
which clarify important details of the models, as well as a
presentation of the decision and structural models. Together, this
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will help to further our knowledge and understanding of item
effects in applications of SDT.

Appendix. A Latent Gold program for the SDT-itemmodel

infile ‘C:\ Documents and Settings\ Desktop\ word_97.sav’
model
options

algorithm nr
tolerance = 1e–008 emtolerance = 0.01 emiterations = 250 nriterations = 50;
startvalues
seed = 0 sets = 10 tolerance = 1e–005 iterations = 50;

bayes
categorical = 0 variances = 0 latent = 0 poisson = 0;
quadrature nodes = 11;
standarderrors = standard;
output parameters profile bvr;
//Note: next line saves the factor scores to an SPSS file//
outfile ‘word_97_out.sav’ classification;

variables
dependent y1 probit, y2 probit, y3 probit, y4 probit, y5 probit,
y6 probit, y7 probit, y8 probit, y9 probit, y10 probit, y11 probit,
y12 probit, y13 probit, y14 probit, y15 probit, y16 probit,
y17 probit, y18 probit, y19 probit, y20 probit, y21 probit;
independent x;
latent phi_s continuous, phi_n continuous;
//Note: LG models p(Y > k), which reverses the signs for symmetric dist.//
equations
phi_s; phi_n;
y1 <- 1 + x + (−1)phi_s x + (−1)phi_n x + (1)phi_n;
y2 <- 1 + x + (−1)phi_s x + (−1)phi_n x + (1)phi_n;
y3 <- 1 + x + (−1)phi_s x + (−1)phi_n x + (1)phi_n;
y4 <- 1 + x + (−1)phi_s x + (−1)phi_n x + (1)phi_n;
y5 <- 1 + x + (−1)phi_s x + (−1)phi_n x + (1)phi_n;
y6 <- 1 + x + (−1)phi_s x + (−1)phi_n x + (1)phi_n;
y7 <- 1 + x + (−1)phi_s x + (−1)phi_n x + (1)phi_n;
y8 <- 1 + x + (−1)phi_s x + (−1)phi_n x + (1)phi_n;
y9 <- 1 + x + (−1)phi_s x + (−1)phi_n x + (1)phi_n;
y10 <- 1 + x + (−1)phi_s x + (−1)phi_n x + (1)phi_n;
y11 <- 1 + x + (−1)phi_s x + (−1)phi_n x + (1)phi_n;
y12 <- 1 + x + (−1)phi_s x + (−1)phi_n x + (1)phi_n;
y13 <- 1 + x + (−1)phi_s x + (−1)phi_n x + (1)phi_n;
y14 <- 1 + x + (−1)phi_s x + (−1)phi_n x + (1)phi_n;
y15 <- 1 + x + (−1)phi_s x + (−1)phi_n x + (1)phi_n;
y16 <- 1 + x + (−1)phi_s x + (−1)phi_n x + (1)phi_n;
y17 <- 1 + x + (−1)phi_s x + (−1)phi_n x + (1)phi_n;
y18 <- 1 + x + (−1)phi_s x + (−1)phi_n x + (1)phi_n;
y19 <- 1 + x + (−1)phi_s x + (−1)phi_n x + (1)phi_n;
y20 <- 1 + x + (−1)phi_s x + (−1)phi_n x + (1)phi_n;
y21 <- 1 + x + (−1)phi_s x + (−1)phi_n x + (1)phi_n;

end model
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